
+ +

Distributed Graph Coloring
and Related Problems

Michael Elkin

Ben-Gurion University

joint w/ L. Barenboim

(PODC’08, STOC’09, PODC’10,

PODC’11, J. ACM’11)

and w/ L. Barenboim, S. Pettie and

J. Schneider (FOCS’12)

+ 1

+ +

The Model

• Unweighted undirected graph G = (V,E).

• Vertices host processors.

• Processors communicate over edges of G.

• Communication is synchronous, i.e.,

occurs in discrete rounds.

+ 2

• Running time = # rounds.

• All vertices wake up simultaneously.

• Vertices have unique Ids

from {1,2, . . . , n} = [n].

• Arbitrarily large messages are allowed,

though short (of size O(logn))

are preferred.

+ +

Coloring

• ∆ = ∆(G) - maximum degree of

a vertex in G.

• ϕ : V → [k] is a k-vertex-coloring

if ∀e= (u,w) ∈ E, ϕ(u) 6= ϕ(w).

• ψ : E → [t] is a t-edge-coloring

if ∀e, e′ s.t. e ∩ e′ 6= ∅, ψ(e) 6= ψ(e′).

• In distributed setting, typically

k ≥∆+1, t ≥ 2∆− 1.

• MIS U :

(1) ∀v, w ∈ U, (v, w) 6∈ E.

(2) ∀v 6∈ U, ∃u ∈ U s.t. (u, v) ∈ E.

• MM M :

(1) ∀e, e′ ∈M, e ∩ e′ = ∅.
(2) ∀e′ 6∈M,∃e ∈M s.t. e ∩ e′ = ∅.

+ 3

• (∆+ 1)-coloring in O(n) rounds is easy.

Color vertices one-by-one:

For each new vertex v there are

≤∆ forbidden colors.

Hence there is always an available color

for v in [∆+ 1].

• MIS in O(n) rounds is easy too.

Initialize U ← ∅;
Treat vertices one-by-one:

For each new vertex v do:

if Γ(v) ∩ U = ∅ then

v joins U ;

• (2∆− 1)-edge-coloring reduces to

(∆+ 1)-vertex-coloring,

MM and (∆+ 1)-vertex-coloring

reduce to MIS.

+ +

Elementary Color Reduction
Technique

Given an α-coloring, α >∆+1,

eliminate one color class in each round.

Vertices of color α form an independent set.

Each of them recolors itself into an available

color from [∆+ 1].

So in α− (∆+ 1) rounds we get

a (∆+ 1)-coloring.

Contunue with it for ∆+ 1 more rounds

to get an MIS.

u
v w

+ 4

+ +

Kuhn-Wattenhofer’s (KW)
Color Reduction Technique

(∆+ 1)-coloring in O(∆ log α
∆+1) + log∗ n time.

[Kuhn,Wattenhofer (PODC’06)]

• Given an α-coloring,

α = c · (∆+ 1),

c is a large integer power of 2.

• ∀i ∈ [c], let

Ui = {v | (i− 1) · (∆+ 1) + 1

≤ ϕ(v) ≤ i · (∆+ 1)}.

• Pair subgraphs G(U1) with G(U2),

G(U3) with G(U4),. . .,

G(Uc−1) with G(Uc).

+ 5

Consider G(U1 ∪ U2).

It is 2 · (∆+ 1)-colored by ϕ.

• Reduce the 2(∆+ 1)-coloring of G(U1 ∪ U2)

to get a (∆+ 1)-coloring of G(U1 ∪ U2) in

2(∆+ 1)− (∆+ 1) = ∆+1 rounds.

In parallel, reduce the colorings of

G(U3 ∪ U4), G(U5 ∪ U6), . . .

In ∆+ 1 rounds we get
1
2α-coloring of G.

• Keep halving the #colors

by phases that last ∆+ 1 rounds each.

In log α
∆+1 phases

(i.e., in O(∆ · logα/∆) time)

we get (∆+ 1)-coloring.

• [Linial (FOCS’87)]:

O(∆2)-coloring in log∗ n time.

