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Rate of Updates in Networks

(Estimation)

Vertex addition/removal, edge addition/removal

 Social Networks (hundreds of millions of users)
> 10 vertices per second :

> 200 edges per second
* Social GPS (millions of users)

> 5 vertices per second
> 2,000 edges per second
e The brain (hundred of billions of neurons)

> 10,000 vertices per second
> 200,000 edges per second




Network Representation
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e A communication network is represented by a graph

* Vertices have unique IDs of size O(log n) each

e A messages traverses an edge within one round

e Running time = number of rounds to provide a solution

* Update time = number of rounds to update a solution



Network Models
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Model #0 Static: Network does not change

Model #1 Dynamic single change

Step-by-step

Model #2 Dynamic restricted change
changes

Model #3 Dynamic unrestricted change



Network Models

Model #0 Static: Network does not change
Model #1 Dynamic single change

Model #2 Dynamic restricted change _ Step-by-step
changes

Model #3 Dynamic unrestricted change
Model #4 Dynamic changes during execution



Symmetry Breaking Problems
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» Coloring

(A+1)—vertex-coloring , (2A—1)—edge-coloring,
defective-coloring,...

 Maximal Independent Set (MIS)
» Maximal Matching (MM)
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e Coloring

(A+1)—vertex-coloring , (2A—1)—edge-coloring,
defective-coloring,...

 Maximal Independent Set (MIS)
e Maximal Matching (MM)



Symmetry Breaking Problems

o

I.II ®:
® O ¢ °@
@ )
Y 8
o O

Coloring, MIS and MM belong to the class of
locally-checkable problems

(Local Decision Class, Fraigniaud, Korman and Peleg 2011)



Dynamic Single Change - Coloring
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Local fixing in O(1) rounds
Konig and Wattenhofer 2013

- Adding a vertex or an edge

- Removing a vertex or an edge
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Dynamic Single Change - Coloring
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Local fixing in O(1) rounds
Konig and Wattenhofer 2013

- Adding a vertex or an edge

- Removing a vertex or an edge

This is a proper coloring, but is it a (A+1)-coloring?




Dynamic Single Change - Coloring
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Possible solution:
Delete all colors out of range {1,2,...,A+1},
recompute solution for colorless vertices.

If a vertex leaves “gracefully” then
O(1)-time solution is possible




Dynamic Single Change - MIS

An MIS may consist of a single vertex.

Vertex removal may require recomputation for the
entire graph.

If a vertex leaves “gracefully”, it can communicate
new solution within O(1) rounds.



Dynamic Single Change - MIS

What if vertices do not leave “gracefully”?

- Expected O(1)-time solution
Censor-hillel, Haramaty and Karnin 2016

Simulation of a greedy sequential MIS
with a random ordering.



Dynamic Unrestricted Change




Static Graphs with Partial Solution

Theorem:

Suppose that we have a static algorithm for a
locally-checkable problem on graphs with partial
solution with time T.

Then we have a dynamic algorithm for the
problem with update time T.




Obtaining Dynamic Algorithms

Static Algorithm
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Static Algorithm
for
Partial Solution

l

Dynamic Algorithm
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Static 0(A%)-Coloring
Linial 1987
Running time: O(log™ n).

Very high-level description:

1. Initial n-coloring is obtained using IDs

2. In each round the number of colors is reduced
from k to O(A?logk).

n - A?logn - A%(logA +loglogn) — -+ > A%logA — A?



Static O (A%)-Coloring
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* Each vertex constructs a list of colors using its current color



Static O (A%)-Coloring
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@ 8,27, 15,17, |

* Each vertex constructs a list of colors using its current color

Each list must have a color that does not appear in the
neighbors lists



Static 0(A%)-Coloring
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* Each vertex constructs a list of colors using its current color

* Each list must have a color that does not appear in the
neighbors lists

This color is selected as the new color. New coloring is proper!



Implementing One Round

0(A3) colors = 0(A?) colors

Let g = O(A) be a prime,
such that the number of colors is at most g°.

There are g3 distinct polynomials over the field Zyg:

a+ bx + cx? 0<abc<qg-—-1

Each of the ¢ colors is assigned a distinct polynomial.
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- Implementing One Round




Implementing One Round

For each vertex:

At most 2 intersections

with each neighbor

At most 2A intersections
with all neighbors

Choose g = 2A + 1

Thereist,0 <t <q—1:
<t P(t) >#<t0Q(t) >

for all neighbors’ Q.



