Distributed Shortest Paths
and Related Problems

ADGA 2014

About this talk

A survey of problems and techniques
related to recent progress on computing
shortest paths on distributed networks

1. Problems: s-t-distance, Single-source shortest paths (SSSP),
All-pairs shortest paths (APSP), Distance Labeling, Diameter, Routing, etc.

2. Algorihtmic Techniques: Weight approximation, Skeleton,
Spanner/Emulator, Hopset

Note
polylog terms will be
hidden most of the time

Part 1

Introuction

Part 1.1

CONGEST Model

Network represented by a weighted graph G
with n nodes and diameter D.

Nodes know only local information

Nodes exchange O(log n) bits per round

Part 1.2

Example of problem:
s-t distance

Distance from s}

Goal: Node t knows distance from s

S 4
BS
6’9 1
1 |
g T

Distance from 59

Distance from s@

2-approximate solution

12

Computing s-t distance on unweighted
graphs can be done in O(D) time
by using the Breadth-First Search (BFS)
algorithm.

There is an €(D) lower bound.

How about the weighted case?

Reference Time Approximation

Folklore (D) any
Bellman&Ford [1950s] O(n) exact
Elkin [sTOC 2006] Q((n/a)2+ D) any o
Das Sarma et al [sToc 2011] Q(n/2 + D) any o
Lenzen,Patt-Shamir O(n1/2+1/2a 4 D) O(a)
[STOC 2013]

N [sToc 2014] O(nY/2DY4+ D) 1+¢

Henzinger,Krinninger,N ()(nl/2+0(1)+ D1+0(1)) 1+¢

- Polylog n factors are hidden
- Lenzen&Patt-Shamir actually achieve more than computing distances

Open Problems

Sublinear-time exact algorithm?

— Current: Nothing.

O(nY2polylog n+D)-time (1+¢)-approx. algorithm?
— Current: O(n1/2+o(1)+D1+o(1))time

Deterministic sublinear-time algorithm?

— Current: Nothing

Algorithm when weights are asymmetric?
— Current: O(n'/2DY2+D)-time

4 dist(6, 3)=1

dist(3, 6)=2
()

Asymmetric weight
Note: Weights do not affect communication

Part 1.3

Related
Problems

source 1 4

‘ Distance from 1>

Single-source shortest paths

source 1 4

1 Aél
Sarg

‘ @cefroml 2, >

All-Pairs Shortest Paths

¢’*

Network Dlameteb

Diameter

1/%4
Bty
=5 a4

Distance labeling/sketching

Distance Labeling/Sketching

distance(u, v) can be approximated by
“looking” at labels/sketch S, and S,

i.e., there is algorithm A that takes L, and L, and outputs an
approximate value of dist(u, v)

Routing Table

Some Other Related Problems

Session Chair: Dahlia Malkhi

8:30 — 8:55 am

8:55 - 9:20 am

9:20 — 9:45 am

9:45 - 9:52 am

9:52 — 9:59 am

Also Session XlI: Diameter [Holzer et al.]

Merav Parter
Vertex Fault Tolerant Additive Spanners
(best student paper award)

Liam Roditty and Roei Tov
Close to Linear Space Routing Schemes

Mohsen Ghaffari and Christoph Lenzen
Near-Optimal Distributed Tree Embedding

Brief Announcement: Noy Rotbart, Seren Dahlgaard and Mathias
Baek Tejs Knudsen
On Dynamic and Multi-Functional Labeling Schemes

Brief Announcement: Matthieu Perrin, Achour Mostéfaoui and

Claude Jard
Update Consistency in Partitionable Systems

25

Some Results

Single-source shortest paths

-- same as s-t distance --

Reference Time Approximation

Das Sarma et al [sToc2011] Q(nY/2 + D) any o
Henzinger,Krinninger,N ()(nl/2+0(1) + D1+0(1)) 1+¢
open O(n¥2+ D) 1+¢

open sublinear exact

Also open: Deterministic algorithm and Asymmetric case.

