Distributed Graph Coloring and Related Problems

Michael Elkin

Ben-Gurion University

joint w/ L. Barenboim
(PODC'08, STOC'09, PODC'10,
PODC'11, J. ACM'11)

and w/ L. Barenboim, S. Pettie and J. Schneider (FOCS'12)

The Model

- Unweighted undirected graph $G=(V, E)$.
- Vertices host processors.
- Processors communicate over edges of G.
- Communication is synchronous, i.e., occurs in discrete rounds.
- Running time $=\#$ rounds.
- All vertices wake up simultaneously.
- Vertices have unique Ids from $\{1,2, \ldots, n\}=[n]$.
- Arbitrarily large messages are allowed, though short (of size $O(\log n)$) are preferred.

Coloring

- $\Delta=\Delta(G)$ - maximum degree of a vertex in G.
- $\varphi: V \rightarrow[k]$ is a k-vertex-coloring if $\forall e=(u, w) \in E, \quad \varphi(u) \neq \varphi(w)$.
- $\psi: E \rightarrow[t]$ is a t-edge-coloring if $\forall e, e^{\prime}$ s.t. $e \cap e^{\prime} \neq \emptyset, \psi(e) \neq \psi\left(e^{\prime}\right)$.
- In distributed setting, typically $k \geq \Delta+1, t \geq 2 \Delta-1$.
- MIS U :
(1) $\forall v, w \in U, \quad(v, w) \notin E$.
(2) $\forall v \notin U, \quad \exists u \in U$ s.t. $(u, v) \in E$.
- MM M:
(1) $\forall e, e^{\prime} \in M, e \cap e^{\prime}=\emptyset$.
(2) $\forall e^{\prime} \notin M, \exists e \in M$ s.t. $e \cap e^{\prime}=\emptyset$.
- $(\Delta+1)$-coloring in $O(n)$ rounds is easy.

Color vertices one-by-one:
For each new vertex v there are $\leq \Delta$ forbidden colors.

Hence there is always an available color for v in $[\Delta+1]$.

- MIS in $O(n)$ rounds is easy too.

Initialize $U \leftarrow \emptyset$;
Treat vertices one-by-one:
For each new vertex v do:
if $\Gamma(v) \cap U=\emptyset$ then
v joins U;

- $(2 \Delta-1)$-edge-coloring reduces to ($\Delta+1$)-vertex-coloring,
MM and $(\Delta+1)$-vertex-coloring reduce to MIS.

Elementary Color Reduction Technique

Given an α-coloring, $\alpha>\Delta+1$, eliminate one color class in each round.

Vertices of color α form an independent set.

Each of them recolors itself into an available color from $[\Delta+1]$.

So in $\alpha-(\Delta+1)$ rounds we get a $(\Delta+1)$-coloring.

Contunue with it for $\Delta+1$ more rounds to get an MIS.

Kuhn-Wattenhofer's (KW) Color Reduction Technique

$(\Delta+1)$-coloring in $O\left(\Delta \log \frac{\alpha}{\Delta+1}\right)+\log ^{*} n$ time. [Kuhn,Wattenhofer (PODC'06)]

- Given an α-coloring,
$\alpha=c \cdot(\Delta+1)$,
c is a large integer power of 2 .
- $\forall i \in[c]$, let

$$
\begin{aligned}
U_{i}=\{v & \mid(i-1) \cdot(\Delta+1)+1 \\
\leq & \varphi(v) \leq i \cdot(\Delta+1)\} .
\end{aligned}
$$

- Pair subgraphs $G\left(U_{1}\right)$ with $G\left(U_{2}\right)$, $G\left(U_{3}\right)$ with $G\left(U_{4}\right), \ldots$, $G\left(U_{c-1}\right)$ with $G\left(U_{c}\right)$.

Consider $G\left(U_{1} \cup U_{2}\right)$.
It is $2 \cdot(\Delta+1)$-colored by φ.

- Reduce the $2(\Delta+1)$-coloring of $G\left(U_{1} \cup U_{2}\right)$ to get a $(\Delta+1)$-coloring of $G\left(U_{1} \cup U_{2}\right)$ in $2(\Delta+1)-(\Delta+1)=\Delta+1$ rounds.

