Distributed Shortest Paths and Related Problems

Danupon Nanongkai

University of Vienna, Austria

About this talk

A survey of problems and techniques related to recent progress on computing shortest paths on distributed networks

- 1. Problems: s-t-distance, Single-source shortest paths (SSSP),
 All-pairs shortest paths (APSP), Distance Labeling, Diameter, Routing, etc.
- 2. Algorihtmic Techniques: Weight approximation, Skeleton, Spanner/Emulator, Hopset

Note polylog terms will be hidden most of the time

Part 1

Introuction

Part 1.1

CONGEST Model

Network represented by a weighted graph G with n nodes and diameter D.

Nodes know only local information

Nodes exchange O(log n) bits per round

Part 1.2

Example of problem: s-t distance

Goal: Node t knows distance from s

2-approximate solution

Computing s-t distance on **unweighted** graphs can be done in **O(D)** time by using the **Breadth-First Search (BFS)** algorithm.

There is an $\Omega(D)$ lower bound.

How about the weighted case?

Reference	Time	Approximation
Folklore	$\Omega(D)$	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any $lpha$
Das Sarma et al [STOC 2011]	$\Omega(n^{1/2} + D)$	any $lpha$
Lenzen, Patt-Shamir [STOC 2013]	$O(n^{1/2+1/2\alpha} + D)$	Ο(α)
N [STOC 2014]	$O(n^{1/2}D^{1/4}+D)$	1+ε
Henzinger,Krinninger,N	$O(n^{1/2+o(1)} + D^{1+o(1)})$	1+ε

⁻ Polylog n factors are hidden

⁻ Lenzen&Patt-Shamir actually achieve more than computing distances

Open Problems

- Sublinear-time exact algorithm?
 - Current: Nothing.
- O($n^{1/2}$ polylog n+D)-time (1+ ε)-approx. algorithm?
 - Current: $O(n^{1/2+o(1)}+D^{1+o(1)})$ -time
- Deterministic sublinear-time algorithm?
 - Current: Nothing
- Algorithm when weights are asymmetric?
 - Current: $O(n^{1/2}D^{1/2}+D)$ -time

Asymmetric weight

Note: Weights do not affect communication

Part 1.3

Related Problems

Single-source shortest paths

All-Pairs Shortest Paths

Diameter

Distance labeling/sketching

Distance Labeling/Sketching

distance(u, v) can be approximated by "looking" at labels/sketch S_u and S_v

i.e., there is algorithm A that takes L_u and L_v and outputs an approximate value of dist(u, v)

Routing Table

Some Other Related Problems

SESSION V (Graph Distances and Routing)		
Session Chair: Dahlia Malkhi		
8:30 – 8:55 am	Merav Parter Vertex Fault Tolerant Additive Spanners (best student paper award)	
8:55 – 9:20 am	Liam Roditty and Roei Tov Close to Linear Space Routing Schemes	
9:20 – 9:45 am	Mohsen Ghaffari and Christoph Lenzen Near-Optimal Distributed Tree Embedding	
9:45 – 9:52 am	Brief Announcement: Noy Rotbart, Søren Dahlgaard and Mathias Bæk Tejs Knudsen On Dynamic and Multi-Functional Labeling Schemes	
9:52 – 9:59 am	Brief Announcement: Matthieu Perrin, Achour Mostéfaoui and Claude Jard Update Consistency in Partitionable Systems	

Also Session XI: Diameter [Holzer et al.]

Some Results

Single-source shortest paths

-- same as s-t distance --

Reference	Time	Approximation
Das Sarma et al [STOC 2011]	$\Omega(n^{1/2} + D)$	any α
Henzinger, Krinninger, N	$O(n^{1/2+o(1)} + D^{1+o(1)})$	1+ε
open	$O(n^{1/2} + D)$	1+ε
open	sublinear	exact

Also open: Deterministic algorithm and Asymmetric case.