Open Problems

Sublinear-time exact algorithm?

— Current: Nothing.

O(nY2polylog n+D)-time (1+¢)-approx. algorithm?
— Current: O(n1/2+o(1)+D1+o(1))time

Deterministic sublinear-time algorithm?

— Current: Nothing

Algorithm when weights are asymmetric?
— Current: O(n'/2DY2+D)-time

All-pairs shortest paths

Algorithm Time Approximation
Lower bound Q(n) any
(Lenzen,Patt-Shamir [sToc'13]

&N [sTOC'14])

Lenzen,Patt-Shamir O(n) O(1)

[STOC'13]

N [sToC 2014] O(n) 1+0(1)

N O(n3/2) exact

Open O(n) exact

Distance labeling/sketching

Algorithm Time Approximation Size
Das Sarmaetal. O(nYkSPD) 2k-1 knl/k
[SPAA’12]

Lenzen&Patt- O(nY/2*1/2k+ D) O(k2) nl/2k
Shamir [sToc’13]

Open O(nV2k+ D) 2k-1 knl/k

SPD = shortest path diameter (could be as large as n)

*Definition used by Lenzen and Patt-Shamir is slightly different

Diameter (unweighted)

Algorithm Time Approximation
BFS D 2

Holzer et al. [poDC'12] Q2(n) 3/2-¢

Holzer et al. [poDC’12] O(n) exact

Peleg et al. [icALP’12]

Frischknecht et al. Q((n/D)Y2+D) 3/2-¢

[SODA’12]

Lenzen-Peleg [PODC’13] O(nY2+D) 3/2

Holzer et al. [DIsc'14] O((n/D)2+4D) 3/2+¢
Open ? ?

Diameter (weighted)

Algorithm Time Approximation

Holzer et al. [poDC'12] Q(n) 2-¢
Henzinger,Krinninger,N O(n/z+o(l) 4 p1+o(1)) 754¢
Open O(n'/2+ D) 2+€

Open sublinear 2

(Getting a sublinear-time exact algorithm for SSSP will resolve this)

Part 2

Algorithmic
Techniques

A Common Framework

A Common Framework

35

1. Input graph

A Common Framework

2. Skeleton

36

A Common Framework

37

3. Sparse spanner/emulator of skeleton

h-hop
distance

A Common Framework

$<

Input graph

>

Skeleton

~

Spanner

~

Additional work

<

Hopset

38

h-hop
distance

A Common Framework

$<

Input graph

>

Skeleton

~

Spanner

~

Additional work

]

Hopset

39

Definition: h-hop distance

 dist"(u,v) := smallest total weight among u-v
paths containing at most h edges

/@
dist(1, 6) = 3

disti(1, 6) =4

40

Computing single-source h-hop distances
in the weighted case is as easy as
computing a BFS tree on unweighted graphs

(With the cost of (1+¢)-multiplicative error)

Theorem 1
We can find single-source
(1+¢)-approx. “h-hop distances” in

O(h/g) time

“Light-Weight” Feature

Can be parallelized efficiently

Two techniques to paralellize BFS trees
1. Random delay -- N [STOC'14]

2. Deterministic scheduling — Holzer et al. [PODC’12]

Theorem 2
We can find k-sources
(1+€)-approx. h-hop distances in

O(k+h/g) time

Some Technical Details

Suppose that we are finding
distance(s, t)

Suppose that we are finding
distance(s, t)

and know that for some h and W

Suppose that we are finding
distance(s, t)

and know that for some h and W

1. The shortest s-t path has h hops

Suppose that we are finding
distance(s, t)

and know that for some h and W

1. The shortest s-t path has h hops
2. W < distance(s, t) < 2W

Step 1: Round weights up to a multiple of eW/h

W < distance(s, t) < 2W

G: ‘ ’ .— « o o 4‘
S=V, Vy Vv, t=v,
G’: ‘ ’ “ . e _‘

L [) L [) L
eW/h €W/h eW/h’gW/h eWh eW/h ¢W/h

50

Claim: G’ gives (1+¢)-approximate distance

W < distance(s, t) < 2W

S=V, Vi, | v, tzv
W : W I %1 VYh
G: ‘ 1 ‘I : 2 Ib_ .« o . 4:’
5=V : ill : V|
G: @ eW/h. eW/h .EW/hu.SW/h. eWh .:SW/h ¢ SW/hI, i
— .)