In parallel, reduce the colorings of $G\left(U_{3} \cup U_{4}\right), G\left(U_{5} \cup U_{6}\right), \ldots$
In $\Delta+1$ rounds we get $\frac{1}{2} \alpha$-coloring of G.

- Keep halving the \#colors
by phases that last $\Delta+1$ rounds each.
In $\log \frac{\alpha}{\Delta+1}$ phases
(i.e., in $O(\Delta \cdot \log \alpha / \Delta)$ time)
we get $(\Delta+1)$-coloring.
- [Linial (FOCS'87)]:
$O\left(\Delta^{2}\right)$-coloring in $\log ^{*} n$ time.
In conjunction with the KW color reduction we get $O(\Delta \log \Delta)+\log ^{*} n$ time for $(\Delta+1)$-coloring.
- Locally-iterative means: in every round every vertex recolors itself based only on colors of its neighbors.
[Szegedy,Vishwanathan (STOC'92)]: Any locally-iterative ($\Delta+1$)-coloring requires $\Omega(\Delta \log \Delta)$ time.

The ($\Delta+1$)-coloring algorithms of Linial and of Kuhn and Wattenhofer can be cast as locally-iterative.

So the KW is an optimal locally-iterative ($\Delta+1$)-coloring algorithm.

Distributed Coloring Known Randomized Results

- $(\Delta+1)$-coloring, MIS and MM in $O(\log n)$ time.
[Luby (STOC'85)],
[Alon,Babai,Itai (J.Alg.'86)],
Israeli,Itai (IPL'86)].
$(\Delta+1)$-coloring in $O(\log \Delta+\sqrt{\log n})$ time. [Schneider,Wattenhofer (PODC'10)].
- $O(\Delta)$-coloring in $O(\sqrt{\log n})$ time [Kothapalli,Scheideler,Onus, Schindelhauer (IPDPS'06)].
- $O(\Delta+\log n)$-coloring in $O(\log \log n)$ time, and $O\left(\Delta \log ^{(c)} n+\log ^{1+1 / c} n\right)$-coloring in $O(f(c))=O(1)$ time.
[Schneider,Wattenhofer (PODC'10)].

New Randomized Algorithms

[Barenboim, E., Pettie, Schneider (FOCS'12)]

- MM in $O\left(\log \Delta+\log ^{4} \log n\right)$ time.
- $(\Delta+1)$-coloring in
$O(\log \Delta)+\exp \{O(\sqrt{\log \log n})\}$ time.
- $O(\Delta)$-coloring in $\exp \{O(\sqrt{\log \log n})\}$ time.
- $\Delta^{1+\eta}$-coloring in $O\left(\log ^{2} \log n\right)$ time.
- $\Delta^{1+\eta}$-edge-coloring in $O(\log \log n)$ time.
- MIS in $O\left(\log ^{2} \Delta\right)+\exp \{O(\sqrt{\log \log n})\}$ time.

Basic Approach in BEPS's algorithms

- Do (roughly) $O(\log \Delta)$ "Luby" steps to break the graph into disconnected components of size $s \leq \operatorname{polylog}(n)$.

$|C 1|,|C 2|,|C 3| \leq s$.
- Use the state-of-the-art deterministic MIS algorithm for each component.

It completes the MIS within additional $\exp \{O(\sqrt{\log s})\} \leq \exp \{O(\sqrt{\log \log n})\}$ time.

Using randomized subroutine within components fails because the failure probability is $1 / \operatorname{poly}(s) \approx 1 / \operatorname{polylog}(n)$.

- Works similarly for $(\Delta+1)$-coloring and MM problems.

For MM the second step requires just $O\left(\log ^{4} s\right)=O\left(\log ^{4} \log n\right)$ time.

- Improved deterministic algorithms give rise to improved randomized ones!

Lower Bounds vs. Upper Bounds

- $f(\Delta)$-coloring requires $\frac{1}{2}$ log $^{*} n$ time.
[Linial (FOCS'87)]

The upper bound (BEPS) for $(\Delta+1)$-coloring is $O(\log \Delta)+\exp \{O(\sqrt{\log \log n})\}$.

Huge gap!