In conjunction with the KW color

reduction we get O(∆ log∆)+ log∗ n time

for (∆+ 1)-coloring.

• Locally-iterative means: in every round

every vertex recolors itself based only on

colors of its neighbors.

[Szegedy,Vishwanathan (STOC’92)]:

Any locally-iterative (∆+ 1)-coloring

requires Ω(∆ log∆) time.

The (∆+ 1)-coloring algorithms of Linial

and of Kuhn and Wattenhofer can be cast

as locally-iterative.

So the KW is an optimal locally-iterative

(∆+ 1)-coloring algorithm.

+ +

Distributed Coloring -
Known Randomized Results

• (∆+ 1)-coloring, MIS and MM

in O(logn) time.

[Luby (STOC’85)],

[Alon,Babai,Itai (J.Alg.’86)],

Israeli,Itai (IPL’86)].

(∆+ 1)-coloring in O(log∆+
√
logn) time.

[Schneider,Wattenhofer (PODC’10)].

• O(∆)-coloring in O(
√
logn) time

[Kothapalli,Scheideler,Onus,

Schindelhauer (IPDPS’06)].

• O(∆+ logn)-coloring in O(log logn) time,

and O(∆ log(c) n+ log1+1/c n)-coloring in

O(f(c)) = O(1) time.

[Schneider,Wattenhofer (PODC’10)].

+ 6

+ +

New Randomized Algorithms

[Barenboim, E., Pettie, Schneider (FOCS’12)]

• MM in O(log∆+ log4 logn) time.

• (∆+ 1)-coloring in

O(log∆)+ exp{O(
√
log logn)} time.

• O(∆)-coloring in exp{O(
√
log logn)} time.

• ∆1+η-coloring in O(log2 logn) time.

• ∆1+η-edge-coloring in O(log logn) time.

• MIS in O(log2∆)+ exp{O(
√
log logn)} time.

+ 7

+ +

Basic Approach in BEPS’s
algorithms

• Do (roughly) O(log∆) ”Luby” steps to

break the graph into disconnected

components of size s ≤ polylog(n).

v

u

C1

C2

C3

|C1|, |C2|, |C3| ≤ s.
+ 8

• Use the state-of-the-art deterministic MIS

algorithm for each component.

It completes the MIS within additional

exp{O(
√
log s)} ≤ exp{O(

√
log logn)} time.

Using randomized subroutine within

components fails because the failure

probability is 1/poly(s) ≈ 1/polylog(n).

• Works similarly for (∆+ 1)-coloring

and MM problems.

For MM the second step requires

just O(log4 s) = O(log4 logn) time.

• Improved deterministic algorithms give rise

to improved randomized ones!

+ +

Lower Bounds vs. Upper Bounds

• f(∆)-coloring requires 1
2 log∗ n time.

[Linial (FOCS’87)]

The upper bound (BEPS)

for (∆+ 1)-coloring is

O(log∆)+ exp{O(
√
log logn)}.

Huge gap!

• Coloring ∆-regular trees in o(
√
∆) colors

requires ω(log∆ n) time.

[Linial (FOCS’87)]

One can color unoriented forests in

∆ǫ colors within O(log∆ n) time,

for an arbitrarily small ǫ > 0.

[Barenboim,E. (PODC’08)] (tight).

+ 9

• Ω(log∆) and Ω(
√
logn) time is

required for MIS and MM.

[Kuhn,Moscibroda,Wattenhofer],

[(PODC’04), (ArXiv’10)]

The upper bound (BEPS) for MM is

O(log∆+ log4 logn).

Tight for log4 logn ≤ log∆ ≤
√
logn.

For MIS the BEPS’s upper bound is

O(log2∆)+ exp{O(
√
log logn)}.

+ +

Known Deterministic Results

• (∆+ 1)-coloring and MIS in O(∆2 + log∗ n)
time, and in O(∆ logn) time.

[Goldberg,Plotkin,Shannon’87]

(based on [Cole,Vishkin’86])

• O(∆2)-coloring in log∗ n+O(1) time.

[Linial’87]

Asked: can one get much fewer than

∆2 colors in time polylogarithmic in n?