error < eW/h

error < 2¢W/h

Total error < h(eW/h) < edist(s, t)

Step 2: Run BFS algorithm on G’

W < distance(s, t) < 2W

_S=V0 W, Vi w, Vs t=v,
G- ‘ —’ .— e o o 4‘
SEEE N
N QQ) OQ
— o S o t=v
Vo &, X, NS V2 h
G: @ . o - ---©O

L ® o L
eW/h €W/h eW/h’sW/h eWh eW/h ¢W/h

Number of rounds = O(dist(s,t)/(¢W/h))
= O(h/¢)

Summary
We can “pretend” that the graph is
unweighted by losing a (1+¢)-approximation
factor

Theorem
We can find k-sources
(1+¢€)-approx. h-hop distances in

O(k+h/¢g) time

Caution: The new unweighted graph may have diameter more than D!

Corollary
We can compute (1+¢€)-approx.
all-pairs distances in

O(n/g) time

54

Open problem
* Can we find k-sources {1+e}-apprex— exact h-

nhop distances in O(k+h) time?

* |f so, we will be able to solve APSP exactly in
Inear time.

* We will also be able to solve SSSP exactly in
sublinear time.

h-hop
distance

Common Framework

$<

Input graph

>

Skeleton

~

Spanner

~

Additional work

<

Hopset

56

k-skeleton

1. Randomly pick k (=n¥/2) nodes

57

k-skeleton

1. Randomly pick k (=n'/2) nodes

2. Compute h-hop distance between random nodes
where h=n/k (zn1/?)

M h

k-skeleton

. Randomly pick k (=n¥/2) nodes

2. Compute h-hop distance between random nodes

where h=n/k (zn1/?)
. Add “virtual edges” between random nodes.
Weight = h-hop distance.

@("X k
h=2

59

Constructing an approximate skeleton

Recall: We can find k-sources (1+¢€)-approx. h
hop distances in O(k+h/g) time.

Corollary: We can compute a k-skeleton in
O(k+n/ke) time with (1+¢)-approximate
distances between random nodes.

Consequence to s-t distance computation

Lemma: For every pair of nodes u and von a
skeleton H of graph G,

dist;(u, v)=dist,(u,v)

61

Consequence to s-t distance computation

Lemma: For every pair of nodes u and von a
skeleton H of graph G,

dist;(u, v)=dist,(u,v)

10-second proof: k random nodes will split u-v path
into subpaths of length at most n/k

< n/k < n/k < n/k <n/k

| \ ! \[o ||
u &_\Q G -

62

Consequence to s-t distance computation

Lemma: For every pair of nodes u and von a
skeleton H of graph G,

dist;(u, v)=dist,(u,v)

10-second proof: k random nodes will split u-v path
into subpaths of length at most n/k

<n/k <n/k <n/k

virtual edges with appropriate weights

63

Consequence to s-t distance computation

We can (1+¢)-approximate dist(s,t) in O(n%3+D) time

1. Construct a k-skeleton H that includes s and t
(Suffice to find dist,(s, t)) O(k+n/k) time

2. Broadcast this k-skeleton to all nodes. o(k?+D) time
(s now knows about all blue edges)

3. Node s can now compute dist(s, t)

64

Consequence to s-t distance computation

We can (1+¢)-approximate dist(s,t) in O(n%3+D) time

1. Construct a k-skeleton H that includes s and t
(Suffice to find dist,(s, t)) O(k+n/k) time

2. Broadcast this k-skeleton to all nodes. o(k?+D) time
(s now knows about all blue edges)

3. Node s can now compute dist(s, t)

Set k=n%3 - time = O(n%3+D)

Open problem

e Can we find exact k-skeleton in O(k+n/k)
time?
(Recall: We can find an (1+¢)-approximate k-
skeleton in O(k+n/ke) time.)

