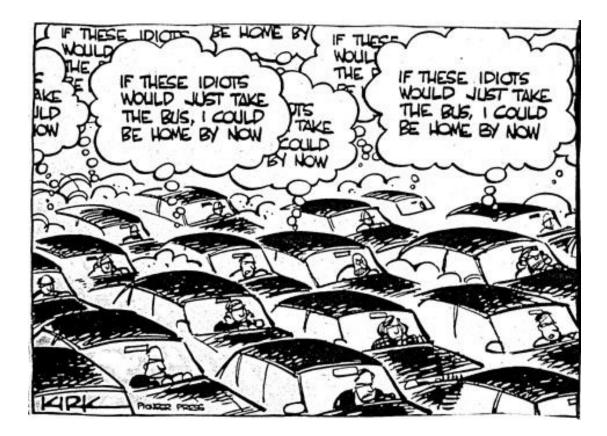
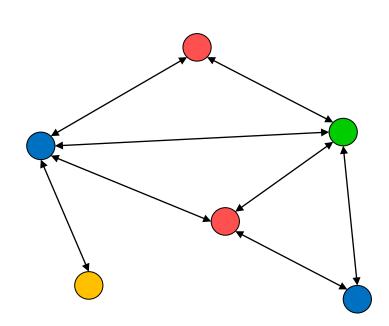
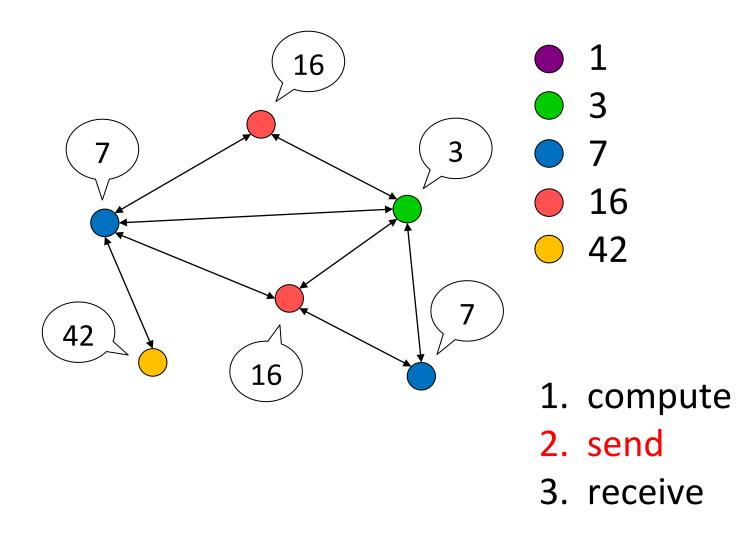
Distributed Algorithms on a Congested Clique

