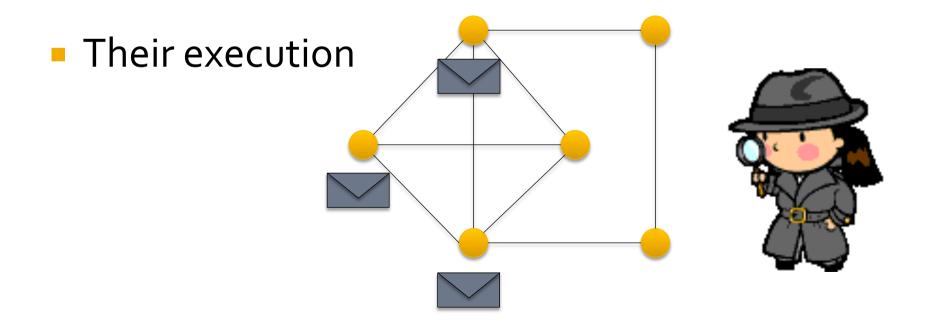
Keren Censor-Hillel, Technion ADGA 2014

Distributed Algorithms as Combinatorial Structures

Good Morning!

- Today I want to inspect distributed algorithms
- Not their code



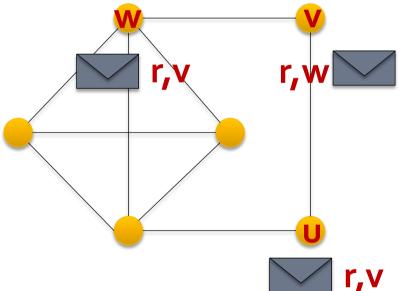
Synchronizers

Design algorithms for **synchronous** systems but run them in **asynchronous** systems [Awerbuch 1985]

 Send (r+1)-message after receiving all r-messages

will wait forever ifnever sends an r-message

Sending an empty message increases message complexity

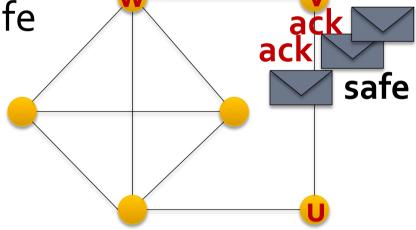


Synchronizers

Send ACKs:

- v informs about receiving all ACKs (v is safe)
- v sends (r+1)-message when all neighbors are safe

Still need a message from every neighbor

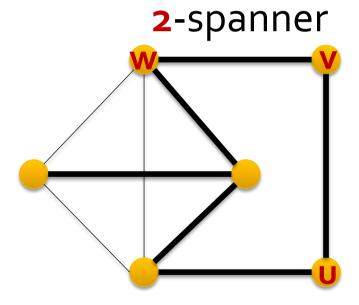


Message overhead is M=O(|E|)Time overhead is T=O(1)

Spanners

In a **k-spanner S** of G: $d_S(u,v) \le k \cdot d_G(u,v)$ **k** is the **stretch**

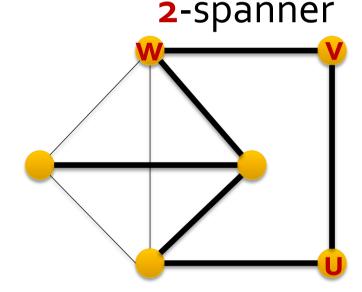
[Peleg, Ullman 1989]



Synchronizers with Spanners

S is a **k**-spanner with **m** edges

- Repeat k iterations:
 - Send safe messages in the spanner
 - Wait for **safe** messages in the spanner



Iteration t: nodes within spanner distance t are safe All neighbors are within distance k in the spanner

Synchronizers with Spanners

k-spanner with m edges ->
synchronizer with M=O(km), T=O(k)

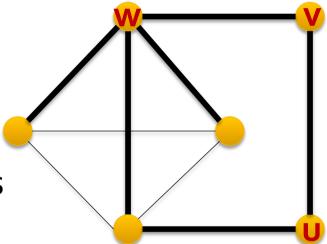
[Peleg, Ullman 1989]

Synchronizers with Spanners

Sync is a synchronizer

Mark all edges used

Information has to pass between each pair of neighbors



Gives a spanner S with m≤M and k≤T

Synchronizers vs. Spanners

k-spanner with m edges >
synchronizer with M=O(km), T=O(k)

synchronizer with parameters M and T → spanner with m≤M and k≤T

[Peleg, Ullman 1989]