* |f so, we will be able to solve SSSP exactly in
sublinear time.

h-hop
distance

Common Framework

$<

Input graph

>

Skeleton

~

Spanner

~

Additional work

<

Hopset

67

Can we reduce the running time for
finding dist(s,t) further
(e.g., from O(n?/3+D) to O(n¥/2+D))?

Main problem: There are too many

edges (up to O(k?)) in the skeleton

Skeleton alone is not usually useful
because it’s too big.

We must sparsify it.

Definitions
* p-spanner: Subgraph that preserves distances

with multiplicative error p

* p-emulators: Graph on the same set of
vertices that preserves distances

input graph 2-spanner 2-emulator

Computing spanner on distributed networks

* Baswana-Sen [Random Structures and Algorithms 2007]:
(2p-1)-spanner of size O(n'*'/?) in O(p) rounds
for any p.

* There’s a huge literature on this.

— See, e.g., Pettie [Distributed Computing 2010]

* |t was pointed out by Pettie that the size of Baswana-Sen’s spanner is O(kn+(log n)n1+/k)

Computing spanner on k-skeleton

e Simulate Baswana-Sen [Random struct. & Algo. 2007]:
(2p-1)-spanner of size O(k**'/?P) in O(pn/k)
rounds for any p.

74

Computing spanner on k-skeleton

 Simulate Baswana-Sen [Random Struct. & Algo. 2007].
(2p-1)-spanner of size O(k*'/?P) in O(pn/k)
rounds for any p.

— We need n/k time to simulate each round.
— No need to worry about congestion.

M

h=2

75

Computing spanner on k-skeleton

 Simulate Baswana-Sen [Random Struct. & Algo. 2007].
(2p-1)-spanner of size O(k*'/?P) in O(pn/k)
rounds for any p.

— We need n/k time to simulate each round.
— No need to worry about congestion.

* |n particular: O(log n)-spanner of size O(k) in
O(n/k) rounds for any p.

* Note: spanner of the skeleton can be
computed without computing the skeleton

— Lenzen, Patt-Shamir [sToC 2013]

76

Computing spanner on k-skeleton

* Simulate Baswana-Sen [Random Struct. & Algo. 2007]:
(2p-1)-spanner of size O(k*'/?) in O(pn/k)
rounds for any p.

e Simulate Thorup-Zwick pacm200s): (2p-1)-
emulator of size O(k**'/?) in O(D+pn/k) rounds
for any p.

77

Consequence to s-t distance computation

We can (1+¢)-approximate dist(s,t) in O(n%3+D) time
1. Construct a k-skeleton that includes s and t

78

Consequence to s-t distance computation

We can (1+¢)-approximate dist(s,t) in O(n%3+D) time
1. Construct a k-skeleton that includes s and t
2. Construct an O(log n)-spanner of this k-skeleton

3. Broadcast this spanner to all nodes. oO(k+D) time
(s now knows about all red edges)

@("Xk

79

Consequence to s-t distance computation

We can O(log n)-approximate dist(s,t) in O(n¥/2+D)
time

1.
2.
3.

Construct a k-skeleton that includes s and t
Construct an O(log n)-spanner of this k-skeleton

Broadcast this spanner to all nodes. o(k+D) time
(s now knows about all red edges)

Node s can now compute dist(s, t)

Set k=n'/2 2 time = O(n¥/2+D)

Other Consequences

Part of algorithms for

e Distance labeling and routing table Lenzen, Patt-Shamir
[STOC'13]

* Tree Embedding Ghaffari-Lenzen [DISC’14]
* Steiner Forest Lenzen, Patt-Shamir [PODC’14]

h-hop
distance

Common Framework

$<

Input graph

>

Skeleton

~

Spanner

~

Additional work

]

Hopset

82

Can we (1+¢)-approximate dist(s,t)
in O(n/2+D) time?