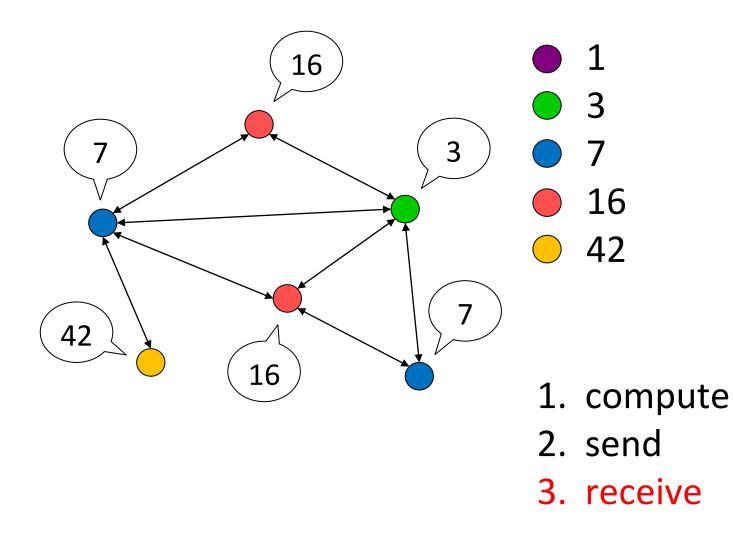


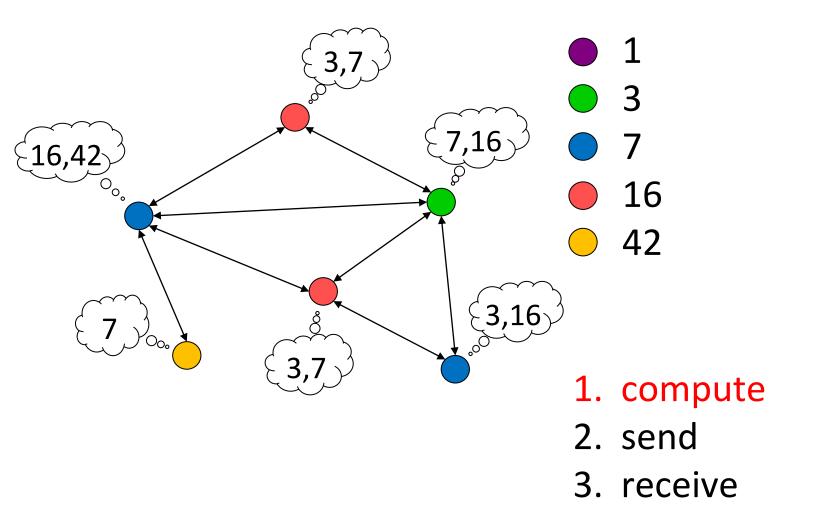
Christoph Lenzen

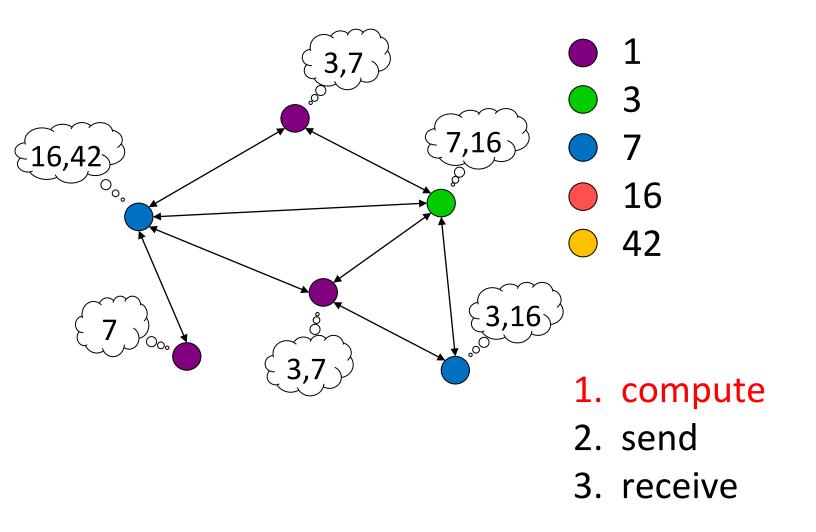


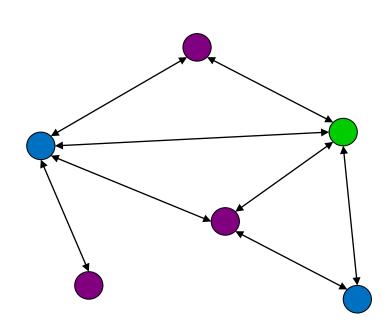
- 1. compute
- 2. send
- 3. receive



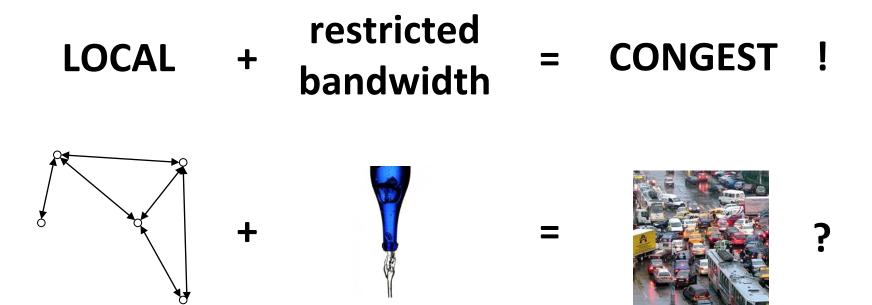






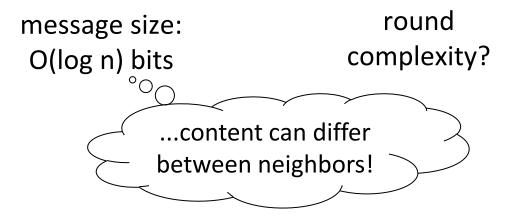


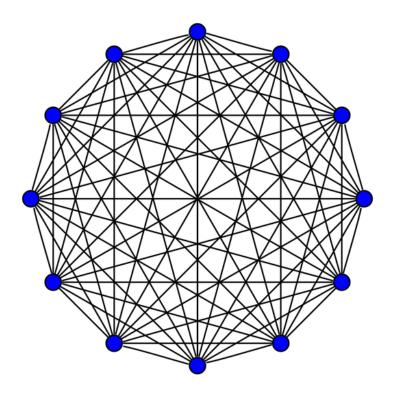
- 1. compute
- 2. send
- 3. receive



synchr. rounds:

- 1. compute
- 2. send
- 3. receive





What happens here?