• (∆+ 1)-coloring and MIS

in 2O(
√
logn) time. (Large messages)

[Panconesi,Srinivasan’92], based on

[Awerbuch,Goldberg,Luby,Plotkin’89]

+ 10

• MM in O(log4 n) time.

[Hanckowiak,Karonski,Panconesi’99]

• O(∆ · logn)-edge-coloring in O(log4 n) time.

[Czygrinow,Hanckowiak,Karonski (ESA’01)]

+ +

New Deterministic Results

• (∆+ 1)-coloring and MIS

in O(∆) + 1
2 log∗ n time.

[Barenboim,E. (ArXiv’08,STOC’09)],

[Kuhn (SPAA’09)]

Breaks the Szegedy-Vishwanathan’s

Ω(∆ log∆) barrier.

Major Open Problem:

The lower bound is only 1
2 · log∗ n

([Linial’87]),

while the upper bound is O(∆) + 1
2 log∗ n.

+ 11

• (1) ∆1+η-coloring in O(log∆ · logn) time,

for any η > 0.

(2) O(∆)-coloring in O(∆ǫ · logn) time,

for any ǫ > 0.

[Barenboim,E. (PODC’10,J.ACM’11)]

Answers Linial’s question

in the affirmative.

(In polylogarithmic time one can get

∆ · 2O(log∆/ log log∆)-coloring.)

• (1) ∆1+η-edge-coloring

in O(log∆+ log∗ n) time, for any η > 0.

(2) O(∆)-edge-coloring

in O(∆ǫ+ log∗ n) time, for any ǫ > 0.

[Barenboim,E. (PODC’11)]

+ +

Special Families of Graphs:
Bounded Arboricity

Planar graphs:

MIS and other problems can be solved

in deterministic O(logn) time.

[Goldberg,Plotkin,Shannon’87]

Arboricity a = a(G), G = (V,E)

a = max
U⊆V,|U |≥2

{⌈ |E(U)|
|U | − 1

⌉}

Forests have arboricity 1.

Planar graphs have arboricity ≤ 3.

Graphs of bounded genus or treewidth

have bounded arboricity.

Graphs that exclude any fixed minor

have bounded arboricity.

+ 12

+ +

Arboricity (Continued)

Nash-Williams’s Thm’61:

The arboricity a = a(G) is the minimum

number of edge-disjoint forests

required to cover G.

arboricity ≈ degeneracy.

degen(G) = d is the minimum number s.t.

V = V (G) can be ordered v1, v2, . . . , vn,

and each vi has ≤ d edges (vi, vj), i < j.

v v
i

d > d

v
2 1

vn

Given the ordering it is easy to

(d+1)-color the graph.

+ 13

+ +

New Results for
Graphs with Bounded Arboricity

• (1) (2 + ǫ)a-coloring in O(a · logn)
deterministic time.

(2) O(a2)-coloring in O(logn)

deterministic time.

(3) ∀q, O(q · a2)-coloring in O(logq n)

deterministic time.

[Barenboim,E.’(PODC’08)]

• ∀q,
√
logn ≤ log q ≤ logn

log logn,

O(q · a)-coloring in O(logq n)

randomized time.

[Kothapalli,Pemmaraju(PODC’11)]

• A lower bound of Ω(logq n) for (q · a)-coloring.

[Barenboim,E.’08], based on [Linial’87].

+ 14

+ +

Bounded Arboricity (Continued)

• MIS and (∆+ 1)-coloring

in O
(

logn
log logn

)

deterministic time,

for a ≤ log1/2−ǫ n.

• MM and (2∆− 1)-edge-coloring

in O
(

logn
log logn

)

deterministic time,

for a ≤ log1−ǫ n.

• For a ≤ polylog(n),

MIS, MM, (∆+ 1)-coloring

and (2∆− 1)-edge-coloring

can all be solved

in deterministic polylog(n) time.

[Barenboim,E.’08]

+ 15

• (2 + ǫ)k · a-coloring
in aO(1/k) logn deterministic time,

∀k = 1,2, ..,∀ǫ > 0.

Means: O(a)-coloring in aǫ · logn
deterministic time, (∀ǫ > 0).

