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Inspiration

A recent experiment on recruitment by ants.
[Razin et al. Journal of the Royal Society Interface. 2013].

Some mysteries from the experiment

I Why is the recruiting process so slow and seemingly
inefficient?

I Why is it only the recruiting ant that is doing all the work?
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Possible difficulties that ants may face

I Communication is very limited in its vocabulary
(what do you mean when you bump into me?)

I Communication is noisy
(are you really bumping into me or are you just happy to see me?)

I Stochastic and anonymous meetings
(you look familiar, did we meet before?)

Want to study:
Limited, Noisy and Stochastic communication
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Distributed computing and Noise in communication

The typical assumption: messages are NOT distorted
Researchers in DC study node-failures (crash or Byzantine) and
message-crashes, but noise in messages is typically ignored.

Why?
When bandwidth is not a big issue, employ error correction.
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Error correction is problematic in restricted and stochastic
communication

I When message size is restricted, redundancy comes at a
price of limiting vocabulary.

I Repeatedly talking to the same person is difficult in
stochastic and anonymous meeting patterns.
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Rumor spreading in Computer science: a classic setting

Initially
A complete network with n nodes. One source node s has a
message m to be delivered to all nodes.

The push model

I Synchronous model
I At each round, each node with the message m contacts

another node, chosen uniformly at random, and delivers it
the message.

Complexities

I Time: Θ(log n) rounds
I Total number of messages sent: Θ(n log n)

I Good against crash faults.
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The noisy rumor spreading problem

The problem
A source node s has a bit B ∈ {0,1} that needs to be delivered
to all nodes with high probability.

The Flip model of communication

I At each round, each agent u contacts another agent v ,
chosen uniformly at random, and chooses whether or not to
deliver it a bit message b ∈ {0,1}.

I With probability at most 1/2− ε, the bit b is flipped and v
receives b̄.

Synchronization assumptions

I Each agent can count rounds.
I Global clock: all agents start with their clock set to zero

(assumption can be removed with some price).
7 / 25



Some basic strategies: what to do when you receive a message?

Strategy 1. Wait to receive another message before
sending

The problem: The time until the first agent hears two messages
(from the source) is Ω(

√
n) (birthday paradox).

Strategy 2. Immediately send your opinion
The problem: The quality of messages quickly deteriorates
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A closer look

At#most#T#
Level#1#

Level#2#

I In time T at most T agents heard directly from the source.

I Most agents received a second hand rumor (at least).
Hence the agents on level 2 will dominate the spreading.
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What happens at level 2?

Probability of correct

(1/2 + ε)(1/2 + ε) + (1/2− ε)(1/2− ε) = 1/2 + 2ε2.

For level i
Probability of correct is roughly 1/2 + εi .

So quality of messages quickly deteriorates
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Cheating

Observation
The exists a simple protocol that runs in O(log n) rounds no
matter how small is ε.
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Our results

Theorem
∃ a simple symmetric protocol running in O( 1

ε2
log n) rounds

using O( 1
ε2

n log n) messages in total.

Observe: Each agent should receive Ω( 1
ε2

log n) messages to be
convinced even if these messages come directly from the source.
Hence:

I Ω( 1
ε2

log n) rounds are required even to convince 1 agent,
directly informed from the source.

I Ω( 1
ε2

n log n) messages in total are required.
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Phase 1: Spreading the information

Goal: Inform all agents, such that the fraction of agents with the
correct opinion is at least 1/2 + 1/

√
n.

We want a good balance between:

I Slow deterioration of messages (short depth of tree), and
I Fast rumor spread (high depth of tree).
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A first idea: delay messaging to control synchronization of levels

We want to have: Level i agents do not spread their opinion
before sufficiently many level i agents were informed.

I Divide the time into phases. Phase i takes time [Ti ,Ti + βi).
I If you receive a message (for the first time) in Phase i , wait

until Phase i + 1 starts and only then start sending your
opinion repeatedly.

Property
If we have Li agents awake when Phase i starts then we have
βi · Li agents awake when Phase i + 1 starts.

14 / 25



A first idea: delay messaging to control synchronization of levels

We want to have: Level i agents do not spread their opinion
before sufficiently many level i agents were informed.

I Divide the time into phases. Phase i takes time [Ti ,Ti + βi).
I If you receive a message (for the first time) in Phase i , wait

until Phase i + 1 starts and only then start sending your
opinion repeatedly.

Property
If we have Li agents awake when Phase i starts then we have
βi · Li agents awake when Phase i + 1 starts.

14 / 25



A first idea: delay messaging to control synchronization of levels

We want to have: Level i agents do not spread their opinion
before sufficiently many level i agents were informed.