Disclaimer

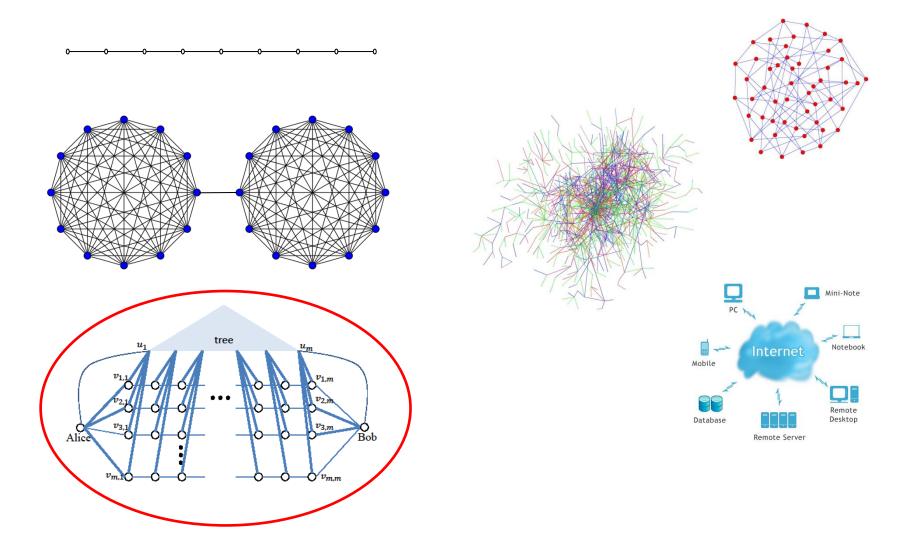
Practical relevance of this model is questionable!

Algorithms for overlay networks? Subroutines for small cliques in larger networks?

So why should we care?!?

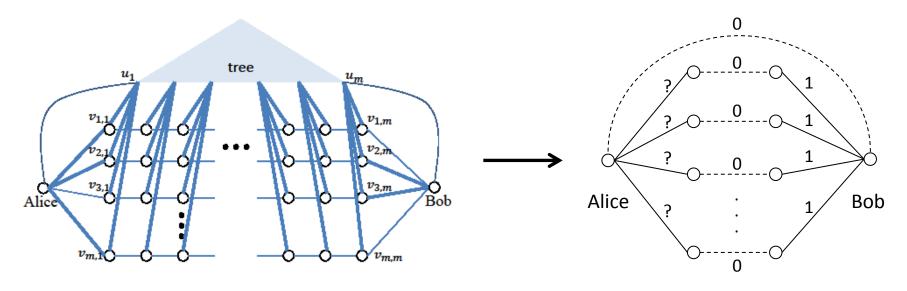
what lower bound graphs look like:

what "real" networks look like:



Input: weighted graph Output: spanning tree Goal: minimize weight of tree

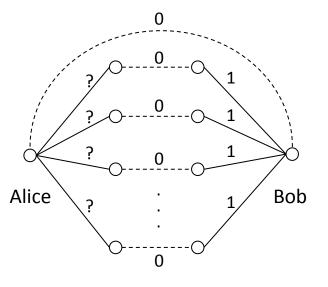
Peleg and Rubinovich SIAM J. on Comp.'00



≈ √n x √n

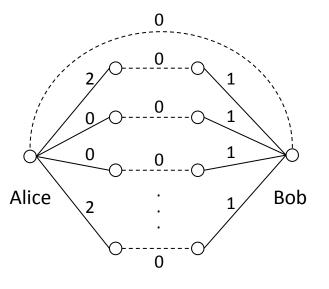
Input: weighted graph Output: spanning tree Goal: minimize weight of tree