Also, a1+η-coloring in O(log a · logn)
deterministic time. (∀η > 0)

Implies: ∆1+η-coloring in O(log∆ · logn)
deterministic time. (∀η > 0).

Also, if a ≤∆1−ǫ we get

(∆+ 1)-coloring

in deterministic polylog(n) time.

[Barenboim,E. (PODC’10,J.ACM’11)]

+ +

Bounded Arboricity:
New Randomized Results

• MM: O(log a+
√
logn). (BEPS)

Lower bound: Ω(
√
logn),

even for unoriented trees.

BEPS,

based on [Kuhn,Moscibroda,Wattenhofer’04]

Tight for 1 ≤ a ≤ exp{
√
logn}.

Open for larger values of a.

• MIS: O(log2 a+ log2/3 n). (BEPS).

For trees O(
√
logn log logn) (BEPS),

refining O(
√
logn log logn) bound due to

[Lenzen,Wattenhofer (PODC’11)].

No lower bound of
√
logn

for MIS in unoriented trees is known!

+ 16

+ +

Graphs with Small Arboricity:
Basic Technique

Observation 1:

In an n-vertex graph G = (V,E)

with a(G) = a, there exists

a constant fraction of vertices (subset H) s.t.

∀v ∈ H, deg(v) ≤ 3 · a.

It extends the notion of degeneracy:

a graph of degeneracy d

must contain at least one vertex v

with deg(v) ≤ d.

Observation 2: a(G(V \H)) ≤ a(G)

⇓

We can extract such sets H many times,

and get an H-partition of G.

+ 17

+ +

The Peeling Process:
H-decomposition

Iteratively remove low-degree sets

H1, H2,

For some ℓ, all vertices v in Hℓ = V \ ⋃ℓ−1i=1Hi
have deg(v ,Hℓ) ≤ 3 · a.

Hℓ is the last set in the H-decomposition.

ℓ - the number of H-sets.

On each step at least a constant fraction

of vertices is eliminated.

ℓ = O(logn).

+ 18

H HHl l−1 2

A+1 >

H1

A+1 >
v

u’
u

A = 3 · a.

V =
⋃ℓ
i=1Hi, Hi ∩Hj = ∅, ∀i 6= j

∀i ∈ [ℓ], ∀v ∈ Hi, deg(v ,
⋃ℓ
j=i Hj) ≤ A.

In particular, deg(v ,Hi) ≤ deg(v ,
⋃ℓ
j=i Hj) ≤ A.

The H-decomposition can be computed

in O(ℓ) = O(logn) time.

(One round for each Hi.)

[Zhou,Nishizeki’95],

[Barenboim,E.’08]

+ +

Coloring Using H-Decomposition

• Compute an H-decomposition

H1, H2, . . . , Hℓ in O(ℓ) = O(logn) time.

• In parallel, in each Hi compute an

(A+1)-coloring ϕ in O(A+ log∗ n) time.

(∆(Hi) ≤ A)

• Recolor to obtain an (A+1)-coloring ψ

of the entire original graph G.

On this step we spend

O(A · ℓ) = O(a · logn) time.

+ 19

+ +

Recoloring (Producing ψ)

Spend (A+1) rounds on each set Hi.

Start with Hℓ.

Each v ∈ Hℓ sets ψ(v)← ϕ(v).

Proceed to Hℓ−1.
∀r ∈ [A+1],

Hr
ℓ−1 = {v ∈ Hℓ−1 | ϕ(v) = r}.

Recolor one ϕ-color class at a time.

(Each ϕ-color class is an independent set.)

Suppose for some r ∈ [A] that

H1
ℓ−1 ∪ . . . ∪Hr

ℓ−1 are already recolored.

+ 20

HHl l−1

A+1 > H
3
l−1

H
l−1

1

v
z 2

H
l−1

Consider v ∈ Hr+1
ℓ−1 .

v has ≤ A neighbors in Hℓ ∪Hℓ−1.

⇓

v has ≤ A recolored neighbors.

(Because those are in Hℓ ∪
⋃r
j=1H

j
ℓ−1.)

