
Distributed Algorithms on a
Congested Clique

Christoph Lenzen

1. compute
2. send
3. receive

1
3
7
16
42

The LOCAL Model

1. compute
2. send
3. receive

1
3
7
16
42

The LOCAL Model

16

16

3 7

42
7

1. compute
2. send
3. receive

1
3
7
16
42

The LOCAL Model

16

16

3 7

42
7

1. compute
2. send
3. receive

1
3
7
16
42

The LOCAL Model

3,7

3,7
7

16,42 7,16

3,16

1. compute
2. send
3. receive

1
3
7
16
42

The LOCAL Model

3,7

3,7
7

16,42 7,16

3,16

1. compute
2. send
3. receive

1
3
7
16
42

The LOCAL Model

LOCAL

synchr. rounds:
1. compute
2. send
3. receive

restricted
bandwidth

+

message size:
O(log n) bits

+ =

round
complexity?

?

= ! CONGEST

...content can differ
between neighbors!

What happens here?

Disclaimer

Practical relevance

of this model

is questionable!

Algorithms for overlay networks?

Subroutines for small cliques in larger networks?

So why should we care?!?

what lower bound
graphs look like:

what “real”
networks look like:

History: MST Lower Bound

Input: weighted graph

Output: spanning tree

Goal: minimize weight of tree

Alice Bob .
.
.

0

0

0

0

0

?

?

?

?

1

1

1

1

≈ √n x √n

Peleg and Rubinovich
SIAM J. on Comp.‘00

History: MST Lower Bound

Input: weighted graph

Output: spanning tree

Goal: minimize weight of tree

- Alice gets bit string b as input

Alice Bob .
.
.

0

0

0

0

0

?

?

?

?

1

1

1

1

Peleg and Rubinovich
SIAM J. on Comp.‘00

History: MST Lower Bound

Input: weighted graph

Output: spanning tree

Goal: minimize weight of tree

- Alice gets bit string b as input

- assign weight 2bi to ith edge

Alice Bob .
.
.

0

0

0

0

0

2

0

0

2

1

1

1

1

Peleg and Rubinovich
SIAM J. on Comp.‘00

History: MST Lower Bound

Input: weighted graph

Output: spanning tree

Goal: minimize weight of tree

- Alice gets bit string b as input

- assign weight 2bi to ith edge

- compute MST

=> Bob now knows b!

=> Alice sent ≥|b| bits to Bob

How long does this take?

Alice Bob .
.
.

0

0

0

0

0

2

0

0

2

1

1

1

1

Peleg and Rubinovich
SIAM J. on Comp.‘00

History: MST Lower Bound

Input: weighted graph

Output: spanning tree

Goal: minimize weight of tree

 |b| bits sent in time T

 => |b|/(T log n) edge-disjoint
 paths

 T ≤ o(√n)

 => paths use tree edges

 to “shortcut” Ω(√n) hops ≈ √n x √n

Peleg and Rubinovich
SIAM J. on Comp.‘00

History: MST Lower Bound

Input: weighted graph

Output: spanning tree

Goal: minimize weight of tree

for each path p:

- pi subpaths in tree

- h(pi) max. dist. from leaves

- ∑i 2h(pi) ≥ Ω(√n)

but ∑p ∑i 2h(pi) ≤ √n log n

=> O(log n) paths, T ≥ Ω(√n/log2
 n)

Peleg and Rubinovich
SIAM J. on Comp.‘00

h(pi)=2

h(pi)=1

MST Lower Bound: Summary

- general technique

- yields lower bounds of roughly Ω(√n)

- helped finding many near-matching algorithms

Das Sarma et al.
STOC`11

Das Sarma et al.
SPAA`12

Elkin
ACM Trans. on Alg.`05

Elkin
SIAM J. on Comp.`06

Elkin and Peleg
SIAM J. on Comp.`04

Frischknecht et al.
SODA`12

Holzer and Wattenhofer
PODC`12

Khan et al.
Dist. Computing`12

Khan and Pandurangan
Dist. Computing`08

Kutten and Peleg
J. Algorithms`98

L. and Patt-Shamir
STOC`13

L. and Peleg
PODC`12

Peleg et al
ICALP`12

But How About Well-Connected Graphs?

diameter upper bound lower bound

O(log n) O(n1/2 log* n) Ω(n1/2/log2 n)

4 ? Ω(n1/3/log n)

3 ? Ω(n1/4/log n)

2 O(log n) ?

1 O(log log n) ?

Lotker et al.
Dist. Computing´06

Lotker et al.
SIAM J. on Comp.`05

But How About Well-Connected Graphs?

diameter upper bound lower bound

O(log n) O(n1/2 log* n) Ω(n1/2/log2 n)

4 ? Ω(n1/3/log n)

3 ? Ω(n1/4/log n)

2 O(log n) ?

1 O(log log n) ?

All known lower bounds

are based on hardness of

spreading information!

