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LOCAL 

synchr. rounds: 
1. compute 
2. send 
3. receive 

restricted 
bandwidth 

+ 

message size: 
O(log n) bits 

+ = 

round 
complexity? 

? 

= ! CONGEST 

...content can differ 
between neighbors! 



What happens here? 



Disclaimer 

Practical relevance 

of this model 

is questionable! 

 

 

 

 

 

Algorithms for overlay networks? 

Subroutines for small cliques in larger networks? 

 

So why should we care?!? 



what lower bound 
graphs look like: 

what “real” 
networks look like: 



History: MST Lower Bound 

Input: weighted graph 

Output: spanning tree 

Goal: minimize weight of tree 
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Peleg and Rubinovich 
SIAM J. on Comp.‘00 
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History: MST Lower Bound 

Input: weighted graph 

Output: spanning tree 

Goal: minimize weight of tree 

 

- Alice gets bit string b as input 

- assign weight 2bi to ith edge 
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History: MST Lower Bound 

Input: weighted graph 

Output: spanning tree 

Goal: minimize weight of tree 

 

- Alice gets bit string b as input 

- assign weight 2bi to ith edge 

- compute MST 

=> Bob now knows b! 

=> Alice sent ≥|b| bits to Bob 

How long does this take? 

Alice Bob . 
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History: MST Lower Bound 

Input: weighted graph 

Output: spanning tree 

Goal: minimize weight of tree 

 

      |b| bits sent in time T 

           => |b|/(T log n) edge-disjoint 
     paths 

 

      T ≤ o(√n) 

           => paths use tree edges 

      to “shortcut” Ω(√n) hops ≈ √n x √n 

Peleg and Rubinovich 
SIAM J. on Comp.‘00 



History: MST Lower Bound 

Input: weighted graph 

Output: spanning tree 

Goal: minimize weight of tree 

 

for each path p: 

- pi subpaths in tree 

- h(pi) max. dist. from leaves 

- ∑i 2h(pi) ≥ Ω(√n) 

but ∑p ∑i 2h(pi) ≤ √n log n 

=> O(log n) paths, T ≥ Ω(√n/log2
 n) 

Peleg and Rubinovich 
SIAM J. on Comp.‘00 

h(pi)=2 

h(pi)=1 



MST Lower Bound: Summary 

- general technique 

- yields lower bounds of roughly Ω(√n) 

- helped finding many near-matching algorithms 

Das Sarma et al. 
STOC`11 

Das Sarma et al. 
SPAA`12 

Elkin 
ACM Trans. on Alg.`05 

Elkin 
SIAM J. on Comp.`06 

Elkin and Peleg 
SIAM J. on Comp.`04 

Frischknecht et al. 
SODA`12 

Holzer and Wattenhofer 
PODC`12 

Khan et al. 
Dist. Computing`12 

Khan and Pandurangan 
Dist. Computing`08 

Kutten and Peleg 
J. Algorithms`98 

L. and Patt-Shamir 
STOC`13 

L. and Peleg 
PODC`12 

Peleg et al 
ICALP`12 



But How About Well-Connected Graphs? 

diameter upper bound lower bound 

O(log n) O(n1/2 log* n) Ω(n1/2/log2 n) 

4 ? Ω(n1/3/log n) 

3 ? Ω(n1/4/log n) 

2 O(log n) ? 

1 O(log log n) ? 

Lotker et al. 
Dist. Computing´06 

Lotker et al. 
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But How About Well-Connected Graphs? 

diameter upper bound lower bound 

O(log n) O(n1/2 log* n) Ω(n1/2/log2 n) 

4 ? Ω(n1/3/log n) 

3 ? Ω(n1/4/log n) 

2 O(log n) ? 

1 O(log log n) ? 

All known lower bounds 

are based on hardness of 

spreading information! 



What happens here? 



What happens here? 

What happens if there is no 
communication bottleneck? 

...multi-party 
communication 
complexity! 



What We Know: MST 

input: weight of adjacent edges 

output: least-weight spanning tree 

 

 

 

 

 

 

- O(log log n) rounds 

- no non-trivial lower bound known 
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What We Know: Triangle Detection 

input: adjacent edges in input graph 

output: whether input contains triangle 

 

 

 

 

 

 

- O(n1/3/log n) rounds 

- no non-trivial lower bound known 

Dolev et al. 

