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This file accompanies a presentation given at the 3rd workshop on Advanced 
Distributed Graph Algorithms in Paris on 09/26/2016. The material is not 
complete and deviates from the content of the original papers for sake of simpler 
presentation of key ideas and concepts to this particular audience.   
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• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient 

broadcasting, etc. 
• Shortest path – Routing, etc.
• Steiner tree   – Multicasting, etc. 
• Many other graph problems.

• Diameter appears frequently in distributed 
computing

Fundamental problems 
1. Formal definition?

Complexity of computing D?    .

O(n)
[PODC 2012] 

Ω(n)
[SODA 2012]

First part of talk:
Even if D = 3

Θ(n)
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Diameter of a network

Diameter of
this network?

• Distance between two nodes = Number of hops of shortest path
• Diameter of network = Maximum distance, between any two nodes

Unweighted!
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Networks cannot compute their 
diameter in sublinear time!

Upper and lower row not connected on any side?

D = 2 or 3?



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com

Θ(n2) information

Θ(n) edges Ω(n) time

Networks cannot compute their 
diameter in sublinear time! D = 2 or 3?

Θ(n) nodes

Θ(n) nodes Θ(n) nodes

Θ(n) nodes

Upper and lower row not connected on any side?



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com

Now: slightly more details

Networks cannot compute their 
diameter in sublinear time!

Upper and lower row not connected on any side?
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1 1
2 23 3

4 4

Networks cannot compute their 
diameter in sublinear time!

4 4

Upper and lower row not connected on any side?
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Networks cannot compute their 
diameter in sublinear time!

Given graph

Upper and lower row not connected on any side?
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Θ(n) edges

A ⊆ [n2] B ⊆ [n2]

Communication Complexity
randomized: Ω(n 2) bits

4

2
3

4
Ω(n) time

Networks cannot compute their 
diameter in sublinear time!

Same as “A and B not disjoint?”Same as Same as

D = 2 or 3?

Upper and lower row not connected on any side?



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com

Abboud, Censor-Hillel, Khoury - DISC 2016:
Even in sparse / constant degree graphs!

Networks cannot compute their 
diameter in sublinear time!
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APSP in O(n)
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Compute All Pairs Shortest Paths Knows its distance 
to all other nodes

APSP in O(n)
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Compute All Pairs Shortest Paths
For each node { O(n)

compute distances to all other nodes; O(D)
} O(nD)

Limited parallelism:
Only some nodes active.

Wanted: All nodes 
active all the time!
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4. If P visits node v first time{

wait 1 timeslot;
start shortest paths(v);

}
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Animation by Jukka Suomela, Aalto University, Finland
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Starts at t

Arrives at      𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)
Arrives at ≥ 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣) +1

w

v

u

APSP in O(n)

v never active for u and w
at the same time!

True for any trippel.
No congestion!

Runtime: O(n + D) = O(n)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T

in preorder;
4. If P visits node v first time{

wait 1 timeslot;
start shortest paths(v);

}

Compute All Pairs Shortest Paths
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• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient 

broadcasting, etc. 
• Shortest path – Routing, etc.
• Steiner tree   – Multicasting, etc. 
• Many other graph problems.

• Diameter appears frequently in distr

Fundamental problems 

Complexity of computing D?    .

Sequential: open

Θ(n)
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Extentions
Problem Exact (+, 1) (x, 1 + ε) (x, 3/2 - ε) (x, 3/2) (x, 3/2+ε) (x, 2)

APSP Θ(n) Θ(n) Θ(n) Θ(n) -- -- --

eccentricity Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

-- -- Θ(D)

diameter Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

O 𝑛𝑛 + D
O 𝑛𝑛

𝐷𝐷
+ D

Θ(D)

radius O(n) -- O
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 -- -- -- Θ(D)

center Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

-- -- 0

p. vertices Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

-- -- 0

girth O(n) -- O min
𝑛𝑛
𝑔𝑔

+ 𝐷𝐷 log
𝐷𝐷
𝑔𝑔

,𝑛𝑛 -- -- --

Problem (x, 2-ε) (x, 2-1/g)

girth Ω 𝑛𝑛
𝐷𝐷

+D O 𝑛𝑛 ⁄2 3 + 𝐷𝐷 log 𝐷𝐷
𝑔𝑔



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com

Extentions
Problem Exact (+, 1) (x, 1 + ε) (x, 3/2 - ε) (x, 3/2) (x, 3/2+ε) (x, 2)