What happens here?

What happens here?

What happens if there is no
communication bottleneck?

...multi-party
communication
complexity!

What We Know: MST

input: weight of adjacent edges

output: least-weight spanning tree

- O(log log n) rounds

- no non-trivial lower bound known

∞

∞

∞

1

1

5 3 3

5

5

Lotker et al.,

Distr. Comp.‘06

What We Know: Triangle Detection

input: adjacent edges in input graph

output: whether input contains triangle

- O(n1/3/log n) rounds

- no non-trivial lower bound known

Dolev et al.

DISC‘12

What We Know: Metric Facility Location

input: costs for nodes & edges (metric)

output: nodes & edges s.t. selected nodes cover all

goal: mininimize cost

- O(log log n log* n) rounds for O(1)-approx.

- no non-trivial lower bound known

Berns et al.,

ICALP‘12

∞

∞

∞

1

1

5 3 3

2

5 3

3

3

∞

5

What We Know: Sorting

input: n keys/node

output: indices of keys in global order

- O(1) rounds

- trivially optimal

PODC‘13

5, 20, 22, 42, 99

2., 5., 6., 15., 25.

...

...

...

...

...

...

...

...

What We Know: Routing

input: n mess./node, each node dest. of n mess.

goal: deliver all messages

- O(1) rounds

- trivially optimal

PODC‘13

Routing: Known Source/Destination Pairs

“sources” “destinations”

input: n messages/node (each to receive n mess.)

source/destination pairs common knowledge

2 rounds

Routing within Subsets (Known Pairs)

send/receive
n messages

within subsets

√n {

√n {

√n {

Routing within Subsets (Unknown Pairs)

Within each subset:
1. Broadcast #mess. for each destination 2 rounds

2. Compute communication pattern local comp.

3. Move messages 2 rounds

√n {

√n {

√n {

√n {

√n {

√n {

Routing: Known Source/Destination Sets

1. Compute pattern on set level local comp.

2. Redistribute messages within sets 4 rounds

3. Move messages between sets 1 round

4. Redistribute messages within sets 4 rounds

5. Move messages between sets 1 round

6. Deliver messages within sets 4 rounds

- n1/2 supernodes
- degree n3/2

- n mess. between
 each pair

- n links between sets
- each pair can
 handle n mess.

Routing: Unknown Pairs

source/destination pairs
only relevant w.r.t. sets

count within sets (one node/dest.) 1 round
broadcast information to all nodes 1 round

Routing: Result

Theorem

Input:

• up to n messages at each node

• each node destination of up to n messages

Then:

• all messages can be delivered in 16 rounds

...or in Other Words:

fully connected
CONGEST

bulk-synchronous
(bandwidth n log n) ≈

in each round, each node
1. computes
2. sends up to n log n bits
3. receives up to n log n bits

What Do We Want in a Lower Bound?

- caused by “lack of coordination”, not bottleneck

→ input per node of size O(n log n)

ideally, also:

- “natural” problem

- strong bound (e.g. Ω(nc) for constant c>0)

- unrestricted algorithms

Triangle Detection: an Algorithm

input: adjacent edges in input graph

output: whether input contains triangle

Triangle Detection: an Algorithm

- partition nodes into subsets of n2/3 nodes

- consider all n triplets of such subsets

- assign triplets 1:1 to nodes

- responsible node checks for triangle in its triplet

→ needs to learn of n4/3 (pre-determined) edges

→ running time O(n1/3/log n)

subset 1 2 3 4 5 6

detected by node
with triplet (3,2,4)

Triangle Detection: an Algorithm

“oblivious” algorithm:

 - fixed message pattern

 - computation only initially and in the end

…and maybe even in general?

Conjecture

running time O(n1/3/log n)

optimal for oblivious algorithms

MST and Friends

some doubly logarithmic bounds:

 - MST in O(log log n) rounds

 - Metric Facility Location in O(log log n log* n) rounds

 - no improvement or lower bound on MST for a decade

Open Question

Is running time O(log log n)

a barrier for some problems?

Connectivity

Open Question

Can Connectivity be decided

within O(1) rounds?

input: adjacent edges in input graph

output: whether input graph is connected

- natural problem, even simpler than MST

- might be easier to find right approach

There is a lower bound, on Set Disjointness!

(but in a different model)

...thank you for your attention!

...on a Related Subject

→ Don‘t miss the next talk!

