Robust and Efficient
Computation in
Dynamic Networks with Heavy Churn

John Augustine

Anisur Rahaman
Molla

!

A S
Gopal
Pandurangan

Peter Robinson

Sumathi
Sivasubramaniam

Eli Upfal

Collaborators &
Publications

SODA 2012
SPAA 2013
PODC 2013
DISC 2015
IPDPS 2015
FOCS 2015

SIGACT News 47(1) 2016

The ship of Theseus

cell type

small intestine epithelium
stomach

blood Neutrophils

white blood cells Eosinophils
gastrointestinal colon crypt cells

cervix

lungs alveoli

tongue taste buds (rat)
platelets

bone osteoclasts
intestine Paneth cells
skin epidermis cells
pancreas beta cells (rat)
blood B cells (mouse)
trachea

hematopoietic stem cells
sperm (male gametes)
bone osteoblasts

red blood cells

liver hepatocyte cells
fat cells
cardiomyocytes

turnover time
2-4 days
2-9 days
1-5 days
2-5 days
3-4 days

6 days

8 days

10 days

10 days

2 weeks
20 days
10-30 days
20-50 days
4-7 weeks
1-2 months
2 months
2 months
3 months
4 months
0.5-1 year
8 years

0.5-10% per year

Source: http://book.bionumbers.org/how-quickly-do-different-cells-in-the-body-replace-themselves/

Peer-to-Peer Networks

The Overlay provides
‘ 1

OrganlzatIOn

% Highly dynamic
% 50% churn every hour
% Network size stable

> Trad'\t'\ona\ d'\str'\buted
algorithms don’t work.
5 Need new models and

algorithms

Pieces of the P2P Puzzle

Overlay Maintenance

How to maintain a(well-connected network]despite

heavy churng k

Good Expansion
9

Expander Graphs

Let G = (V, E) be a graph on n nodes. Then G is an expander if, for every subset
S C V such that |S| < n/2:
E(S,V - 9)]
|51

for some constant o > 0, where E(S, S) is the number of edges with one endpoint in
S and the other endpoint not in S.

Z O

In many applications, we want a sparse expander, i.e., the degree of each node is upper
bounded by a constant.

Why Expanders?

A (regular degree) expander graph (on 1 nodes) has many desirable properties:
e Diameter is O(logn) — hence short paths between any two nodes.

e Highly resilient to adversarial deletions: Deleting even en nodes (for some con-
stant €) will leave a O(n) size connected graph which is also an expander! Thus
an expander topology is very robust.

e Random walks mix very fast, i.e., in O(log n) steps, a random walk starting from
any arbitrary node reaches essentially a random destination.

Main Problem: How to maintain an expander graph in a distributed network under
heavy (adversarial) churn?

Constructing an Expander

Given n nodes, the following is a simple way to construct an O(log n)-degree expander.

e Create random edges: For each node v, select O(logn) random nodes and make
them neighbours of v.

e The above random graph is an expander with high probability (whp).
Challenges:
e Works for static networks, but what happens under adversarial churn ?

e How to maintain a constant degree expander graph ?

Related Works

A very quick rundown

Related Works

There have been a number of attempts to design algorithms to repair or maintain an
expander network under disruption:

e Building a P2P network that can tolerate linear churn under a stochastic adver-
sary. [Pandurangan, Raghavan, and Upfal, FOCS 2001]

e Distributed algorithm to construct a random expander graph, limited number of
insertions or deletions. [Law and Siu, INFOCOM 2003]

e P2P network that can tolerate O(logn) adversarial churn rate. [Kuhn, Schmid,
Wattenhofer, Distributed Computing, 2010]

e Repair a single node deletion/insertion in O(logn) time using O(logn) mes-
sages. [Pandurangan, Robinson, and Trehan, [PDPS 2014]

Related Works

The most similar work is a paper by [Cooper, Klasing, Radzik, Theoretical Computer
Science, 2008]:

e Maintain well-connected, small-diameter graph under adversarial modification.

e Similar to our approach, uses random walks to provide a source of randomness
in edge creation.

e Limitation: For more than small amount of churn, only connectivity is guaran-
teed.

e Limitation: Cannot handle high, continuous churn.

Related Works

e Recent work by Drees, Gmyr, and Scheideler (SPAA 2016) maintains overlay
networks under high churn AND DoS attacks.

e Also related to distributed data structures like skip graphs (Aspnes and Shah,
ACM TALG 2007) and their variants.

e A fairly large DHT literature dating back from late 90’s.

The Model

Designed to allow the protocol to create and maintain an
expander overlay network in an adversarial setfing.