APSP Θ(n) Θ(n) Θ(n) Θ(n) -- -- --

eccentricity Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

-- -- Θ(D)

diameter Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

O 𝑛𝑛 + D
O 𝑛𝑛

𝐷𝐷
+ D

Θ(D)

radius O(n) -- O
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 -- -- -- Θ(D)

center Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

-- -- 0

p. vertices Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛

𝐷𝐷
+D

-- -- 0

girth O(n) -- O min
𝑛𝑛
𝑔𝑔

+ 𝐷𝐷 log
𝐷𝐷
𝑔𝑔

,𝑛𝑛 -- -- --

Problem (x, 2-ε) (x, 2-1/g)

girth Ω 𝑛𝑛
𝐷𝐷

+D O 𝑛𝑛 ⁄2 3 + 𝐷𝐷 log 𝐷𝐷
𝑔𝑔



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com

Extentions
Problem Exact (+, 1) (x, 1 + ε) (x, 3/2 - ε) (x, 3/2) (x, 3/2+ε) (x, 2)

APSP Θ(n) Θ(n) Θ(n) Θ(n) -- -- --

eccentricity Θ(n) Ω
𝑛𝑛
𝐷𝐷 + 𝐷𝐷 O

𝑛𝑛
𝐷𝐷 + 𝐷𝐷 Ω 𝑛𝑛
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O 𝑛𝑛 + D
O 𝑛𝑛

𝐷𝐷
+ D

Θ(D)
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𝑛𝑛
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girth O(n) -- O min
𝑛𝑛
𝑔𝑔

+ 𝐷𝐷 log
𝐷𝐷
𝑔𝑔

,𝑛𝑛 -- -- --

Problem (x, 2-ε) (x, 2-1/g)

girth Ω 𝑛𝑛
𝐷𝐷

+D O 𝑛𝑛 ⁄2 3 + 𝐷𝐷 log 𝐷𝐷
𝑔𝑔
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Routing tables

Social networks

Fighting spam
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Problem (x, 2-ε) (x, 2-1/g)

girth Ω 𝑛𝑛
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+D O 𝑛𝑛 ⁄2 3 + 𝐷𝐷 log 𝐷𝐷
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Routing tables

Social networks

Fighting spam

Also: good approximation 
algorithms for weighted 
graphs known. [Henzinger,
Nanongkai et al.]
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(x,1+ε)-Approximating Diameter
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Shortest paths between S x V

(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

Shortest paths between S x V

Knows its distance 
to nodes in S

(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

Shortest paths between S x V
ALGO:
1. Start BFS in all S-nodes
2. Messages are forwarded 

depending on ID and
distance traveled so far

(x,1+ε)-Approximating Diameter
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(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

S:= Small 
O(D/ε)-Dominating Set

[Kutten, Peleg 1998]

(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

S:= Small 
O(D/ε)-Dominating Set

Runtime: O(D + εn/D + D) 
[Kutten, Peleg 1998]

(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

S:= Small 
O(D/ε)-Dominating Set

Runtime:  O(n/D + D) 
[Kutten, Peleg 1998]

(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

S:= Small 
O(D/ε)-Dominating Set

Runtime:  O(n/D + D) 
Maximal error: D/ε vs. D

[Kutten, Peleg 1998]

(x,1+ε)-Approximating Diameter
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S-Shortest Path in O(|S| + D)

S:= Small 
O(D/ε)-Dominating Set

Runtime:  O(n/D + D) 
Maximal error: D/ε vs. D 

[Kutten, Peleg 1998]

(x,1+ε)-Approximating Diameter
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3/2-approximating the Diameter in 
O 𝑛𝑛 log𝑛𝑛 + 𝐷𝐷
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Sample 𝑛𝑛

3/2-approximating the Diameter in 
O 𝑛𝑛 log𝑛𝑛 + 𝐷𝐷
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Sample 𝑛𝑛
of largest distance to {             }

3/2-approximating the Diameter in 
O 𝑛𝑛 log𝑛𝑛 + 𝐷𝐷
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Sample 𝑛𝑛
of largest distance to {             }
𝑛𝑛 closest               to  

3/2-approximating the Diameter in 
O 𝑛𝑛 log𝑛𝑛 + 𝐷𝐷
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Sample 𝑛𝑛 Compute BFS    
of largest distance to {             }            from each
𝑛𝑛 closest               to  

3/2-approximating the Diameter in 
O 𝑛𝑛 log𝑛𝑛 + 𝐷𝐷
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Sample 𝑛𝑛 Compute BFS    
of largest distance to {             }            from each
𝑛𝑛 closest               to  

Output: max. BFS-depth

3/2-approximating the Diameter in 
O 𝑛𝑛 log𝑛𝑛 + 𝐷𝐷
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Distributed verification can be hard
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(Minimum) Spanning Trees

Spanning tree:
Subgraph of a graph
that includes all nodes
and is a tree

Minimum spanning tree:
Spanning tree of minimal
total edge weight

Weighted!
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Distributed verification can be hard
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Distributed Verification and Hardness of 
Distributed Approximation

Sequential world:

NP-complete problem SAT

Solving: seems hard
Verifying assignment: easy

Sequential: Verification 
easier than computing

G         H

Verify: H spanning tree of G?
Ω(n1/2)

Compute: spanning tree of G
O(D)

CONGEST world:

Distributed: Verification can be 
harder than computing



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

Time of Distributed MST-Algorithms

Problems Upper bound Lower bound

MST O(D + n1/2) Ω(D + n1/2)
[Garay, Kutten, Peleg FOCS’93] [Peleg, Rubinovich FOCS’99]
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Time of Distributed MST-Algorithms

Problems Upper bound Lower bound

MST O(D + n1/2) Ω(D + n1/2)

α-approx. MST OPEN
[Garay, Kutten, Peleg FOCS’93] [Peleg, Rubinovich FOCS’99]

α-approximation:

Let T be a MST of G and ω(T) its weight.

A spanning tree T` is an α-approximate MST if
ω(T`)  ≤  α ω(T) 
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Time of Distributed MST-Algorithms

Problems Upper bound Lower bound

MST O(D + n1/2) Ω(D + n1/2)

α-approx. MST OPEN Ω(D + (n /α)1/2)
[Garay, Kutten, Peleg FOCS’93] [Peleg, Rubinovich FOCS’99]

[Elkin STOC’04]

α-approximation:

Let T be a MST of G and ω(T) its weight.

A spanning tree T` is an α-approximate MST if
ω(T`)  ≤  α ω(T) 
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Time of Distributed MST-Algorithms

Problems Upper bound Lower bound

MST O(D + n1/2) Ω(D + n1/2)

α-approx. MST OPEN Ω(D + (n /α)1/2)

ST Verification

[Garay, Kutten, Peleg FOCS’93] [Peleg, Rubinovich FOCS’99]

[Elkin STOC’04]
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Time of Distributed MST-Algorithms

Problems Upper bound Lower bound

MST O(D + n1/2) Ω(D + n1/2)

α-approx. MST HOPELESS  Ω(D + (n /α)1/2)

ST Verification O(D + n1/2)

[Garay, Kutten, Peleg FOCS’93] [Peleg, Rubinovich FOCS’99]

[Elkin STOC’04]
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Time of Distributed MST-Algorithms

Problems Upper bound Lower bound

MST O(D + n1/2) Ω(D + n1/2)

α-approx. MST HOPELESS  Ω(D + (n /α)1/2)

ST Verification O(D + n1/2)

[Garay, Kutten, