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Distributed Graph Algorithms for Planar Networks

Distributed: CONGEST(log n) model

Network Optimization Problems:

shortest path (single/multiple source(s), (non-)negative
weights, . . .)
network flows (min-cost, multi-commodity, . . .)
trees (MST, decomposition, steiner-tree, . . .)
TSP, min (st-)cut, facility location, . . .

Planar Networks:

Many real-world networks/problems have planar like structure.
Studying planar like networks led to:

a rich theory,
a powerful algorithmic toolbox, and
drastically improved algorithms.

Goal:

Distributed toolbox/algorithms/theory for planar networks.
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Sequential Toolbox/Algorithms for Planar Networks

Algorithms in Planar vs. General Networks, e.g.:

Much Faster Algorithms

SS-shortest-path: O(n log2 n) vs. O(mn) / O(n) vs. O(n log n)
max-flow: O(n log n) vs. O(nm)

1 + ε Approximations vs.

TSP: 3/2− ε
multi-way cut: O(log k)
Independent Set: Ω(n1−ε)

Fixed Parameter Tractability, EPTAS, . . .

Theory: topology, bounded genus graphs, graph minors,
Roberson-Seymor Theorem, tree/path width, . . .

Toolbox:

Planarity Testing / Embedding / Graph Drawing

Decompositions (Separators, RS-decomp., tree width, . . .)

Bidimensionality, . . .
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Distributed Setting: Round Complexity in CONGEST

Trivial Bounds:

O(m) vs. Ω(D), Big Gap!

General Graphs: Minimum Spanning Tree:

Õ(D +
√
n) [KP’95]

Strong Ω̃(
√
n) Lower Bound [RP’99,E’04,DHK+’11]

despite tiny diameter, e.g., D = log n
even for any approximation
even for sparse/bounded degree graphs

Question:

What natural graph classes avoid the Ω̃(
√
n) bound?

Goal:

Õ(D) network optimization algorithms for planar networks.
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Õ(D) network optimization algorithms for planar networks.

Bernhard Haeupler, CMU Distributed Graph Algorithms for Planar Networks



Distributed Setting: Round Complexity in CONGEST

Trivial Bounds:

O(m) vs. Ω(D), Big Gap!

General Graphs: Minimum Spanning Tree:
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A Distributed Perspective on Planar Network (Algorithms)

Distributed Perspective:

rich classical theory/toolbox to be inspired by

BUT entirely new approaches and tools are needed

provides new aspects, viewpoints, solutions, and problems

Standard planar toolbox does not extend:

Triangulation

Geometric Dual Graph

DFS-based algorithms

Separator guarantees

Data Structures (e.g., Dynamic Trees, PQ-trees, . . .)

. . .

Goal:

Develop a new distributed algorithmic toolbox for planar networks.
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New Tools I: A Distributed Planar Embedding Algorithm

An embedding is often necessary (not just knowing its existence).

Claim 1:

There is a Õ(D) distributed planar embedding algorithm.
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Efficient (Distributed) Planar Embedding Algorithm

Partial Embedding:

General Idea [LEC’67,HT’08]

Build embedding incrementally by adding vertices

Track all possible partial embeddings

Bernhard Haeupler, CMU Distributed Graph Algorithms for Planar Networks



Efficient (Distributed) Planar Embedding Algorithm

Partial Embedding:

General Idea [LEC’67,HT’08]

Build embedding incrementally by adding vertices

Track all possible partial embeddings

Bernhard Haeupler, CMU Distributed Graph Algorithms for Planar Networks



Partial Embeddings

Choose the (parallel) embedding order such that the non-embedded
vertices are connected.

all half-embedded edges lie in one face

partial embedding: rotation of half-embedded edges
around each connected component
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Vertex Addition

Observations:

new-embedded edges have to be consecutive

all possible cyclic orders of a component can be obtained by

flipping biconnected components
permutation on cut-vertices
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Efficient Distributed Planar Embedding Algorithm

Algorithm:
recursively subdivide into balanced, low-diameter subproblems

locally maintain and update biconnected component structure
track and propagate all possible flippings

Claim 1:

There is a Õ(D) distributed planar embedding algorithm.
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New Tools II: Low-Congestion Shortcuts

Uniquely Distributed Problem:

Need to preserve diameter of subproblems (e.g.,
Divide-and-Conquer)

Idea:

Add extra edges to each subproblem to ensure low diameter.

Avoid congestion, i.e., not use any edge too often

Claim 2:

(D logD,D logD)-Shortcuts exist, can be computed distributedly
in Õ(D) rounds, and are essentially best possible.
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New Tools II: Low-Congestion Shortcuts

Simple Construction:

Compute Planar Embedding

Build a Left-First BFS-tree T

For each Si determine left-most and right-most node li and ri

(li , ri )-path closes a (fundamental) cycle C in T

Hi = any edge above Si if enclosed by C (or beneath Si )
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New Tools II: Low-Congestion Shortcuts

Simplified Analysis:

Congestion ≤ D:
embedded BFS-tree induces a left-right order
set to the left/right do not share edges
at most D subsets are above/below

Dilation D2:
Project any Si -path Pi onto its T -path
Shortcut as far as possible within the enclosed subtree of T
At most D shortcuts each of lenght D needed
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New Tools II: Low-Congestion Shortcuts
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An Application: MST in planar networks

Claim 3:

For planar networks there is a Õ(D) distributed MST algorithm.

Algorithm:

Compute an embedding

Boruvka’s algorithm:

Start with singleton components

Repeat (log n times)

each component adds cheapest out-going edge
merge components

compute short-cuts
compute O(c + d) = O(D logD) scheme

=⇒ find new cheapest edge in Õ(D) rounds
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Summary and Open Questions

Take-Home Message

HUGE untapped potential for planar CONGEST algorithms

distributed perspective leads to interesting new questions, insights,
problems, and solutions

Goals:

Õ(D) or O(D + logO(1) n) distributed algorithms for planar networks

Distributed algorithmic toolbox

Open Questions:

Maximum Flow in o(n)

Exact / Approximate Shortest-Paths in õ(
√
n)

Depth-First-Search Trees in o(n)

Separators (construction, useful definitions)

Extensions, e.g., to bounded genus or excluded minor graph classes
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Thank you!
Questions?
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