HHl l−1

A+1 > H
3
l−1

H
l−1

1

v
z 2

H
l−1

Hence there is a color c = c(v) ∈ [A+1]

s.t. no recolored neighbor u of v

has ψ(u) = c.

All vertices v ∈ Hr+1
ℓ−1

compute in parallel c(v) and

set ψ(v)← c(v).

Since Hr+1
ℓ−1 is an independent set,

the new coloring ψ is legal.

The algorithm:

Recolor H1
ℓ−1, then H2

ℓ−1, . . . , H
A+1
ℓ−1 ;

then recolor H1
ℓ−2, H

2
ℓ−2, . . . , H

A+1
ℓ−2 ;

...

H1
1 , H

2
1 , . . . , H

A+1
1 .

There are A+1 color classes in each Hi,

and ℓ sets Hi.

One round per color class.

Overall O((A+1) · ℓ) = O(a · logn) time.

Thm: O(a)-coloring can be

computed in O(a · logn) time.

[Barenboim,E.’08]

It generalizes a 7-coloring algorithm

for planar graphs.

[Goldberg,Plotkin,Shannon’87]

+ +

Basic Building Blocks for
Further Progress

• Defective coloring:

For (∆+ 1)-coloring in O(∆) + log∗ n time.

[Barenboim,E. (STOC’09)],

[Kuhn (SPAA’09)]

Enables one to bypass the

Szegedy-Vishwanathan’s barrier

of Ω(∆ log∆) for

locally-iterative algorithms.

• Arbdefective coloring:

For ∆1+η-coloring

in O(log∆ · logn) deterministic time.

[Barenboim,E. (PODC’10,J.ACM’11)]

Answering in the affirmative

Linial’s open question.

+ 21

+ +

(∆+ 1)-Coloring in

O(∆)+ log∗ n Time
(Defective Coloring)

[Burr,Jacobson’85],[Harary,Jones’86]

[Cowen,Cowen,Woodall’86]

Def: The defect of a vertex v wrt

coloring ϕ is the number of neighbors u ∈ Γ(v)

with ϕ(u) = ϕ(v).

Def: The defect d of a k-coloring ϕ

is the maximum defect of a vertex wrt ϕ.

ϕ is called a d-defective k-coloring.

Thm: [Lovasz’66]

∀G, ∀p there exists

a ⌊∆/p⌋-defective p-coloring of G.

+ 22

+ +

Proof of Lovasz’s Thm

ϕ - an arbitrary p-coloring.

(Not necessarily legal or ∆/p-defective.)

while ∃v with defect(v) > ∆/p do

{

ϕ(v)← the color used by

min. #neighbors of v;

}

v Delta = 5,
p = 2,
there exists
a color used
by 2 < 5/2
neighbors

+ 23

MEi - the total #monochromatic edges

before iteration i starts.

MEi+1 = MEi − defect(v) + ⌊∆p ⌋ <MEi.

But 0 ≤MEi ≤ |E|, and so within

a finite number of iterations

this process terminates.

+ +

Distributed Counterparts of
Lovasz’s Theorem

Thm: [Barenboim,E. (STOC’09)]

∀G, ∀p ⌊∆/p⌋-defective O(p2)-coloring of G

can be computed in O(∆ǫ) + 1
2 log∗ n time,

∀ǫ > 0.

Thm: [Kuhn (SPAA’09)]

∀G, ∀p ⌊∆/p⌋-defective O(p2)-coloring of G

can be computed in O(log∗∆)+ 1
2 log∗ n time.

Open: can one efficiently achieve

a linear (in ∆) product of defect and #colors?

Partial answer: for edge-coloring

it is possible.

Also, for vertex-coloring of graphs

with bounded independence.

[Barenboim,E. (PODC’11)]

+ 24

+ +

(∆+ 1)-Coloring Algorithm

• Compute O
(

∆
log∆

)

-defective log2∆-coloring

of G in o(∆)+O(log∗ n) time.

(p = log∆)

• Each color class induces a subgraph with

maximum degree ∆′ = O
(

∆
log∆

)

.

Subgraphs are vertex-disjoint.