I Divide the time into phases. Phase i takes time [Ti ,Ti + βi).
I If you receive a message (for the first time) in Phase i , wait

until Phase i + 1 starts and only then start sending your
opinion repeatedly.

Property
If we have Li agents awake when Phase i starts then we have
βi · Li agents awake when Phase i + 1 starts.

14 / 25



Setting βi

Level 1: We want at least O( 1
ε2

log n) agents of level 1, to make
sure that w.h.p, the majority of those have the correct opinion.
So let β1 ≈ 1

ε2
log n.

Level i , i > 1: Recall, if 1/2 + δi fraction is correct on level i then
1/2 + δi · ε fraction is correct on level i + 1. Set βi = β = O( 1

ε2
)

(degree ≈ 1
ε2
� inverse of the deterioration factor ≈ ε).

 O(1/ε2) log n

 O(1/ε2)  O(1/ε2)

 O(1/ε2)  O(1/ε2)

Time complexity: Total number of phases is O(logβ n).
So total # rounds is β1 + β logβ n = O( 1

ε2
log n).
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A (slow) deterioration of opinions

At phase i fraction of correct agents is at least ≈ 1/2 + εi .

# phases is m ≤ logβ n = log 1
ε2

n = logε(1/
√

n),

so the final fraction of correct agents is:

≥ 1/2 + εm ≥ 1/2 + εlogε(1/
√

n) = 1/2 + 1/
√

n,

as desired.
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Second stage: boosting the faction of correct agents

Note: we start with a very small bias towards the correct opinion:
1/2 + 1/

√
n.

In such a case, even without noise, the task of boosting the
majority opinion is non-trivial. E.g., # of samples each agent
should get from such a population should be higher than n.

An O(log n) time majority boosting algorithm exists [Angluin,
Aspnes, and Eisenstat, DISC 2007]. However, this algorithm
uses messages of size 2 bits (rather than 1) and does NOT
account for noise in messages.

[Doerr et al SPAA 2011] show that a method based on gradual
boosting the majority can achieve consensus in O(log n) time.
We show that a similar approach works, also in the presence of
noise.
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The idea: gradual boosting

I Divide the time into phases. Up to the last phase, all phases
consist of γ = O(1/ε2) rounds. In each phase:

I Send γ times your current opinion,

I Receive γ opinions. Set your opinion to the majority opinion
among those γ opinions.

After O(log n) of such phases, fraction of correct agents is
1/2 + constant

Then, one last phase of length O( 1
ε2
· log n) where each agent is

sending its opinion in each round, and at the end taking majority
guarantees that all agents have the correct opinion with high
probability.
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Gradual boosting- a closer look

Let δi be such that 1/2 + δi is the fraction of correct agents at
phase i . (Note δ1 > 1/

√
n).

Theorem

I As long as δi is smaller than some constant c1, we have
δi+1 ≥ 2δi .

I If δi > c1, then δi+1 is greater than another constant c2 < c1.

Note that since δi maybe very small we cannot use Chernoff
directly to obtain the theorem!

Corollary
After O(log n) phases (which is O( 1

ε2
log n) time), the fraction of

correct agents is at least 1/2 + c2.
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Removing the global clock assumption

So far we assumed all agents wake up at time 0. What about if
agents do not have the same starting time?

First note, if all clocks are initially in the range [0,D],
We can use the synchronized push model to synchronize agents:
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Conclusion

Delaying propagation of messages, relying on synchronizing,
and taking majority of samples, allows to overcome highly
stochastic, anonymous, and noisy settings.
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Open problems

I What about if the synchronization is very bad?
I Our time complexity is polylogarithmic. In case an

adversary controls the content of the faulty message, can
we prove a polynomial lower bound?

I Different graph families...
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Adversary model: What happens at level 2?

Assume that an adversary controls the content of faulty
messages. Assume p = 1− 1√

2
≈ 0.3.

No fault: prob. 1- p

No fault: prob. (1- p)
2
 = 1/2

B

B

u

 With prob 1/2 the first 
 message at u is ``clean'' 
(u receives B)

B

u

x

x

 With prob 1/2 at least 1 fault. 
Adversary makes u receive B

Messages received at level 2
nodes are uniformly spread
between 0 and 1
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Noise in communication: A new dimension to fault tolerance in
distributed computing

Distortion in communication is interesting to study especially
when message size is limited, and one does not have full control
over its interaction (dynamic/stochastic meeting patterns).

We encourage you to study such noisy models:

I Discrete noise: E.g., the flip model of communication.

I Continuous distortion: A message is a real number. If a
message is sent as x then the received message is x + n,
where n is sampled from some continuous noise
distribution.
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Thank you!
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