- Alice gets bit string **b** as input



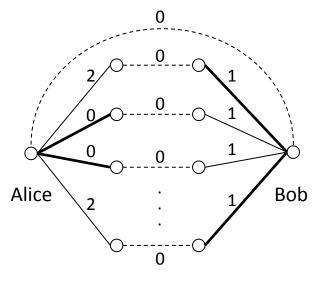
Input: weighted graph Output: spanning tree Goal: minimize weight of tree

Alice gets bit string **b** as input
 assign weight 2b_i to ith edge



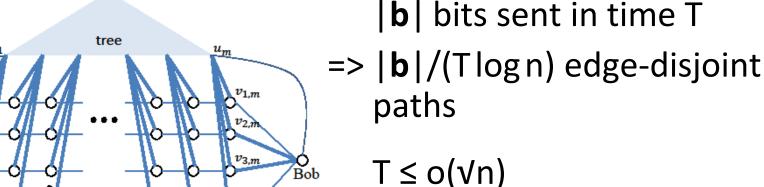
Input: weighted graph Output: spanning tree Goal: minimize weight of tree

- Alice gets bit string **b** as input
- assign weight 2b_i to ith edge
- compute MST
- => Bob now knows **b**!
- => Alice sent ≥|**b**| bits to Bob How long does this take?



Input: weighted graph Output: spanning tree Goal: minimize weight of tree

Peleg and Rubinovich SIAM J. on Comp.'00



=> paths use tree edges to "shortcut" Ω(√n) hops

≈ √n x √n

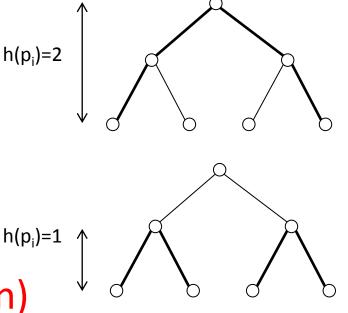
 $v_{3,1}$

Alic

Input: weighted graph Output: spanning tree Goal: minimize weight of tree

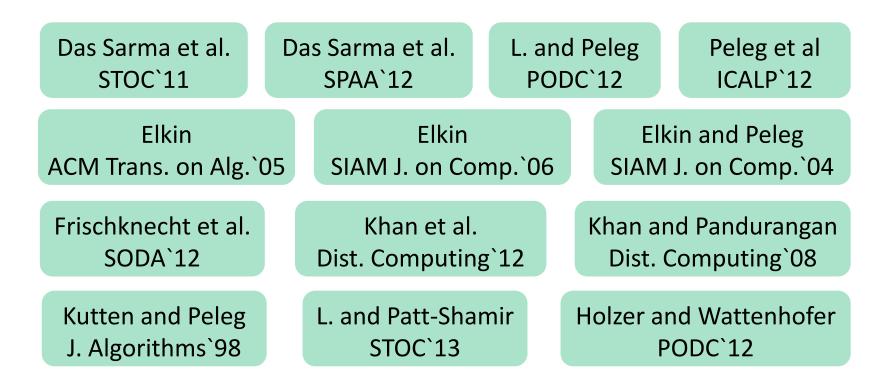
for each path p:

- p_i subpaths in tree
- h(p_i) max. dist. from leaves
- $-\sum_{i} 2^{h(p_i)} \ge \Omega(\sqrt{n})$
- but $\sum_{p} \sum_{i} 2^{h(p_i)} \le \sqrt{n \log n}$ => O(log n) paths, $T \ge \Omega(\sqrt{n/\log^2 n})$



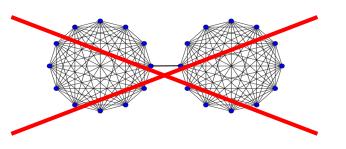
MST Lower Bound: Summary

- general technique
- yields lower bounds of roughly $\Omega(\sqrt{n})$
- helped finding many near-matching algorithms



But How About Well-Connected Graphs?

	diameter	upper bound	lower bound
	O(log n)	O(n ^{1/2} log* n)	$\Omega(n^{1/2}/\log^2 n)$
	4	?	$\Omega(n^{1/3}/\log n)$
	3	?	$\Omega(n^{1/4}/\log n)$
1	2	O(log n)	?
	1	O(log log n)	?





