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Good Morning!

Today | want to inspect distributed algorithms

Not their code

Their execution /ﬂ\
-\ /




Synchronizers

Desi%n algorithms for synchronous systems but
run them in asynchronous systems
[Awerbuch 1985]

w \"/
Send (r+1)-message after ) -l
receiving all r-messages ! d
v will wait forever if
U never sends an r-message

Sending an empty message R r,v
increases message complexity
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Synchronizers

Send ACKs:

v informs about receiving all ACKs (v is safe)

v sends (r+1)-message

when all neighbors are safe/

w

Still need a message

from every neighbor \

Message overhead is M=O(|E|)
Time overhead is T=0(1)

L
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Spanners

g In a k-spanner S of G: h

d<(u,v) < k-d;(u,v) 2-spanner
W s \/

S kis the stretch ) / \

[Peleg, Ullman 1989] /




Synchronizers with Spanners

S is a k-spanner with m edges
Repeat k iterations: 2-spanner

Send safe messages w1V

in the spanner / \

Wait for safe messages NN N

in the spanner \ /
s |

lteration t: nodes within spanner distance t are safe
All neighbors are within distance k in the spanner




Synchronizers with Spanners

k-spanner with m edges =
synchronizer with M=O(km), T=0(k)

[Peleg, Ullman 1989]



Synchronizers with Spanners

Sync is a synchronizer

Mark all edges used / \

Information has to pass

between each pair of neighbors \ /
—_—U

Gives a spanner S with m=M and k=T




Synchronizers vs. Spanners

k-spanner with m edges =
synchronizer with M=O(km), T=0(k)

synchronizer with parameters Mand T 2

spanner with m=M and k=T
N

[Peleg, Ullman 1989]



Synchronizers vs. Spanners

Synchronizers Spanners
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MIS (Most Important Slide)

Distributed Algorithms Graph Structures




Multi-Message Broadcast
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Multi-Message Broadcast
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The GOSSIP model

LOCAL round: contact all neighbors
[Linial 21987]

GOSSIP round: contact a single neighbor
[Demers et al. 1987]




Multi-Message Broadcast in GOSSIP

The challenge: bottlenecks
Simple round-robin performs poorly

Random choices depend on conductance: ©(logn/@)
[Giakkoupis 2011,
Chierichetti, Lattanzi, Panconesi 2010]
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Neighbor Exchange

T rounds for neighbor exchange =
DT rounds for multi-message broadcast

T-spanner with

O(nT) edges and '« _ \""’_’ —

max degree T \ \ /
inT rounds - / \ N
& s




Multi-Message Broadcast vs.

Spanners

Neighbor exchange in T rounds =
spanner with m=nT , k=T and max degree T

Neighbor exchange in O(log3 n) rounds
[Censor-Hillel, Hauepler, Kelner, Maymounkov 2012]

Neighbor exchange improved to O(log? n)
[Hauepler 2013]



Multi-Message Broadcast with

Spanners

S is a k-spanner with max degree d
Repeat k iterations:

Pick new neighborin S (round-robin)
g

teration t: reach nodes A

within spanner distance t >
\'"
All neighbors are within >/ LT =
distance k in the spanner \
\_ / \ !

Neighbor exchange in dk rounds ~--
mm-broadcast in dkD rounds




Wish Upon a Star

Not every graph has a small degree spanner
Instead, use a spanner that is “"sparse enough”

Takes O(1) rounds to reach the next hop \ /

Hereditary density 6: / \
The maximal density of induced subgraphs

Any induced subgraph has at most 6|S| edges

Can direct edges of G with hereditary density 6 such
that max out-degree is 8, in O(dlog n) rounds



Directing edges

In GOSSIP model:
Guess 9, if have fewer than 6 remaining

edges then contact these neighbors, | /
else double & N
| | 0®) &=
Terminates when the guess is O(d) % 5=2

<’ 0(5)

All edges directed, out-degree at most O(d)
A constant fraction of nodes in each iteration,

otherwise density would be greater than 6
Takes O(dlog(n)) rounds to direct all edges



Multi-Message Broadcast vs.

Spanners

(o, B)-spanner S with hereditary density 6 =2
mm-broadcast in T=polylognT.+6logn+&(aD+[3)

[Censor-Hillel, Hauepler, Kelner, Maymounkov 2012]
mm-broadcast in O(D+polylog n) rounds
By simulating a (O(a2),polylog n)-spanner with 6=0(1)
construction in O(polylogn) rounds [Pettie 2009]

Other a, B trade-offs by simulating other spanner constructions
[Dubhashi, Mei, Panconesi, Radhakrishnan, Srinivasan
2005] [Derbel, Gavoille, Peleg, Viennot 2008] [Pettie 2010]



Multi-Message Broadcast vs.
Spanners




The Congestion Models

Two congestion models:

Edge-congested model 5\/ )
Message size O(log n)

Classic CONGEST model[Peleg 2000]
Node-congested model %
Message size O(log n) NS
Communication by local broadcast N

Send same message to all neighbors



Connectivity

Toy example: bottleneck graph, throughput <1
~ <

Time is O(D+N) for N messages [Topkis 1985]

But what if connectivity is larger?