• In parallel, compute (∆′+1)-coloring

in each of the log2∆ subgraphs

in O(∆′ log∆′+ log∗ n) = O(∆+ log∗ n) time,

using KW algorithm.

• Overall we get

O((∆′+1) log2∆) = O(∆ log∆)-coloring

ϕ of the entire original graph.

(Using distinct palettes.)

+ 25

• Invoke KW iterative procedure.

Given α-coloring it returns

(∆+ 1)-coloring in O(∆ · log α
∆) time.

For α = ∆log∆,

the time is O(∆ log log∆).

Overall running time is

O((∆+ 1) · log log∆+ log∗ n) + o(∆).

This is a self-improving scheme!

Now we have (∆+ 1)-coloring algorithm that

runs in O(∆ log log∆+ log∗ n) time.

• Compute O
(

∆
log log∆

)

-defective

(log log∆)2-coloring

in o(∆)+O(log∗ n) time.

• ∆′ = ∆
log log∆.

Compute (∆′+1)-coloring of each

subgraph in

O(∆′ log log∆′+ log∗ n) = O(∆+ log∗ n)
time.

• Combine these colorings into

an O(∆ log log∆)-coloring of G

(in zero time).

• Reduce the O(∆ · log log∆)-coloring via

KW iterative procedure

into a (∆+ 1)-coloring

within O(∆ · log(3)∆+ log∗ n)
additional time.

Overall we get (∆+ 1)-coloring in

O(∆ · log(3)∆+ log∗ n) time.

⇓

Repeating this argument log∗∆ times we

get (∆+ 1)-coloring in O(∆+ log∗ n) time.

+ +

A tradeoff (an application)

∀t, O(∆ · t)-coloring in O(∆/t+ log∗ n) time.

(Interpolates between Linial’s O(∆2)-coloring

in log∗ n time, and our (∆+ 1)-coloring in

O(∆+ log∗ n) time.)

• Compute (∆/t)-defective O(t2)-coloring

in O(log∗ n) time.

• We get O(t2) vertex-disjoint subgraphs,

each with ∆′ ≤∆/t.

Compute (∆′+1)-coloring of each,

in parallel, in

O(∆′+ log∗ n) = O(∆/t+ log∗ n),
using the last result for (∆′+1)-coloring.

• Combine the colorings in zero time

to get O(t2 ·∆′) = O(∆ · t)-coloring,
in total O(∆/t+ log∗ n) time.

+ 26

+ +

Open Questions

1. A (∆+ 1)-coloring or an MIS in

deterministic polylogarithmic time?

Or at least O(∆)-coloring.

Currently we have ∆ · 2O(log∆
log log∆)

-coloring.

2. A ∆2−ǫ-coloring in sublogarithmic time?

3. A (∆+ 1)-coloring in o(∆) time?

Or a lower bound?

Currently we have O(∆) + 1
2 log∗ n time.

+ 27

4. ∆/p-defective O(p)-coloring in

deterministic polylogarithmic time?

(Known for edge-coloring, and for

vertex-coloring of graphs with bounded

neighborhood independence.)

5. (2a+1)-coloring faster than in O(a2 logn)

time?

(2 + η) · a-coloring faster than in O(a logn)

time?

We know

(2+ η)1/ǫa-coloring in O(aǫ · logn) time,

and a1+η-coloring in O(log a · logn) time.

There is also a lower bound of Ω
(

logn
log a

)

for O(a2)-coloring.

So unlike graphs with bounded degree,

for graphs of bounded arboricity one

cannot hope for sublogarithmic time.

6. MIS or MM in

randomized o(logn) time,

for all values of ∆ (or a)?

7. Randomized MIS in planar graphs

in o(log2/3 n) time?

Or a lower bound?

+ +

• More details can be found in

my monograph, joint with

Leonid Barenboim,

titled ”Distributed Graph Coloring”,

Morgan-Claypool publishing house,

Distributed Computing Series,

ed. by Nancy Lynch.

See my web-page www.cs.bgu.ac.il/elkinm.

• Looking for grad. students and/or

postdocs to work on this stuff!

Thank you!!

+ 28