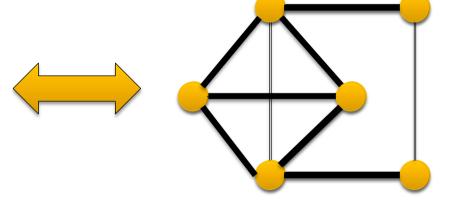
Synchronizers vs. Spanners

Synchronizers

Synchronizer Code for node v

- 1.Upon receiving:
 - Send ACK to u

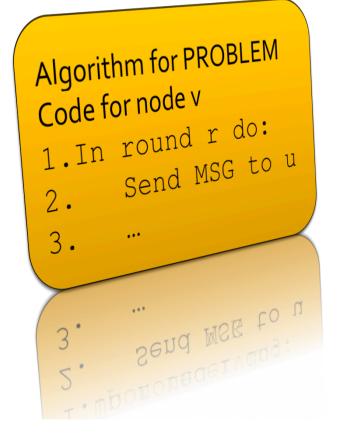
Spanners

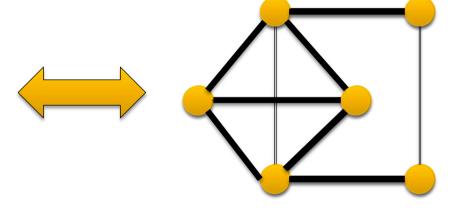


MIS (Most Important Slide)

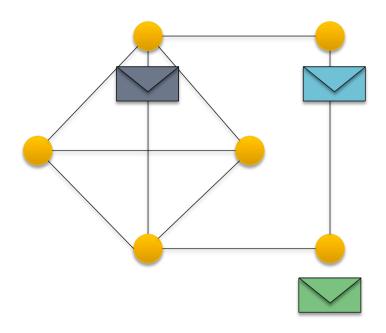
Distributed Algorithms

Graph Structures

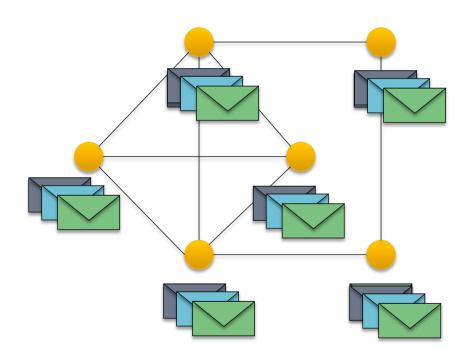




Multi-Message Broadcast



Multi-Message Broadcast

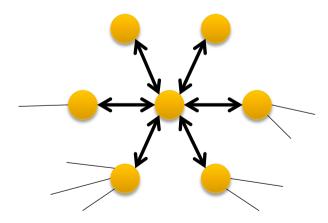


The GOSSIP model

LOCAL round: contact all neighbors [Linial 1987]

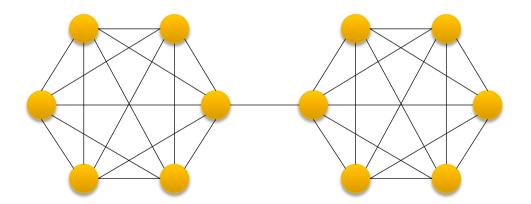
GOSSIP round: contact a single neighbor

[Demers et al. 1987]



Multi-Message Broadcast in GOSSIP

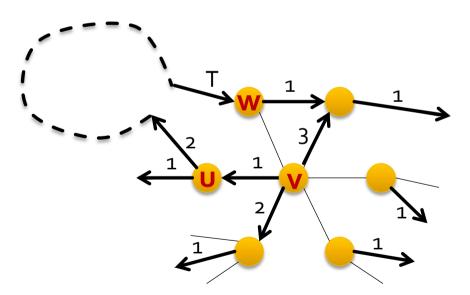
- The challenge: bottlenecks
 - Simple round-robin performs poorly
 - Random choices depend on conductance: Θ(logn/φ)
 [Giakkoupis 2011,
 Chierichetti, Lattanzi, Panconesi 2010]



Neighbor Exchange

■ T rounds for neighbor exchange →
 DT rounds for multi-message broadcast

T-spanner with
 O(nT) edges and
 max degree T
 in T rounds



Multi-Message Broadcast vs. Spanners

Neighbor exchange in T rounds → spanner with m=nT, k=T and max degree T

- Neighbor exchange in O(log³ n) rounds
 [Censor-Hillel, Hauepler, Kelner, Maymounkov 2012]
- Neighbor exchange improved to O(log² n) [Hauepler 2013]