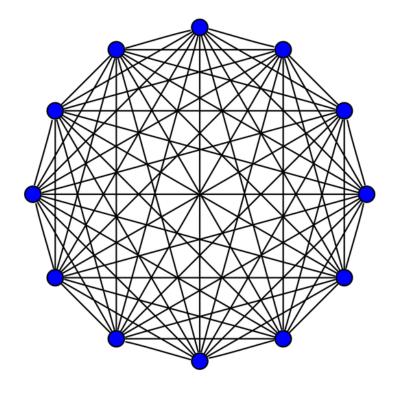
Lotker et al. Dist. Computing 06

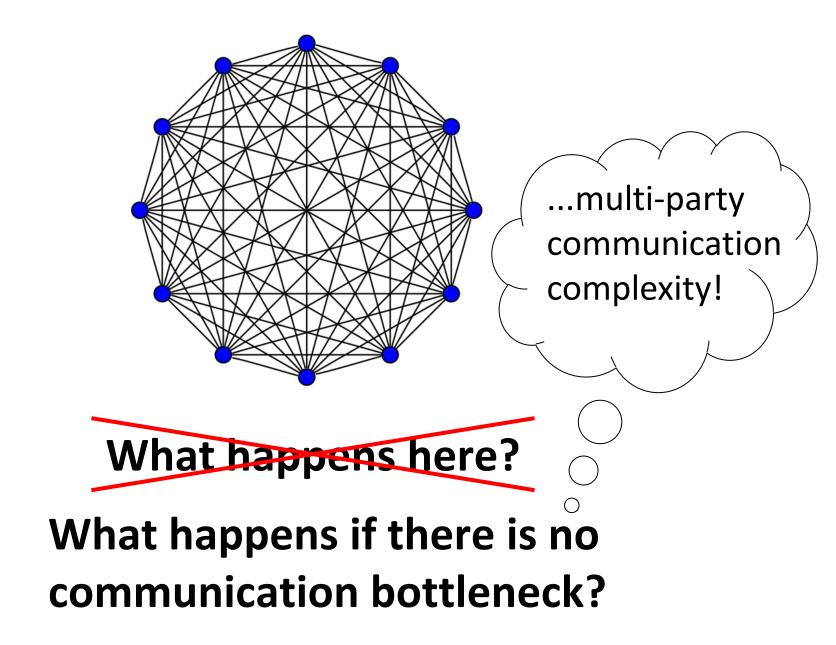
Lotker et al. SIAM J. on Comp.`05

But How About Well-Connected Graphs?

diameter	upper bound	lower bound
O(log n)	O(n ^{1/2} log* n)	$\Omega(n^{1/2}/\log^2 n)$
4	?	$\Omega(n^{1/3}/\log n)$
3	?	$\Omega(n^{1/4}/\log n)$
2	O(log n)	?
1	O(log log n)	?

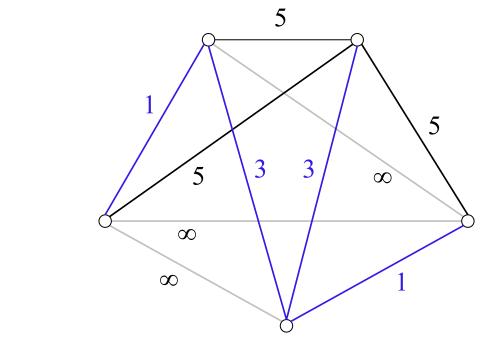
All known lower bounds are based on hardness of spreading information!