- Coloring Δ-regular trees in $o(\sqrt{\triangle})$ colors requires $\omega\left(\log _{\Delta} n\right)$ time.
[Linial (FOCS'87)]

One can color unoriented forests in Δ^{ϵ} colors within $O\left(\log _{\Delta} n\right)$ time, for an arbitrarily small $\epsilon>0$.
[Barenboim,E. (PODC'08)] (tight).

- $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time is required for MIS and MM.
[Kuhn,Moscibroda,Wattenhofer],
[(PODC'04), (ArXiv'10)]

The upper bound (BEPS) for MM is $O\left(\log \Delta+\log ^{4} \log n\right)$.

Tight for $\log ^{4} \log n \leq \log \Delta \leq \sqrt{\log n}$.

For MIS the BEPS's upper bound is $O\left(\log ^{2} \Delta\right)+\exp \{O(\sqrt{\log \log n})\}$.

Known Deterministic Results

- $(\Delta+1)$-coloring and MIS in $O\left(\Delta^{2}+\log ^{*} n\right)$ time, and in $O(\Delta \log n)$ time.
[Goldberg,Plotkin,Shannon'87]
(based on [Cole,Vishkin'86])
- $O\left(\Delta^{2}\right)$-coloring in $\log ^{*} n+O(1)$ time.
[Linial'87]
Asked: can one get much fewer than Δ^{2} colors in time polylogarithmic in n ?
- $(\Delta+1)$-coloring and MIS in $2^{O}(\sqrt{\log n})$ time. (Large messages) [Panconesi,Srinivasan'92], based on [Awerbuch, Goldberg,Luby,Plotkin'89]
- MM in $O\left(\log ^{4} n\right)$ time.
[Hanckowiak,Karonski,Panconesi'99]
- $O(\Delta \cdot \log n)$-edge-coloring in $O\left(\log ^{4} n\right)$ time.
[Czygrinow,Hanckowiak,Karonski (ESA'01)]

New Deterministic Results

- $(\Delta+1)$-coloring and MIS in $O(\Delta)+\frac{1}{2} \log ^{*} n$ time.
[Barenboim,E. (ArXiv'08,STOC'09)], [Kuhn (SPAA'09)]

Breaks the Szegedy-Vishwanathan's $\Omega(\Delta \log \Delta)$ barrier.

Major Open Problem:

The lower bound is only $\frac{1}{2} \cdot \log ^{*} n$ ([Linial'87]), while the upper bound is $O(\Delta)+\frac{1}{2} \log ^{*} n$.
 for any $\eta>0$.
(2) $O(\Delta)$-coloring in $O\left(\Delta^{\epsilon} \cdot \log n\right)$ time, for any $\epsilon>0$.
[Barenboim,E. (PODC'10,J.ACM'11)]

Answers Linial's question in the affirmative.
(In polylogarithmic time one can get $\Delta \cdot 2^{O(\log \Delta / \log \log \Delta) \text {-coloring.) }}$

- (1) $\Delta^{1+\eta}$-edge-coloring in $O\left(\log \Delta+\log ^{*} n\right)$ time, for any $\eta>0$.
(2) $O(\Delta)$-edge-coloring in $O\left(\Delta^{\epsilon}+\log ^{*} n\right)$ time, for any $\epsilon>0$.
[Barenboim,E. (PODC'11)]

Special Families of Graphs: Bounded Arboricity

Planar graphs:
MIS and other problems can be solved in deterministic $O(\log n)$ time.
[Goldberg,Plotkin,Shannon'87]
Arboricity $a=a(G), G=(V, E)$

$$
a=\max _{U \subseteq V,|U| \geq 2}\left\{\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil\right\}
$$

Forests have arboricity 1.

Planar graphs have arboricity ≤ 3.

Graphs of bounded genus or treewidth have bounded arboricity.

Graphs that exclude any fixed minor have bounded arboricity.

Arboricity (Continued)

Nash-Williams's Thm'61:
The arboricity $a=a(G)$ is the minimum number of edge-disjoint forests required to cover G.
arboricity \approx degeneracy.
$\operatorname{degen}(G)=d$ is the minimum number s.t. $V=V(G)$ can be ordered $v_{1}, v_{2}, \ldots, v_{n}$, and each v_{i} has $\leq d$ edges $\left(v_{i}, v_{j}\right), i<j$.