Open Problems

- Sublinear-time exact algorithm?
 - Current: Nothing.
- O($n^{1/2}$ polylog n+D)-time (1+ ε)-approx. algorithm?
 - Current: $O(n^{1/2+o(1)}+D^{1+o(1)})$ -time
- Deterministic sublinear-time algorithm?
 - Current: Nothing
- Algorithm when weights are asymmetric?
 - Current: $O(n^{1/2}D^{1/2}+D)$ -time

All-pairs shortest paths

Algorithm	Time	Approximation
Lower bound (Lenzen, Patt-Shamir [STOC'13] &N [STOC'14])	$\Omega(n)$	any
Lenzen,Patt-Shamir [STOC'13]	O(n)	O(1)
N [STOC 2014]	O(n)	1+o(1)
N	$O(n^{3/2})$	exact
Open	O(n)	exact

Distance labeling/sketching

Algorithm	Time	Approximation	Size
Das Sarma et al. [SPAA'12]	O(n ^{1/k} SPD)	2k-1	kn ^{1/k}
Lenzen&Patt- Shamir [STOC'13]	$O(n^{1/2+1/2k} + D)$	O(k ²)	n ^{1/2k}
Open	$O(n^{1/2+1/k} + D)$	2k-1	kn ^{1/k}

SPD = shortest path diameter (could be as large as n)

Diameter (unweighted)

Algorithm	Time	Approximation
BFS	D	2
Holzer et al. [PODC'12]	$\Omega(n)$	3/2-ε
Holzer et al. [PODC'12] Peleg et al. [ICALP'12]	O(n)	exact
Frischknecht et al. [SODA'12]	$\Omega((n/D)^{1/2}+D)$	3/2-ε
Lenzen-Peleg [PODC'13]	$O(n^{1/2}+D)$	3/2
Holzer et al. [DISC'14]	$O((n/D)^{1/2}+D)$	3/2+ε
Open	?	?

Diameter (weighted)

Algorithm	Time	Approximation
Holzer et al. [PODC'12]	$\Omega(n)$	2-ε
Henzinger, Krinninger, N	$O(n^{1/2+o(1)} + D^{1+o(1)})$	2+ε
Open	$O(n^{1/2} + D)$	2+ε
Open	sublinear	2

(Getting a sublinear-time exact algorithm for SSSP will resolve this)

Part 2

Algorithmic Techniques

A Common Framework

A Common Framework

1. Input graph

A Common Framework

2. Skeleton

A Common Framework

3. Sparse spanner/emulator of skeleton

A Common Framework

A Common Framework

<u>Definition</u>: h-hop distance

 dist^h(u,v) := smallest total weight among u-v paths containing at most h edges

Computing single-source h-hop distances in the weighted case is as easy as computing a BFS tree on unweighted graphs

(With the cost of $(1+\varepsilon)$ -multiplicative error)

Theorem 1 We can find single-source (1+ ϵ)-approx. "h-hop distances" in O(h/ ϵ) time

"Light-Weight" Feature

Can be parallelized efficiently

Two techniques to paralellize BFS trees

- Random delay -- N [STOC'14]
- Deterministic scheduling Holzer et al. [PODC'12]

Theorem 2 We can find k-sources $(1+\epsilon)$ -approx. h-hop distances in $O(k+h/\epsilon)$ time

Some Technical Details

and know that for some h and W

and know that for some h and W

1. The shortest s-t path has h hops

and know that for some h and W

- 1. The shortest s-t path has h hops
- 2. W \leq distance(s, t) \leq 2W

Step 1: Round weights up to a multiple of $\varepsilon W/h$

Claim: G' gives $(1+\varepsilon)$ -approximate distance

Step 2: Run BFS algorithm on G'

Number of rounds =
$$O(dist(s,t)/(\epsilon W/h))$$

= $O(h/\epsilon)$

Summary

We can "pretend" that the graph is unweighted by losing a $(1+\epsilon)$ -approximation factor

Theorem

We can find k-sources

 $(1+\epsilon)$ -approx. h-hop distances in

 $O(k+h/\epsilon)$ time

$\frac{\text{Corollary}}{\text{We can compute } (1+\epsilon)\text{-approx.}}$ $\frac{\text{all-pairs distances in}}{\text{O(n/ϵ) time}}$

Open problem

- Can we find k-sources $\frac{(1+\epsilon)}{-approx}$. exact h-hop distances in O(k+h) time?
- If so, we will be able to solve APSP exactly in linear time.
- We will also be able to solve SSSP exactly in sublinear time.

Common Framework

k-skeleton

1. Randomly pick k (≈n¹/²) nodes

k-skeleton

- Randomly pick k (≈n^{1/2}) nodes
- 2. Compute h-hop distance between random nodes where h=n/k ($\approx n^{1/2}$)

k-skeleton

- 1. Randomly pick k (≈n¹/²) nodes
- 2. Compute h-hop distance between random nodes where h=n/k ($\approx n^{1/2}$)
- 3. Add "virtual edges" between random nodes. Weight = h-hop distance.

Constructing an approximate skeleton

Recall: We can find k-sources $(1+\epsilon)$ -approx. h hop distances in $O(k+h/\epsilon)$ time.