Can we hope for throughput of k and shorter
broadcast time?

\
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Graph Connectivity

A-connectivity: removal of any A-1 edges (vertices)
does not disconnect the graph

s

Menger’s Theorem: A edge-(vertex-) disjoint paths
between every pair of nodes



CONGEST:

Spanning Tree Packings

S is a spanning tree N
Send msgMon S ‘\/ \/‘
NN
N messages?
Spanning tree packing: set of edge-disjoint spanning trees

N
S

Fractional packing: the weight on each edge is at most a1
The size of a packing is the total weight of all trees

Spanning tree packing of size N = throughput of Q(N)



CONGEST:

Spanning Tree Packings

Spanning tree packing of size N =
mm-broadcast with throughput of Q(N)

mm-broadcast with throughput of Q(N) =
Spanning tree packing of size N

[Censor-Hillel, Ghaffari, Kuhn 2014]



CONGEST:

Spanning Tree Packings

MMB-E is a mm-broadcast algorithm

Mark all edges over which

msg M is sent -\ — ——

M reaches all nodes L N\

‘ \
v

Gives a spanning tree S (removing cycles)

Repeat for all msgs: Gives a spanning tree packing of size N



V-CONGEST:

Dominating Tree Packings

S is a dominating tree

SendmsgMon S < N
N messages? \3/
Dominating tree packing: set of vertex-disjoint

dominating trees

Fractional packing: the weight on each vertexis at most 1
The size of a packing is the total weight of all trees

Dominating tree packing of size N = throughput of Q(N)



V-CONGEST:

Dominating Tree Packings

MMB-V is a mm-broadcast algorithm

Mark all vertices which
send msg M — <N

M reaches all nodes \$/

Gives a dominating tree S

Repeat for all msgs: Gives a dominating tree packing of size N



V-CONGEST:

Dominating Tree Packings

Dominating tree packing of size N 2
mm-broadcast with throughput of Q(N)

mm-broadcast with throughput of Q(N) =
Dominating tree packing of size N

[Censor-Hillel, Ghaffari, Kuhn 2014]



Spanning Tree Packings

Every spanning tree packing of a A-edge connected graph has
size at most A (every spanning tree needs to cross a min-cut)

Every A-edge connected graph has a spanning tree packing of
size [(1-1)/2] (tight)
[Tutte 1961, Nash-Williams 1961, Kundu 1974]

Centralized algorithms for decomposing unweighted graphs in

é(min{mn,mZ /\/Z}) time [Gabow and Westermann 1988]
and weighted graphs in O(mn) time [Barahona 1995]
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Distributed Spanning Tree Packings

.

Distributed decomposition of A-edge connected graphs into
fractionally edge-disjoint spanning trees with total weight

[(A-1)/2](1-¢) in 5(D+\/ﬂ) rounds

~

/

[ A lower bound of Q(D+ \/n//l) rounds for such decompositions }

[Censor-Hillel, Ghaffari, Kuhn 2014]
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Distributed Dominating Tree Packings

.

Distributed decomposition of k-vertex connected graphs into
fractionally vertex-disjoint dominating trees with total weight
Q(k/log n) in 0(D+\/Z) rounds

~

-

.

A lower bound on(D +~/n/ k) rounds for such decompositions

~

/
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More on Spanning Tree Packings

" Centralized decomposition of k-vertex connected graphs into A
fractionally vertex-disjoint dominating trees with total weight
L Q(k/log n) in O(m) time

/

f Centralized and distributed O(log n)-approximation A

algorithms for the vertex connectivity of a graph in O(m)time,
L and (3(D+\/Z) rounds, respectively

/
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Multi-Message Broadcast vs.

Tree Packings

Multi-message broadcast Tree packings

Multi-message broadcast

o
\p




Colorings

Use k colors, neighbors have different colors

Length: length of longest path
N\ L,

N

1
Acyclic orientation: no directed cycles ]r
5

AO is an acyclic orientation of length k
Fori=a,..., k+1
Colori each node whose parents have been colored



Colorings vs. Acyclic Orientations

AO is an acyclic orientation, length k and in-degree d
Fori=1,..., k+1

have been colored with an unused color
\ —

1
Color each node whose parents ]r
[Gallai, Hasse, Roy, Vitaver 1960's] - >



Colorings vs. Acyclic Orientations

A legal k-coloring gives an acyclic orientation with

length k-1: 2 1
de—
Orient edges from smaller color
towards larger color 4\ / 1
\/—\/
3 2

Used in coloring algorithms by orienting edges
[Barenboim, Elkin 2008, 2009]



Coloring vs. Acyclic Orientations

Coloring Acyclic orientations

> |




Colorings and MIS

MIS: maximal independent set

A k-coloring gives an MIS in k rounds.
In round 1 all remaining nodes with color i enter the
MIS and inform all their neighbors to drop out

2 1

MIS in T(n,A) rounds gives

(A+1)-coloring in / \

T(n(A+1), 2A) rounds 4 1

[Luby 1986] \

(different graph)




Summary

Distributed Algorithms Graph Structures
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