Given the ordering it is easy to ($d+1$)-color the graph.

New Results for
 Graphs with Bounded Arboricity

- (1) $(2+\epsilon) a$-coloring in $O(a \cdot \log n)$ deterministic time.
(2) $O\left(a^{2}\right)$-coloring in $O(\log n)$ deterministic time.
(3) $\forall q, O\left(q \cdot a^{2}\right)$-coloring in $O\left(\log _{q} n\right)$ deterministic time.
[Barenboim,E.'(PODC'08)]
- $\forall q, \sqrt{\log n} \leq \log q \leq \frac{\log n}{\log \log n}$,
$O(q \cdot a)$-coloring in $O\left(\log _{q} n\right)$ randomized time.
[Kothapalli,Pemmaraju(PODC'11)]
- A lower bound of $\Omega\left(\log _{q} n\right)$ for $(q \cdot a)$-coloring.
[Barenboim,E.'08], based on [Linial'87].

Bounded Arboricity (Continued)

- MIS and $(\Delta+1)$-coloring in $O\left(\frac{\log n}{\log \log n}\right)$ deterministic time, for $a \leq \log ^{1 / 2-\epsilon} n$.
- MM and $(2 \Delta-1)$-edge-coloring in $O\left(\frac{\log n}{\log \log n}\right)$ deterministic time, for $a \leq \log ^{1-\epsilon} n$.
- For $a \leq \operatorname{polylog}(n)$,

MIS, MM, $(\Delta+1)$-coloring
and $(2 \Delta-1)$-edge-coloring
can all be solved
in deterministic polylog(n) time.
[Barenboim,E.'08]

- $(2+\epsilon)^{k} \cdot a$-coloring
in $a^{O(1 / k)} \log n$ deterministic time,
$\forall k=1,2, . ., \forall \epsilon>0$.
Means: $O(a)$-coloring in $a^{\epsilon} \cdot \log n$ deterministic time, $(\forall \epsilon>0)$.

Also, $a^{1+\eta}$-coloring in $O(\log a \cdot \log n)$ deterministic time. $(\forall \eta>0)$

Implies: $\Delta^{1+\eta}$-coloring in $O(\log \Delta \cdot \log n)$ deterministic time. $(\forall \eta>0)$.

Also, if $a \leq \Delta^{1-\epsilon}$ we get
($\Delta+1$)-coloring
in deterministic polylog(n) time.
[Barenboim,E. (PODC'10,J.ACM'11)]

Bounded Arboricity: New Randomized Results

- MM: $O(\log a+\sqrt{\log n})$. (BEPS)

Lower bound: $\Omega(\sqrt{\log n})$,
even for unoriented trees.
BEPS,
based on [Kuhn,Moscibroda,Wattenhofer'04]

Tight for $1 \leq a \leq \exp \{\sqrt{\log n}\}$.
Open for larger values of a.

- MIS: $O\left(\log ^{2} a+\log ^{2 / 3} n\right)$. (BEPS).

For trees $O(\sqrt{\log n \log \log n})$ (BEPS), refining $O(\sqrt{\log n} \log \log n)$ bound due to [Lenzen,Wattenhofer (PODC'11)].

No lower bound of $\sqrt{\log n}$ for MIS in unoriented trees is known!

Graphs with Small Arboricity: Basic Technique

Observation 1:
In an n-vertex graph $G=(V, E)$
with $a(G)=a$, there exists
a constant fraction of vertices (subset H) s.t. $\forall v \in H, \quad \operatorname{deg}(v) \leq 3 \cdot a$.

It extends the notion of degeneracy:
a graph of degeneracy d must contain at least one vertex v with $\operatorname{deg}(v) \leq d$.

Observation 2: $a(G(V \backslash H)) \leq a(G)$

We can extract such sets H many times, and get an H-partition of G.

The Peeling Process: H-decomposition

Iteratively remove low-degree sets H_{1}, H_{2}, \ldots

For some ℓ, all vertices v in $H_{\ell}=V \backslash \bigcup_{i=1}^{\ell-1} H_{i}$ have $\operatorname{deg}\left(v, H_{\ell}\right) \leq 3 \cdot a$.
H_{ℓ} is the last set in the H-decomposition.
ℓ - the number of H-sets.