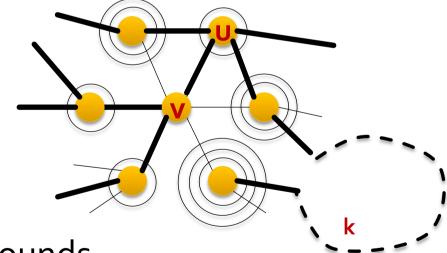
Multi-Message Broadcast with Spanners

S is a **k**-spanner with max degree **d**

- Repeat k iterations:
 - Pick new neighbor in S (round-robin)

Iteration t: reach nodes within spanner distance t

All neighbors are within distance **k** in the spanner



- Neighbor exchange in dk rounds
- mm-broadcast in dkD rounds

Wish Upon a Star

Not every graph has a small degree spanner Instead, use a spanner that is "sparse enough"

Takes O(1) rounds to reach the next hop

Hereditary density δ : The maximal density of induced subgraphs

• Any induced subgraph has at most $\delta |S|$ edges

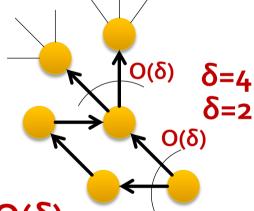
Can direct edges of **G** with hereditary density δ such that max out-degree is δ , in $O(\delta \log n)$ rounds

Directing edges

In GOSSIP model:

• Guess δ , if have fewer than δ remaining edges then contact these neighbors, else double δ

• Terminates when the guess is $O(\delta)$



- All edges directed, out-degree at most $O(\delta)$
- A constant fraction of nodes in each iteration, otherwise density would be greater than δ
- Takes O(δlog(n)) rounds to direct all edges

Multi-Message Broadcast vs. Spanners

(α,β)-spanner S with hereditary density $δ \rightarrow$ mm-broadcast in T=polylognT_S+δlogn+δ(αD+β)

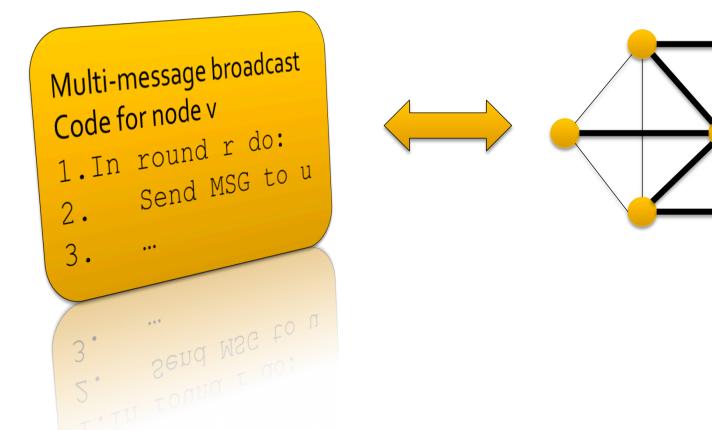
[Censor-Hillel, Hauepler, Kelner, Maymounkov 2012] mm-broadcast in O(D+polylog n) rounds

- By simulating a (O(1), polylog n)-spanner with δ =O(1) construction in O(polylogn) rounds [Pettie 2009]
- Other α,β trade-offs by simulating other spanner constructions
 [Dubhashi, Mei, Panconesi, Radhakrishnan, Srinivasan
 2005] [Derbel, Gavoille, Peleg, Viennot 2008] [Pettie 2010]

Multi-Message Broadcast vs. Spanners

Multi-message broadcast

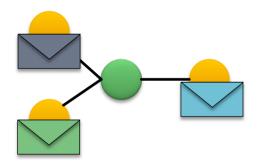
Spanners



The Congestion Models

Two congestion models:

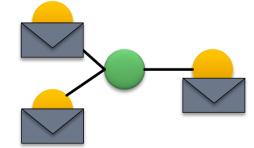
Edge-congested model
Message size O(log n)
Classic CONGEST model [Peleg 2000]



Node-congested model

Message size O(log n)