Implementing One Round

Thereist, 0 <t <q—1:
<t P(t) >#<t0(t) >

for all neighbors’ Q.

< t,P(t) > is the new color.

For each pair of neighbors: < t,P(t) >#<1,Q(r) >

Number of colors: g% = 0(A%).
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Using less than A Colors

Suppose we have an orientation with out-degree d

Look only on
outgoing
neighbors.
Select a color
that is not in
their lists.

0(d?)-coloring is computed in 0 (log* n) time.
Arboricity a is the minimum number of forests.

O (a)-orientation in O(logn) time. Barenboim and Elkin 08.



Orientations with Small Out-Degree

If we have an orientation with d < VA,
we can compute O (A)-coloring in O(log™ n) time!

Small out-degree orientation does not always exist. ®

Partition the graph into ~v/A vertex-disjoint subgraphs,
each subgraph with out-degree 0(\/5)

Color subgraphs one by one - O(log* n) time per subgraph. ©



- Graph Partition




Graph Partition

-~ Each subgraph is properly colored.
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Graph Partition

Each subgraph is properly colored.

Problem: monochromatic edges between subgraphs.

Solution: make it work in partially colored graphs.



Coloring Partially-Colored Graphs
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Coloring Partially-Colored Graphs

Barenboim 2015

Each vertex may have up to A colored neighbors.

Each color is a forbidden coordinate < x, f(x) >.

Problem: The size of the field is only O(+/A).

Solution:
Each vertex defines O(+/A) non-intersecting polynomials.

Then we can find a polynomial with a good coordinate.



Coloring Partially-Colored Graphs

<k f(k)>
<pflp)>
— <A
®———-—-
<pflp) > 5
ax + bx
1+ ax + bx?

Find a polynomial >
with minimum 2+ ax + bx

number of conflicts

>
\\_/ VA < q=0@HN)

qg— 1+ ax + bx?




Coloring Partially-Colored Graphs

| + 3x + 4x2
2 + 3x + 4x2

2+7x+4x2/

G1 Gi—l Gi Gi+1

How to determine the coefficients a and b?

Using a helper temporary 0(A)-coloring of G;.




Coloring Partially-Colored Graphs
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Coloring Partially-Colored Graphs

3Ix + 48
| + 3x + 4x2

I B 2 + 3x + 42

------ v

o ©

A Tx+ 4L
TU1+ Tx + 4x?
2+ 7x + 4%

G1 Gi—l Gi Gi+1



Coloring Partially-Colored Graphs

* Let Gy = (Vy, Ey) denote the subgraph of colored vertices

* Execute our algorithm on V\V, , and avoid conflicts with V.



Dynamic Algorithm

In each step (addition of vertices or edges, removal of
vertices or edges) :

1. Perform local fixing to obtain a partial solution

2. Invoke static algorithm for partial solution
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Dynamic Algorithm

In each step (addition of vertices or edges, removal of
vertices or edges) :

1. Perform local fixing to obtain a partial solution

2. Invoke static algorithm for partial solution
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Dynamic Algorithm

In each step (addition of vertices or edges, removal of
vertices or edges) :

1. Perform local fixing to obtain a partial solution

2. Invoke static algorithm for partial solution

0 13




Static Algorithm for List-Coloring

Input:
Each vertex receives as input a list of at least A+ colors

from a range of size D = O(A).

Output:
Each vertex selects a color from its list to obtain a proper
coloring.

{1,3,4,10,15,27}

{1,3,4,5,10,12,13,15,27,30}



Static Algorithm for List-Coloring

Solution: a reduction from list coloring to coloring partially-
colored graphs

Add neighbors with colors that are not in the lists

... D
New maximum degree: at most D-| Q ° °

- {1,3,4,10,15,27) u ‘
V ()
{1,3,4,5,10,12,13,15,27,30}



Conclusion

 Static algorithms for graphs with partial solution yield
dynamic algorithms.

 Static algorithms for graphs with partial solution are
known for:
* Coloring: ~0(\/Z + log™ n) time.
e Maximal Independent Set: O(A + log* n) time.
* Maximal Matching: 0O(A + log* n) time.

* We obtain dynamic algorithms for these problems
with the same update time.

Can we do better than that?




Conclusion

* In these dynamic settings changes occur in steps.

* During an execution of an algorithm no changes occur.

Can algorithms cope with changes during their execution?
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