On each step at least a constant fraction of vertices is eliminated.
$\ell=O(\log n)$.

$A=3 \cdot a$.
$V=\bigcup_{i=1}^{\ell} H_{i}, \quad H_{i} \cap H_{j}=\emptyset, \quad \forall i \neq j$
$\forall i \in[\ell], \forall v \in H_{i}, \operatorname{deg}\left(v, \bigcup_{j=i}^{\ell} H_{j}\right) \leq A$.
In particular, $\operatorname{deg}\left(v, H_{i}\right) \leq \operatorname{deg}\left(v, \cup_{j=i}^{\ell} H_{j}\right) \leq A$.

The H-decomposition can be computed in $O(\ell)=O(\log n)$ time.
(One round for each H_{i}.)
[Zhou,Nishizeki'95],
[Barenboim,E.'08]

Coloring Using H-Decomposition

- Compute an H-decomposition $H_{1}, H_{2}, \ldots, H_{\ell}$ in $O(\ell)=O(\log n)$ time.
- In parallel, in each H_{i} compute an $(A+1)$-coloring φ in $O\left(A+\log ^{*} n\right)$ time. $\left(\Delta\left(H_{i}\right) \leq A\right)$
- Recolor to obtain an $(A+1)$-coloring ψ of the entire original graph G.

On this step we spend
$O(A \cdot \ell)=O(a \cdot \log n)$ time.

Recoloring (Producing ψ)

Spend $(A+1)$ rounds on each set H_{i}.

Start with H_{ℓ}. Each $v \in H_{\ell}$ sets $\psi(v) \leftarrow \varphi(v)$.

Proceed to $H_{\ell-1}$.
$\forall r \in[A+1]$,
$H_{\ell-1}^{r}=\left\{v \in H_{\ell-1} \mid \varphi(v)=r\right\}$.

Recolor one φ-color class at a time.
(Each φ-color class is an independent set.)

Suppose for some $r \in[A]$ that $H_{\ell-1}^{1} \cup \ldots \cup H_{\ell-1}^{r}$ are already recolored.

Consider $v \in H_{\ell-1}^{r+1}$.
v has $\leq A$ neighbors in $H_{\ell} \cup H_{\ell-1}$.
v has $\leq A$ recolored neighbors.
(Because those are in $H_{\ell} \cup \bigcup_{j=1}^{r} H_{\ell-1}^{j}$.)

Hence there is a color $c=c(v) \in[A+1]$
s.t. no recolored neighbor u of v has $\psi(u)=c$.

All vertices $v \in H_{\ell-1}^{r+1}$
compute in parallel $c(v)$ and set $\psi(v) \leftarrow c(v)$.

Since $H_{\ell-1}^{r+1}$ is an independent set, the new coloring ψ is legal.

The algorithm:
Recolor $H_{\ell-1}^{1}$, then $H_{\ell-1}^{2}, \ldots, H_{\ell-1}^{A+1}$; then recolor $H_{\ell-2}^{1}, H_{\ell-2}^{2}, \ldots, H_{\ell-2}^{A+1}$;

$$
H_{1}^{1}, H_{1}^{2}, \ldots, H_{1}^{A+1}
$$

There are $A+1$ color classes in each H_{i}, and ℓ sets H_{i}.

One round per color class.
Overall $O((A+1) \cdot \ell)=O(a \cdot \log n)$ time.

Thm: $O(a)$-coloring can be computed in $O(a \cdot \log n)$ time.

[Barenboim,E.'08]

It generalizes a 7-coloring algorithm
for planar graphs.
[Goldberg,Plotkin,Shannon'87]

Basic Building Blocks for Further Progress

- Defective coloring:

For $(\Delta+1)$-coloring in $O(\Delta)+$ log $^{*} n$ time.
[Barenboim,E. (STOC'09)],
[Kuhn (SPAA'09)]

Enables one to bypass the
Szegedy-Vishwanathan's barrier of $\Omega(\Delta \log \Delta)$ for
locally-iterative algorithms.

- Arbdefective coloring:

For $\Delta^{1+\eta_{-c o l o r i n g ~}}$ in $O(\log \Delta \cdot \log n)$ deterministic time.
[Barenboim,E. (PODC'10,J.ACM'11)]

Answering in the affirmative Linial's open question.