Adversarial Setting

[—, Pandurangan, Robinson, Roche, and Upfal; FOCS 2015]

e Adversary gives a “rudimentary” graph sequence /1, s, . . ., where H; = (V;, BH)
1s the graph in round 7.

e Nodes have unique IDs and come with A ports.
e The number of nodes that change in a round is called the churn rate.
e The churn rate can be very high: up to O(n/polylog(n)) per round.

e Network size remains (essentially) constant.

Adversary’s Rules

timeline
- -
\ J
¥ T

Bootstrap Phase MaintenancePhase
» First O(log n) rounds » Churn allowed, but
» No churn » New nodes connected to existing node
» Network is an expander » Degree bound A respected.

Communication Model

e Synchronous model: computation/communication proceeds in a sequence of
“handshake” rounds.

e Each edge can carry polylog(n) bits in each round.

e Direct Communication: If 4 knows v’s ID (e.g., IP address) it can send a mes-
sage.

e Overlay Communication when u and v are neighbours in the overlay network.

e Sparse network: Each node can only communicate with a constant number of
nodes in any round.

Edge Creation

Suppose u knows the ID (IP address) of v and wants to establish edge (u, v). Then, . ..
e Node u sends an edge request to v.
e Node v can either:

— Return an “accept” message —> edge created, or

— Ignore — edge not created.

Note: Both nodes must have spare ports.

Building an Expander

High-level Idea: Build a random graph in a distributed fashion.
Theorem 1. Suppose that G is a graph on n nodes.
e Each node v initiates the creation of § € ©(1) edges.

o The other endpoint is drawn from a subset S, where |S| > 0.8n, with (almost)
[uniform probability distribution ©(1/ n)]

Then G is an expander with constant AW «

The above generalizes the static construction idea

9

Random Walks Engine

In every round, each node v generates a polylogarithmic (in n) number of tokens.
Each token contains the origin address (v).

Each token walks for 7 € O(logn) rounds (i.e., mixing time).

After 7 steps, stops at some node w.

Placed in w’s token buffer — mature (mixed) tokens. (Replaces oldest tokens
in buffer.)

A mature token can be used to create a random edge to v.

Sampling Lemma

e The Sampling Lemma: Most random walks mix well even in a highly dynamic
adversarial network provided large expander subgraph.

e We show that the random walk sampling will generate near-uniform random
samples from a large-sized subset of the nodes.

High Level Idea

- .

Maintain
Expansion

Efficient
Sampling via \
Random Walks |

*Requires
Expansion

*Requires random
samples

Algorithmic Ingredients

Random Walks subroutine

e Runs in the background. Provides steady stream of samples.

Reconnect Operating Mode

e A node is churned in or loses edges or receives inadequate number of tokens. =—»

Normal Operating Mode

e All other times.

Challenges

e (Re)Connect: How will a new (or isolated node) (re)connect? Borrow and use
mature tokens.

e Out of mature tokens: Use stale tokens to get mature tokens. —

e Expansion Decay: How to ensure expansion despite adversarial effort? Count
the number of mature tokens received.

[llustration

Contact node x, request
fresh tokens

Stale Tokens

Receive fresh tokens

Fresh tokens

. ' Request connection from

‘rmde\>

Our Guarantees

Our maintenance guarantees that:
e No node has more than A degree.

e No node remains disconnected from the network for more than O(logn) rounds
with high probability (i.e., with probability at least 1 — 1/n).

e In every round, whp there is a large component of the network of size n — o(n)
whose induced subgraph has constant expansion o > 0.

Random walks
ased sampling

} Protocol

Edge creation
and deletion

ENQENSTS

' Adversary

Proof

Proof Idea:

e Difficult to work with the graph process produced by the protocol/adversary in-
teraction GG;: Highly dynamic and not regular.

e Analyze a new graph process — (; — that is regular (i.e., all nodes have A
degree with no missing edges) and there is no churn.

— Copy state of churned out nodes into churned in nodes.

— Construct ghost edges (which are adversarially determined).

Proof Idea

In (&; tokens mix well and have near-uniform origins.

In (&;, if a node receives a lot of real tokens, then we show that they are likely to
be well-mixed with near-uniform origins.

The near-uniform distribution of tokens in G, is shown by appealing to the dis-
tribution of real tokens (not ghost tokens) in G;.

Adversarial deletion of ©(n /polylogn) nodes and edges from G, leaves a large
expander subgraph in G;.

Now What???

What can we do with the P2P system that maintains an
expander overlay?

Dynamic Network Model

[—, Pandurangan, Robinson, and Upfal; SODA 2012]

e Dynamic network is modelled as a graph process: GG, G, ..., where G; = (V;, E;)
1s the graph in round .

e An adversary controls the topology of every graph GG, including the set of nodes,
with the restriction that each G; is an expander graph.

e The number of nodes that change in a round is called the churn rate.

e The churn rate can be very high: up to{O(n /polylog(n)) per round.}

e Network size remains (essentially) constant. \

Could be higher

Communication Model

Synchronous model: computation/communication proceeds in a sequence of
rounds.