What We Know: MST

input: weight of adjacent edges output: least-weight spanning tree



- O(log log n) rounds

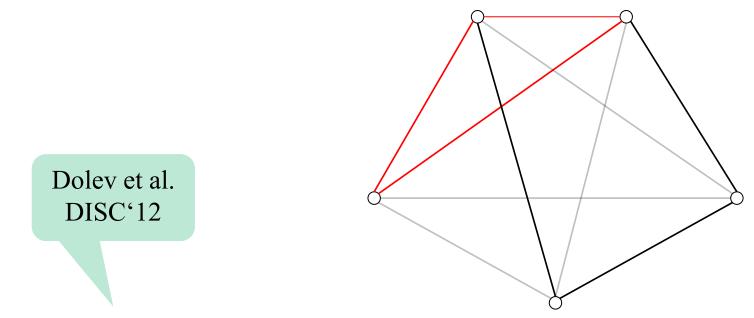
Lotker et al.,

Distr. Comp. '06

- no non-trivial lower bound known

What We Know: Triangle Detection

input: adjacent edges in input graph output: whether input contains triangle



- $O(n^{1/3}/\log n)$ rounds
- no non-trivial lower bound known

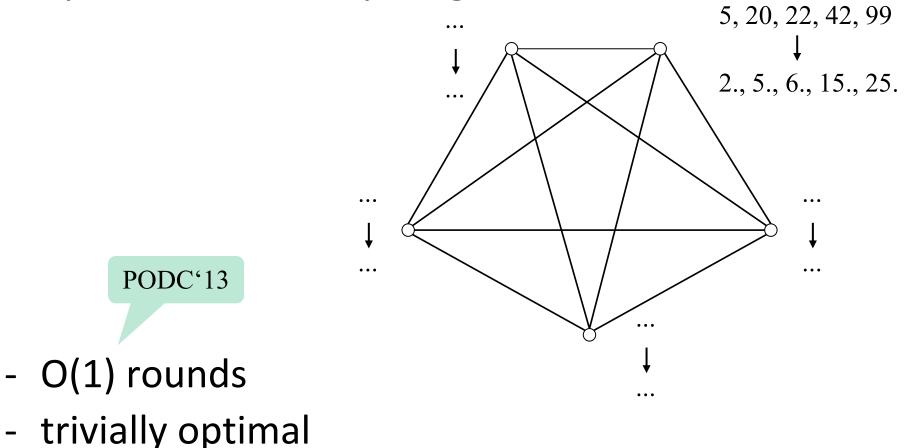
What We Know: Metric Facility Location

input: costs for nodes & edges (metric) output: nodes & edges s.t. selected nodes cover all goal: minimize cost

- O(log log n log* n) rounds for O(1)-approx.
- no non-trivial lower bound known

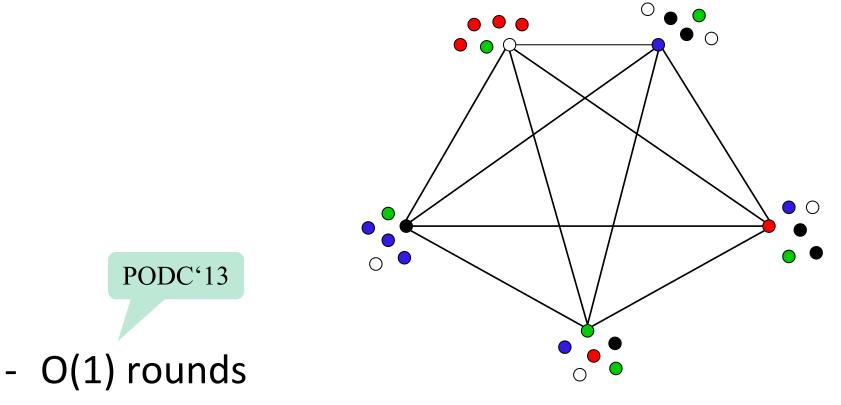
What We Know: Sorting

input: n keys/node output: indices of keys in global order



What We Know: Routing

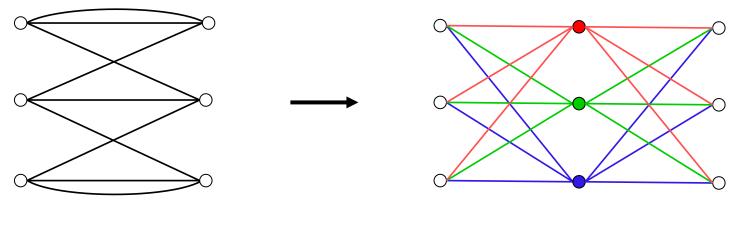
input: n mess./node, each node dest. of n mess. goal: deliver all messages



- trivially optimal

Routing: Known Source/Destination Pairs

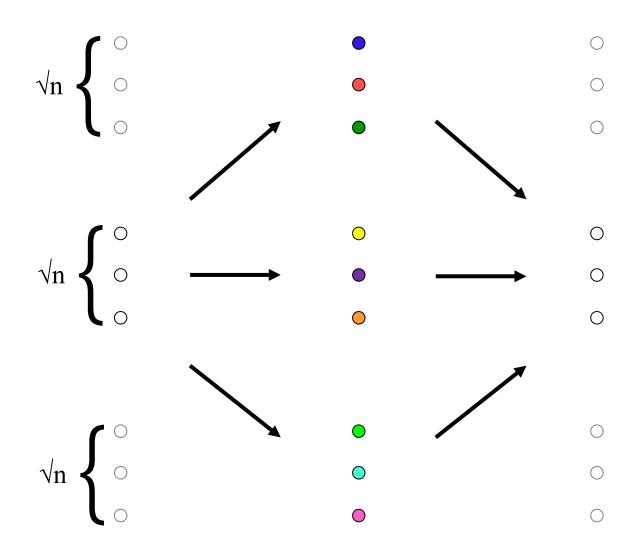
input: n messages/node (each to receive n mess.) source/destination pairs common knowledge