$(\Delta+1)$-Coloring in $O(\Delta)+\log ^{*} n$ Time (Defective Coloring)

[Burr,Jacobson'85],[Harary,Jones'86] [Cowen, Cowen,Woodall'86]

Def: The defect of a vertex v wrt coloring φ is the number of neighbors $u \in \Gamma(v)$ with $\varphi(u)=\varphi(v)$.

Def: The defect d of a k-coloring φ is the maximum defect of a vertex wrt φ. φ is called a d-defective k-coloring.

Thm: [Lovasz'66]
$\forall G, \forall p$ there exists
a $\lfloor\Delta / p\rfloor$-defective p-coloring of G.

Proof of Lovasz's Thm

φ - an arbitrary p-coloring.
(Not necessarily legal or Δ / p-defective.)

While $\exists v$ with $\operatorname{defect}(v)>\Delta / p$ do \{
$\varphi(v) \leftarrow$ the color used by
min. \#neighbors of v;
\}

Delta $=5$,
$p=2$,
there exists
a color used
by $2<5 / 2$
neighbors
ME_{i} - the total \#monochromatic edges before iteration i starts.

$$
\mathrm{ME}_{i+1}=\mathrm{ME}_{i}-\operatorname{defect}(v)+\left\lfloor\frac{\Delta}{p}\right\rfloor<\mathrm{ME}_{i}
$$

But $0 \leq M E_{i} \leq|E|$, and so within a finite number of iterations this process terminates.

Distributed Counterparts of Lovasz's Theorem

Thm: [Barenboim,E. (STOC'09)]
$\forall G, \forall p\lfloor\Delta / p\rfloor$-defective $O\left(p^{2}\right)$-coloring of G can be computed in $O\left(\Delta^{\epsilon}\right)+\frac{1}{2} \log ^{*} n$ time, $\forall \epsilon>0$.

Thm: [Kuhn (SPAA'09)]
$\forall G, \forall p\lfloor\Delta / p\rfloor$-defective $O\left(p^{2}\right)$-coloring of G can be computed in $O\left(\log ^{*} \Delta\right)+\frac{1}{2} \log ^{*} n$ time.

Open: can one efficiently achieve a linear (in Δ) product of defect and \#colors?

Partial answer: for edge-coloring it is possible.
Also, for vertex-coloring of graphs with bounded independence.
[Barenboim,E. (PODC'11)]

($\Delta+1$)-Coloring Algorithm

- Compute $O\left(\frac{\Delta}{\log \Delta}\right)$-defective $\log ^{2} \Delta$-coloring of G in $o(\Delta)+O\left(\right.$ log $\left.^{*} n\right)$ time. ($p=\log \Delta$)
- Each color class induces a subgraph with maximum degree $\Delta^{\prime}=O\left(\frac{\Delta}{\log \Delta}\right)$.
Subgraphs are vertex-disjoint.
- In parallel, compute $\left(\Delta^{\prime}+1\right)$-coloring in each of the $\log ^{2} \Delta$ subgraphs in $O\left(\Delta^{\prime} \log \Delta^{\prime}+\log ^{*} n\right)=O\left(\Delta+\log ^{*} n\right)$ time, using KW algorithm.
- Overall we get
$O\left(\left(\Delta^{\prime}+1\right) \log ^{2} \Delta\right)=O(\Delta \log \Delta)$-coloring φ of the entire original graph.
(Using distinct palettes.)
- Invoke KW iterative procedure.

Given α-coloring it returns
$(\Delta+1)$-coloring in $O\left(\Delta \cdot \log \frac{\alpha}{\Delta}\right)$ time.
For $\alpha=\Delta \log \Delta$,
the time is $O(\Delta \log \log \Delta)$.
Overall running time is
$O\left((\Delta+1) \cdot \log \log \Delta+\log ^{*} n\right)+o(\Delta)$.

This is a self-improving scheme!

Now we have ($\Delta+1$)-coloring algorithm that runs in $O\left(\Delta \log \log \Delta+\log ^{*} n\right)$ time.