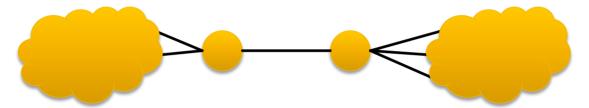
Communication by local broadcast



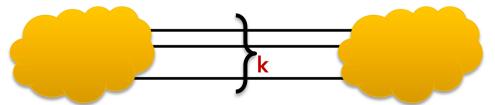
Send same message to all neighbors

Connectivity

Toy example: bottleneck graph, throughput ≤ 1

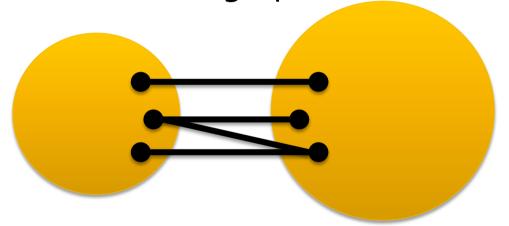


Time is O(D+N) for N messages [Topkis 1985]
But what if connectivity is larger?
Can we hope for throughput of k and shorter broadcast time?



Graph Connectivity

 λ -connectivity: removal of any λ -1 edges (vertices) does not disconnect the graph

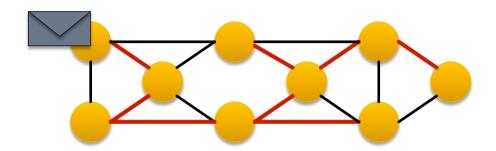


Menger's Theorem: λ edge-(vertex-) disjoint paths between every pair of nodes

CONGEST:Spanning Tree Packings

S is a spanning tree

Send msg M on S



N messages?

Spanning tree packing: set of edge-disjoint spanning trees

Fractional packing: the **weight** on each edge is at most 1. The **size** of a packing is the total weight of all trees

Spanning tree packing of size $N \rightarrow$ throughput of $\Omega(N)$

CONGEST:Spanning Tree Packings

Spanning tree packing of size $N \rightarrow mm$ -broadcast with throughput of $\Omega(N)$

mm-broadcast with throughput of $\Omega(N) \rightarrow$ Spanning tree packing of size N

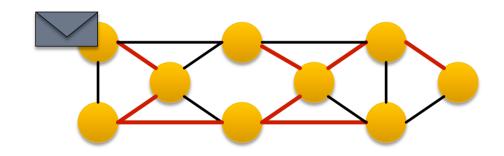
[Censor-Hillel, Ghaffari, Kuhn 2014]

CONGEST: Spanning Tree Packings

MMB-E is a mm-broadcast algorithm

Mark all edges over which msg M is sent

M reaches all nodes



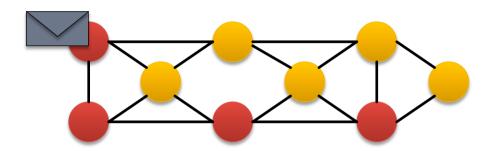
Gives a spanning tree **S** (removing cycles)

Repeat for all msgs: Gives a spanning tree packing of size N

V-CONGEST: Dominating Tree Packings

S is a dominating tree

Send msg M on S



N messages?

Dominating tree packing: set of **vertex-disjoint** dominating trees

Fractional packing: the **weight** on each vertex is at most 1. The **size** of a packing is the total weight of all trees

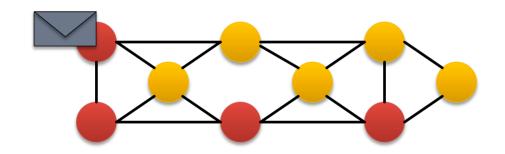
Dominating tree packing of size $\mathbb{N} \to \mathbb{N}$ throughput of $\Omega(\mathbb{N})$

V-CONGEST: Dominating Tree Packings

MMB-V is a mm-broadcast algorithm

Mark all vertices which send msg M

M reaches all nodes



Gives a dominating tree S

Repeat for all msgs: Gives a dominating tree packing of size N

V-CONGEST: Dominating Tree Packings

Dominating tree packing of size $N \rightarrow mm$ -broadcast with throughput of $\Omega(N)$

mm-broadcast with throughput of $\Omega(N) \rightarrow$ Dominating tree packing of size N

[Censor-Hillel, Ghaffari, Kuhn 2014]

Spanning Tree Packings

Every spanning tree packing of a λ -edge connected graph has size at most λ (every spanning tree needs to cross a min-cut)

Every λ -edge connected graph has a spanning tree packing of size $\lceil (\lambda - 1)/2 \rceil$ (tight)