"sources" "destinations"

2 rounds

Routing within Subsets (Known Pairs)



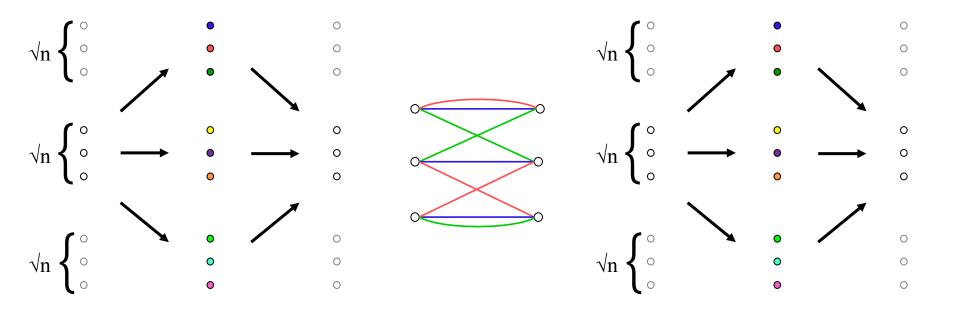
send/receive n messages within subsets

Routing within Subsets (Unknown Pairs)

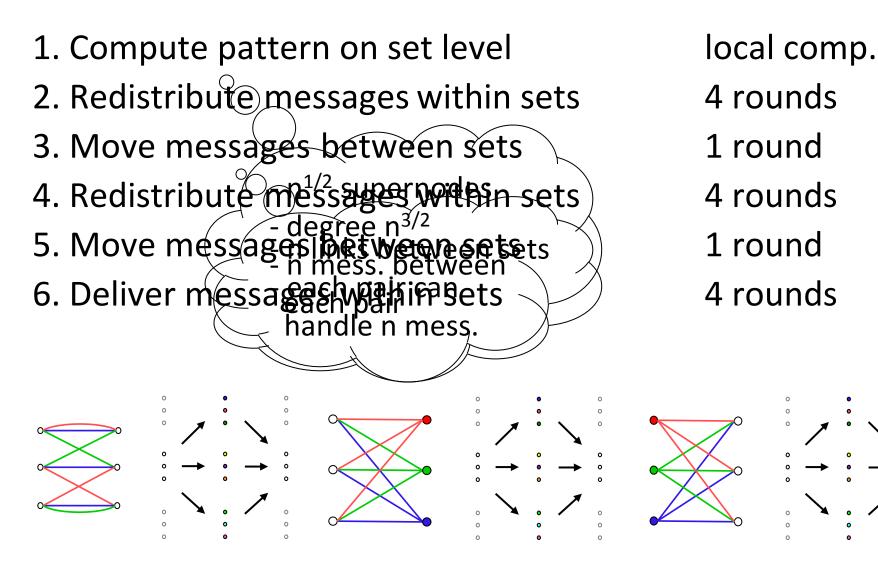
Within each subset:

- 1. Broadcast #mess. for each destination
- 2. Compute communication pattern
- 3. Move messages

2 rounds local comp. 2 rounds



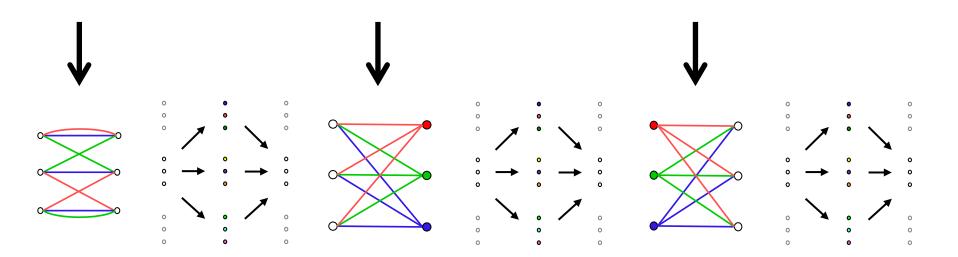
Routing: Known Source/Destination Sets



Routing: Unknown Pairs

source/destination pairs only relevant w.r.t. sets

count within sets (one node/dest.)1 roundbroadcast information to all nodes1 round