Corollary: We can compute a k-skeleton in $O(k+n/k\epsilon)$ time with $(1+\epsilon)$ -approximate distances between random nodes.

<u>Lemma</u>: For every pair of nodes u and v on a skeleton H of graph G,

 $dist_G(u, v) = dist_H(u, v)$

<u>Lemma</u>: For every pair of nodes u and v on a skeleton H of graph G,

$$dist_G(u, v) = dist_H(u, v)$$

10-second proof: k random nodes will split u-v path into subpaths of length at most n/k

<u>Lemma</u>: For every pair of nodes u and v on a skeleton H of graph G,

$$dist_G(u, v) = dist_H(u, v)$$

10-second proof: k random nodes will split u-v path into subpaths of length at most n/k

We can $(1+\varepsilon)$ -approximate dist(s,t) in $O(n^{2/3}+D)$ time

- Construct a k-skeleton H that includes s and t (Suffice to find dist_H(s, t)) O(k+n/k) time
- 2. Broadcast this k-skeleton to all nodes. O(k²+D) time (s now knows about all blue edges)

3. Node s can now compute dist(s, t)

We can $(1+\varepsilon)$ -approximate dist(s,t) in $O(n^{2/3}+D)$ time

- Construct a k-skeleton H that includes s and t (Suffice to find dist_H(s, t)) O(k+n/k) time
- 2. Broadcast this k-skeleton to all nodes. O(k²+D) time (s now knows about all blue edges)
- 3. Node s can now compute dist(s, t)

Set
$$k=n^{1/3} \rightarrow time = O(n^{2/3}+D)$$

Open problem

 Can we find exact k-skeleton in O(k+n/k) time?

(Recall: We can find an $(1+\epsilon)$ -approximate k-skeleton in $O(k+n/k\epsilon)$ time.)

 If so, we will be able to solve SSSP exactly in sublinear time.

Common Framework

Can we reduce the running time for finding dist(s,t) further (e.g., from O(n^{2/3}+D) to O(n^{1/2}+D))?

Main problem: There are too many edges (up to $O(k^2)$) in the skeleton

Skeleton alone is not usually useful because it's too big.

We must sparsify it.

Definitions

- p-spanner: Subgraph that preserves distances with multiplicative error p
- p-emulators: Graph on the same set of vertices that preserves distances

Computing spanner on distributed networks

- Baswana-Sen [Random Structures and Algorithms 2007]: (2p-1)-spanner of size O(n^{1+1/p}) in O(p) rounds for any p.
- There's a huge literature on this.
 - See, e.g., Pettie [Distributed Computing 2010]

^{*} It was pointed out by Pettie that the size of Baswana-Sen's spanner is $O(kn+(\log n)n^{1+1/k})^{73}$

Simulate Baswana-Sen [Random Struct. & Algo. 2007]:
 (2p-1)-spanner of size O(k^{1+1/p}) in O(pn/k)
 rounds for any p.

- Simulate Baswana-Sen [Random Struct. & Algo. 2007]:
 (2p-1)-spanner of size O(k^{1+1/p}) in O(pn/k)
 rounds for any p.
 - We need n/k time to simulate each round.
 - No need to worry about congestion.

- Simulate Baswana-Sen [Random Struct. & Algo. 2007]: (2p-1)-spanner of size O(k^{1+1/p}) in O(pn/k) rounds for any p.
 - We need n/k time to simulate each round.
 - No need to worry about congestion.
- In particular: O(log n)-spanner of size O(k) in O(n/k) rounds for any p.
- Note: spanner of the skeleton can be computed without computing the skeleton
 - Lenzen, Patt-Shamir [sтос 2013]

- Simulate Baswana-Sen [Random Struct. & Algo. 2007]: (2p-1)-spanner of size O(k^{1+1/p}) in O(pn/k) rounds for any p.
- Simulate Thorup-Zwick [JACM 2005]: (2p-1)emulator of size O(k^{1+1/p}) in O(D+pn/k) rounds
 for any p.