[Tutte 1961, Nash-Williams 1961, Kundu 1974]

Centralized algorithms for decomposing unweighted graphs in $\tilde{O}(\min\{mn,m^2/\sqrt{n}\})$ time [Gabow and Westermann 1988] and weighted graphs in $\tilde{O}(mn)$ time [Barahona 1995]

Distributed Spanning Tree Packings

Distributed decomposition of λ -edge connected graphs into fractionally edge-disjoint spanning trees with total weight $\left[(\lambda - 1)/2 \right] (1 - \varepsilon)$ in $\tilde{O}(D + \sqrt{n\lambda})$ rounds

A lower bound of $\Omega(D + \sqrt{n/\lambda})$ rounds for such decompositions

[Censor-Hillel, Ghaffari, Kuhn 2014]

Distributed Dominating Tree Packings

Distributed decomposition of k-vertex connected graphs into fractionally vertex-disjoint dominating trees with total weight $\Omega(k/\log n)$ in $\tilde{O}(D+\sqrt{n})$ rounds

A lower bound of $\Omega(D + \sqrt{n/k})$ rounds for such decompositions

More on Spanning Tree Packings

Centralized decomposition of k-vertex connected graphs into fractionally vertex-disjoint dominating trees with total weight $\Omega(k/\log n)$ in $\tilde{O}(m)$ time

Centralized and distributed $O(\log n)$ -approximation algorithms for the vertex connectivity of a graph in $\tilde{O}(m)$ time, and $\tilde{O}(D+\sqrt{n})$ rounds, respectively

Multi-Message Broadcast vs. Tree Packings

Multi-message broadcast

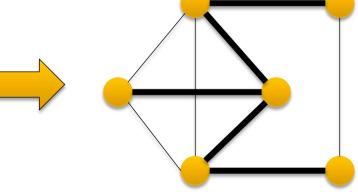
Tree packings

Multi-message broadcast
Code for node v

1. In round r do:
2. Send MSG to u

3. ...

3. ...

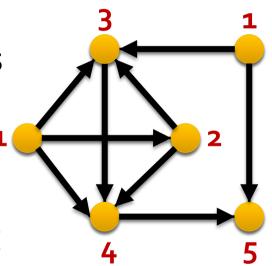


Colorings

Use k colors, neighbors have different colors

Acyclic orientation: no directed cycles

Length: length of longest path



AO is an acyclic orientation of length k

- For i=1,...,k+1
 - Color i each node whose parents have been colored

Colorings vs. Acyclic Orientations

AO is an acyclic orientation, length k and in-degree d

For i=1,...,k+1

 Color each node whose parents have been colored with an unused color

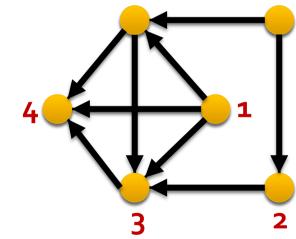
2 2 2

[Gallai, Hasse, Roy, Vitaver 1960's]

Colorings vs. Acyclic Orientations

A legal **k**-coloring gives an acyclic orientation with length **k-1**:

Orient edges from smaller color towards larger color



Used in coloring algorithms by orienting edges
 [Barenboim, Elkin 2008, 2009]

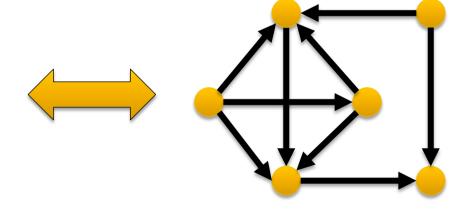
Coloring vs. Acyclic Orientations

Coloring

Coloring Code for node v

- 1.In round r do:
 - Send MSG to u

Acyclic orientations



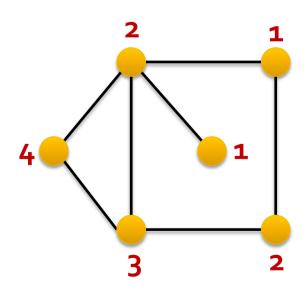
Colorings and MIS

MIS: maximal independent set

A k-coloring gives an MIS in k rounds.

 In round i all remaining nodes with color i enter the MIS and inform all their neighbors to drop out

MIS in $T(n,\Delta)$ rounds gives $(\Delta+1)$ -coloring in $T(n(\Delta+1), 2\Delta)$ rounds [Luby 1986] (different graph)



Summary

Distributed Algorithms

Graph Structures