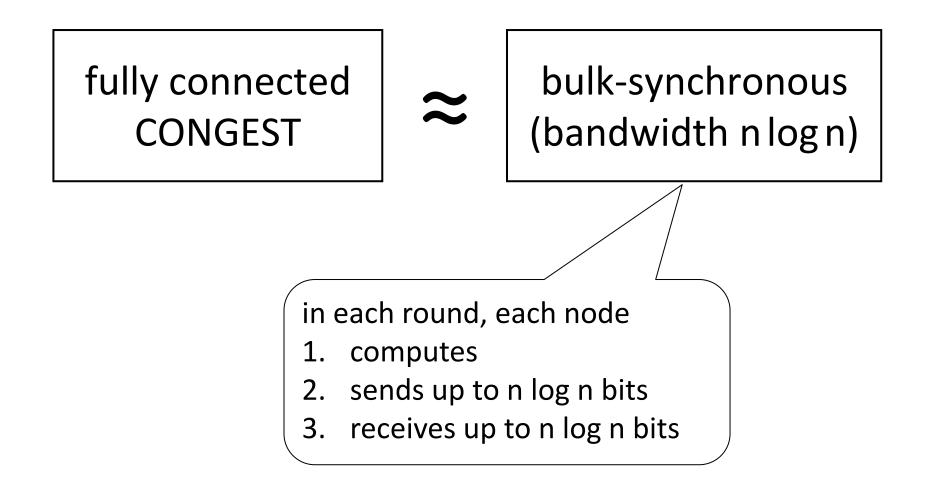
Routing: Result

Theorem

Input:

- up to n messages at each node
- each node destination of up to n messages Then:
 - all messages can be delivered in 16 rounds

...or in Other Words:

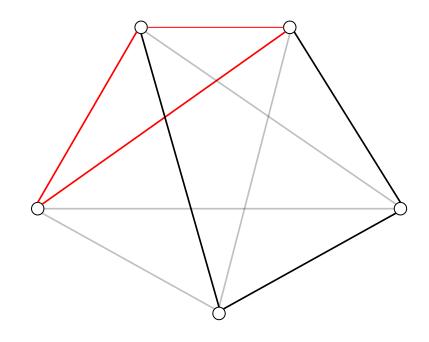


What Do We Want in a Lower Bound?

- caused by "lack of coordination", not bottleneck
 → input per node of size O(n log n)
- ideally, also:
- "natural" problem
- strong bound (e.g. $\Omega(n^c)$ for constant c>0)
- unrestricted algorithms

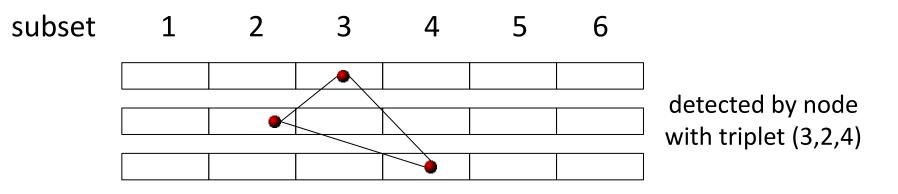
Triangle Detection: an Algorithm

input: adjacent edges in input graph output: whether input contains triangle



Triangle Detection: an Algorithm

- partition nodes into subsets of n^{2/3} nodes
- consider all n triplets of such subsets
- assign triplets 1:1 to nodes
- responsible node checks for triangle in its triplet
- \rightarrow needs to learn of n^{4/3} (pre-determined) edges
- \rightarrow running time O(n^{1/3}/log n)



Triangle Detection: an Algorithm

- "oblivious" algorithm:
 - fixed message pattern
 - computation only initially and in the end

Conjecture

running time O(n^{1/3}/log n) optimal for oblivious algorithms

...and maybe even in general?

MST and Friends

some doubly logarithmic bounds:

- MST in O(log log n) rounds
- Metric Facility Location in O(log log n log* n) rounds
- no improvement or lower bound on MST for a decade

Open Question

Is running time O(log log n) a barrier for some problems?

Connectivity

input: adjacent edges in input graph output: whether input graph is connected

- natural problem, even simpler than MST
- might be easier to find right approach

Open Question

Can Connectivity be decided within O(1) rounds?

... on a Related Subject

There *is* a lower bound, on Set Disjointness! (but in a different model)

\rightarrow Don't miss the next talk!

...thank you for your attention!