Recall: We can
- O(log n)-approximate dist(s,t) in O(n¥/2+D) time
- (1+¢)-approximate dist(s,t) in O(n?/3+D) time

83

Problem with sparsification:
it incurs an unavoidable large error

An alternative way: adding shortcuts

Definitions

* (h,e)-hopset: A set of edges that when added
to the input graph, h-hop distances (1+¢)-
approximate the original distance

Input graph Input graph & (5, 0)-hopset

86
Picture from Cohen [JACM’00]

Theorems

Cohen pjacwoo]: There is a (polylog n, €)-hopset of
size n1*°1) (She can construct this in PRAM)

Bernstein [Focs’09]: Thorup-Zwick’s emulator can be

modified to construct an (n°Y),¢)-hopset of size
n1+o(1).

Henzinger, Krinninger, N [rocs'14]: Bernstein’s
construction can be to modified to get an (n°,¢)-
hopset of size n1*°) in the partially-dynamic
setting.

Further observation: The construction of Henzinger
et al. can be implemented on the k-skeleton in time

O(k1+o(1)_|_D1+o(1))

Hopset construction overview

* For every u and v that are <n/h hops away, add
edge uv with weight dist"(u,v)

88

Hopset construction overview

* For every u and v that are <n/h hops away, add
edge uv with weight dist"(u,v)

* Thisisan (O(h),0)-hopset

89

Hopset construction overview

For every u and v that are <n/h hops away, add
edge uv with weight dist"(u,v)

This is an (O(h),0)-hopset

Sparsify using Thorup-Zwick’s emulator which

gives (1+¢€) multiplicative error and some
constant additive error.

The additive error can be ignored if h is large
enough

Hopset construction overview (2)

* Thorup-Zwick emulator can’t be implemented on
distributed networks since it needs to compute
single-source shortest paths.

* But it can be implemented using bounded-hop

single-source shortest paths & repeat algorithm
multiple times.

(log? n) hops

/g—ﬁnﬂ\/tﬂnl/q\

\ Y)\ Y J\)
1 1/q !
\ n /q n

91

Consequence

We can (1+¢)-approximate dist(s,t) in
O(n1/2+o(1)+D1+o(1)) time

1.
2.

Construct a k-skeleton that includes s and t

Construct an O(k°), €)-hopset of this k-skeleton
O(k1+o(1)+D1+o(1))

. Compute dist(s,t) on k-skeleton + hopset by

simulating k°*)=hop distance algorithm.
O(k**o()+Dke) time (Simulation details omitted)

Set k=n'?2 = time = O(n1/2+0(1)+D1+o(1))

Another application of hopset

* Routing Schemes Rroditty-Tov [DIsC'14]

Open Problems

* Can we solve single-source shortest paths in
O(nY2polylog n+D) time?
— Current: O(n%/2+o(l)+pl+o(1))

e Does there exist a (polylog n, €)-hopset of size
O(n polylog n)? If so, can we compute it
efficiently on distributed networks?

* Any other application of the hopset?

94

Part 5

Summary

h-hop
distance

Common Framework

$<

Input graph

>

Skeleton

~

Spanner

~

Additional work

<

Hopset

96

Last open problem

Any other application of this framework?

Connections to other areas

Using techniques above, we can solve SSSP in
O(n1/2+o(1)+D1+o(1)) time.

Using the same techniques, we can

* solve SSSP on streams with O(n'*1)) space and O(n°")
passes

e maintain SSSP in the partially-dynamic setting in O(m?**°(1))
total time, and

All results rely on the fact that we can
compute/maintain h-hop distances fast

Do similar connections exist for other
problems, e.g. cut and matching?

Thank you