Each edge can carry polylog(n) bits in each round.

Direct Communication:]lf u knows v’s ID (e.g., IP address) it can send a mes-

sage.

Overlay Communication when u and v are neighbours in the overlay network.

can only communicate with a constant number of

Not Exploited

Sparse network: Each no
nodes in any round.

Almost Everywhere
Agreement

Every node (in round 1) starts with an input bit value.
Most nodes in the network must “agree”
on a valid input bit
within O(polylog n) rounds.

Bad Algorithm

Half the nodes output 1

Other half outputs 0

file://localhost/Users/johnaugustine/Dropbox/work/presentations/ADGA2016/AugustineSlides.pptx#40. Algorithmic Tools
file://localhost/Users/johnaugustine/Dropbox/work/presentations/ADGA2016/AugustineSlides.pptx#40. Algorithmic Tools

Information Spreading

The dynamic distance from a node © € V" to a node v starting at round r is the number
of rounds it takes for flooded messages from w to reach v starting at round 7.

The influence set of u after R rounds starting at round r is the set of nodes in V"%
whose dynamic distance from wu starting at round r is at most R.

Note: The influence set is defined as a subset of V"%,

Information Spreading

We establish that A large fraction of the nodes can “influence” a (common) large frac-
tion of nodes in O(log n) rounds.

1. Any reasonably sized fraction of the nodes (i.e., > ($n nodes) influence a large
fraction of the nodes (i.e., (1 — /3)n nodes) in constant rounds.

2. Given any reasonably sized fraction of the nodes U (i.e., > Sn nodes), there is a
node u € U that influences (1 —)n nodes in O(log n) rounds.

3. There is a large fraction of the nodes (i.e., (1 —)n nodes) that influence a com-
mon large fraction of the nodes (i.e., (1 — 3)n nodes) in O(log) rounds.

Algorithmic Tools

Globally Representative Value: A large fraction of the nodes (in unison) choose a
value held by some node

e Why does this not suffice in the first place?

4 Support Estimation: Count the number of nodes currently proposing 1. N

e Each node estimates

e Guarantee: large fraction of the nodes estimate within a small margin of

\ CIror /

Intuition Behind Solution

Usaddighihfiampstatative Melide on 1

Storing and Retrieving

Towards a Dynamic Hash Table (DHT)

Towards a DHT

First steps towards solving a DHT (storage and retrieval of one item)

— Despite high levels of churn and edge dynamism

— Using scalable techniques
(random walks — useful for sampling nodes, a fundamental primitive)

— With rigorous proof

— Against an oblivious adversary.

The Model

Dynamic Network Model

[—, Molla, Morsy, Pandurangan, Robinson, and Upfal; SPAA 2013]

e Dynamic network is modelled as a graph process: GG1, G, ..., where G; = (V;, E;)
is the graph in round .

e An adversary controls the topology of every graph G, including the set of nodes,
with the restriction that each G is an expander graph.

e The number of nodes that change in a round is called the churn rate.
e The churn rate can be very high: up to O(n/polylog(n)) per round.

e Network size remains (essentially) constant.

Communication Model

Synchronous model: computation/communication proceeds in a sequence of
rounds.

Each edge can carry polylog(n) bits in each round.

Direct Communication:]lf u knows v’s ID (e.g., IP address) it can send a mes-

sage.

Overlay Communicatisn when u and v are neighbours in the overlay network.

can only communicate with a constant number of

Sparse network: Each no
nodes in any round.

Problem Definition

Given a data item (as a <key, value> pair)
Store (in O(log n) rounds)
Maintain the item in the network for poly(n) rounds.

Overhead of o(n) stored bi’rs.|—> O+/n in our Case!

Most (n-o(n)) nodes can Retrieve when required in O(log n) rounds.

With high probability

Some First Attempts
Store the item in an orbi’rrcr%

Store the item in o[rcmdom node}

Store the item redundantly in multiple random nodes.

Store the item redundantly in multiple random nodes
and move it around.

Generalizing...

Consider any task that fakes time
o Can’'t entrust to single node.

Solution:

o Create a committee of ©(log n) random nodes.
o Entrust task to committee.
o Re-elect new random members every O(log n) rounds.

Guarantee: Task stays alive for poly(n) rounds (whp).

Back to Storing an Item

Just entrust the task to a committee
o Allmembersin the committee hold a copy.

Problem: How to find the committee memberse
o Store pointers in roughly ¥n random nodes.

Refrieving

o Again entrust task to committee

o Committee searches ¥yn random nodes and find item (by birthday
paradox).

Conclusion

\/> Other churn
a— environments