DISC‘12 



What We Know: Metric Facility Location 

input: costs for nodes & edges (metric) 

output: nodes & edges s.t. selected nodes cover all 

goal: mininimize cost 

 

 

 

 

 

- O(log log n log* n) rounds for O(1)-approx. 

- no non-trivial lower bound known 

Berns et al., 

ICALP‘12 
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What We Know: Sorting 

input: n keys/node 

output: indices of keys in global order 

 

 

 

 

 

 

- O(1) rounds 

- trivially optimal 

PODC‘13 

5, 20, 22, 42, 99 

2., 5., 6., 15., 25. 
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What We Know: Routing 

input: n mess./node, each node dest. of n mess. 

goal: deliver all messages 

 

 

 

 

 

 

- O(1) rounds 

- trivially optimal 

PODC‘13 



Routing: Known Source/Destination Pairs 

“sources” “destinations” 

input: n messages/node (each to receive n mess.) 

source/destination pairs common knowledge 

2 rounds 



Routing within Subsets (Known Pairs)  

send/receive 
n messages 

within subsets 

√n { 

√n { 

√n { 



Routing within Subsets (Unknown Pairs) 

Within each subset: 
1. Broadcast #mess. for each destination  2 rounds 

2. Compute communication pattern   local comp. 

3. Move messages     2 rounds 

√n { 

√n { 

√n { 

√n { 

√n { 

√n { 



Routing: Known Source/Destination Sets  

1. Compute pattern on set level  local comp. 

2. Redistribute messages within sets   4 rounds 

3. Move messages between sets   1 round 

4. Redistribute messages within sets   4 rounds 

5. Move messages between sets   1 round 

6. Deliver messages within sets   4 rounds 

- n1/2 supernodes 
- degree n3/2 

- n mess. between 
  each pair 

- n links between sets 
- each pair can 
  handle n mess. 



Routing: Unknown Pairs  

source/destination pairs  
only relevant w.r.t. sets 

count within sets (one node/dest.) 1 round 
broadcast information to all nodes 1 round 



Routing: Result 

Theorem  

Input: 

• up to n messages at each node 

• each node destination of up to n messages 

Then: 

• all messages can be delivered in 16 rounds 

 

 



...or in Other Words:  

fully connected 
CONGEST 

bulk-synchronous 
(bandwidth n log n) ≈ 

in each round, each node 
1. computes 
2. sends up to n log n bits 
3. receives up to n log n bits 



What Do We Want in a Lower Bound?  

- caused by “lack of coordination”, not bottleneck 

→ input per node of size O(n log n) 

 

ideally, also: 

- “natural” problem 

- strong bound (e.g. Ω(nc) for constant c>0) 

- unrestricted algorithms 



Triangle Detection: an Algorithm 

input: adjacent edges in input graph 

output: whether input contains triangle 

 

 

 

 

 



Triangle Detection: an Algorithm 

- partition nodes into subsets of n2/3 nodes 

- consider all n triplets of such subsets 

- assign triplets 1:1 to nodes 

- responsible node checks for triangle in its triplet 

→ needs to learn of n4/3 (pre-determined) edges 

→ running time O(n1/3/log n) 

 

 

 

subset         1          2          3          4          5         6 

detected by node 
with triplet (3,2,4) 



Triangle Detection: an Algorithm 

“oblivious” algorithm: 

 - fixed message pattern 

 - computation only initially and in the end 

 

 

 

 

 

…and maybe even in general? 

 

Conjecture 

running time O(n1/3/log n) 

optimal for oblivious algorithms 



MST and Friends 

some doubly logarithmic bounds: 

 - MST in O(log log n) rounds 

 - Metric Facility Location in O(log log n log* n) rounds 

 - no improvement or lower bound on MST for a decade 

Open Question 

Is running time O(log log n) 

a barrier for some problems? 



Connectivity 

Open Question 

Can Connectivity be decided 

within O(1) rounds? 

input: adjacent edges in input graph 

output: whether input graph is connected 
 

- natural problem, even simpler than MST 

- might be easier to find right approach 

 

 

 

 

 



There is a lower bound, on Set Disjointness! 

(but in a different model) 

 

 

 

 

 

...thank you for your attention! 

 

 

 

...on a Related Subject 

→ Don‘t miss the next talk! 