- Compute $O\left(\frac{\Delta}{\log \log \Delta}\right)$-defective $(\log \log \Delta)^{2}$-coloring in $o(\Delta)+O\left(\right.$ log $\left.^{*} n\right)$ time.
- $\Delta^{\prime}=\frac{\Delta}{\log \log \Delta}$.

Compute $\left(\Delta^{\prime}+1\right)$-coloring of each subgraph in
$O\left(\Delta^{\prime} \log \log \Delta^{\prime}+\log ^{*} n\right)=O\left(\Delta+\log ^{*} n\right)$ time.

- Combine these colorings into an $O(\Delta \log \log \Delta)$-coloring of G (in zero time).
- Reduce the $O(\Delta \cdot \log \log \Delta)$-coloring via KW iterative procedure into a $(\Delta+1)$-coloring within $O\left(\Delta \cdot \log ^{(3)} \Delta+\log ^{*} n\right)$ additional time.

Overall we get $(\Delta+1)$-coloring in $O\left(\Delta \cdot \log ^{(3)} \Delta+\log ^{*} n\right)$ time.

Repeating this argument log* Δ times we get $(\Delta+1)$-coloring in $O\left(\Delta+\right.$ log* $\left.^{*} n\right)$ time.

A tradeoff (an application)

$\forall t, O(\Delta \cdot t)$-coloring in $O\left(\Delta / t+\log ^{*} n\right)$ time. (Interpolates between Linial's $O\left(\Delta^{2}\right)$-coloring in log* n time, and our $(\Delta+1)$-coloring in $O\left(\Delta+\log ^{*} n\right)$ time. $)$

- Compute (Δ / t)-defective $O\left(t^{2}\right)$-coloring in $O\left(\log ^{*} n\right)$ time.
- We get $O\left(t^{2}\right)$ vertex-disjoint subgraphs, each with $\Delta^{\prime} \leq \Delta / t$.

Compute $\left(\Delta^{\prime}+1\right)$-coloring of each, in parallel, in
$O\left(\Delta^{\prime}+\log ^{*} n\right)=O\left(\Delta / t+\log ^{*} n\right)$, using the last result for $\left(\Delta^{\prime}+1\right)$-coloring.

- Combine the colorings in zero time to get $O\left(t^{2} \cdot \Delta^{\prime}\right)=O(\Delta \cdot t)$-coloring, in total $O\left(\Delta / t+\log ^{*} n\right)$ time.

Open Questions

1. A $(\Delta+1)$-coloring or an MIS in deterministic polylogarithmic time?

Or at least $O(\Delta)$-coloring.
Currently we have $\Delta \cdot 2^{O\left(\frac{\log \Delta}{\log \log \Delta}\right)}$-coloring.
2. A $\Delta^{2-\epsilon_{-c o l o r i n g ~}^{c}}$ in sublogarithmic time?
3. A $(\Delta+1)$-coloring in $o(\Delta)$ time?

Or a lower bound?

Currently we have $O(\Delta)+\frac{1}{2} \log ^{*} n$ time.
4. Δ / p-defective $O(p)$-coloring in deterministic polylogarithmic time?
(Known for edge-coloring, and for vertex-coloring of graphs with bounded neighborhood independence.)
5. $(2 a+1)$-coloring faster than in $O\left(a^{2} \log n\right)$ time?
$(2+\eta) \cdot a$-coloring faster than in $O(a \log n)$ time?

We know
$(2+\eta)^{1 / \epsilon} a$-coloring in $O\left(a^{\epsilon} \cdot \log n\right)$ time,

There is also a lower bound of $\Omega\left(\frac{\log n}{\log a}\right)$ for $O\left(a^{2}\right)$-coloring.

So unlike graphs with bounded degree, for graphs of bounded arboricity one cannot hope for sublogarithmic time.
6. MIS or MM in
randomized $o(\log n)$ time, for all values of Δ (or $a)$?
7. Randomized MIS in planar graphs in $o\left(\log ^{2 / 3} n\right)$ time?
Or a lower bound?

- More details can be found in my monograph, joint with Leonid Barenboim, titled "Distributed Graph Coloring", Morgan-Claypool publishing house, Distributed Computing Series, ed. by Nancy Lynch.

See my web-page www.cs.bgu.ac.il/elkinm.

- Looking for grad. students and/or postdocs to work on this stuff!

Thank you!!