Consequence to s-t distance computation

We can $(1+\varepsilon)$ -approximate dist(s,t) in $O(n^{2/3}+D)$ time

1. Construct a k-skeleton that includes s and t

Consequence to s-t distance computation

We can $(1+\varepsilon)$ -approximate dist(s,t) in $O(n^{2/3}+D)$ time

- 1. Construct a k-skeleton that includes s and t
- 2. Construct an O(log n)-spanner of this k-skeleton
- 3. Broadcast this spanner to all nodes. O(k+D) time (s now knows about all red edges)

Consequence to s-t distance computation

We can O(log n)-approximate dist(s,t) in $O(n^{1/2}+D)$ time

- 1. Construct a k-skeleton that includes s and t
- 2. Construct an O(log n)-spanner of this k-skeleton
- 3. Broadcast this spanner to all nodes. O(k+D) time (s now knows about all red edges)
- 4. Node s can now compute dist(s, t)

Set
$$k=n^{1/2} \rightarrow time = O(n^{1/2}+D)$$

Other Consequences

Part of algorithms for

- Distance labeling and routing table Lenzen, Patt-Shamir [STOC'13]
- Tree Embedding Ghaffari-Lenzen [DISC'14]
- Steiner Forest Lenzen, Patt-Shamir [PODC'14]

Common Framework

Can we $(1+\epsilon)$ -approximate dist(s,t) in $O(n^{1/2}+D)$ time?

Recall: We can

- O(log n)-approximate dist(s,t) in $O(n^{1/2}+D)$ time
- $(1+\varepsilon)$ -approximate dist(s,t) in $O(n^{2/3}+D)$ time

Problem with sparsification: it incurs an unavoidable large error

An alternative way: adding shortcuts

Definitions

• (h, ϵ)-hopset: A set of edges that when added to the input graph, h-hop distances (1+ ϵ)-approximate the original distance

Theorems

- Cohen [JACM'00]: There is a (polylog n, ε)-hopset of size $n^{1+o(1)}$. (She can construct this in PRAM)
- Bernstein [Focs'09]: Thorup-Zwick's emulator can be modified to construct an $(n^{o(1)}, \varepsilon)$ -hopset of size $n^{1+o(1)}$.
- Henzinger, Krinninger, N [FOCS'14]: Bernstein's construction can be to modified to get an $(n^{o(1)}, \epsilon)$ -hopset of size $n^{1+o(1)}$ in the partially-dynamic setting.
- Further observation: The construction of Henzinger et al. can be implemented on the k-skeleton in time $O(k^{1+o(1)}+D^{1+o(1)})$

Hopset construction overview

 For every u and v that are ≤n/h hops away, add edge uv with weight dist^h(u,v)

Hopset construction overview

- For every u and v that are ≤n/h hops away, add edge uv with weight dist^h(u,v)
- This is an (O(h),0)-hopset

Hopset construction overview

- For every u and v that are ≤n/h hops away, add edge uv with weight dist^h(u,v)
- This is an (O(h),0)-hopset
- Sparsify using Thorup-Zwick's emulator which gives (1+ε) multiplicative error and some constant additive error.
- The additive error can be ignored if h is large enough

Hopset construction overview (2)

- Thorup-Zwick emulator can't be implemented on distributed networks since it needs to compute single-source shortest paths.
- But it can be implemented using bounded-hop single-source shortest paths & repeat algorithm multiple times.

Consequence

We can $(1+\varepsilon)$ -approximate dist(s,t) in $O(n^{1/2+o(1)}+D^{1+o(1)})$ time

- 1. Construct a k-skeleton that includes s and t
- 2. Construct an $O(k^{o(1)}, \varepsilon)$ -hopset of this k-skeleton $O(k^{1+o(1)}+D^{1+o(1)})$
- 3. Compute dist(s,t) on k-skeleton + hopset by simulating $k^{o(1)}$ —hop distance algorithm. $O(k^{1+o(1)}+Dk^{o(1)})$ time (Simulation details omitted)

Set
$$k=n^{1/2} \rightarrow time = O(n^{1/2+o(1)}+D^{1+o(1)})$$

Another application of hopset

Routing Schemes Roditty-Tov [DISC'14]

Open Problems

- Can we solve single-source shortest paths in O(n^{1/2}polylog n+D) time?
 - Current: $O(n^{1/2+o(1)}+D^{1+o(1)})$
- Does there exist a (polylog n, ε)-hopset of size O(n polylog n)? If so, can we compute it efficiently on distributed networks?
- Any other application of the hopset?

Part 5

Summary

Common Framework

Last open problem

Any other application of this framework?

Connections to other areas

- Using techniques above, we can solve SSSP in $O(n^{1/2+o(1)}+D^{1+o(1)})$ time.
- Using the same techniques, we can
 - solve SSSP on streams with O(n^{1+o(1)}) space and O(n^{o(1)})
 passes
 - maintain SSSP in the partially-dynamic setting in $O(m^{1+o(1)})$ total time, and
- All results rely on the fact that we can compute/maintain h-hop distances fast
- Do similar connections exist for other problems, e.g. cut and matching?

Thank you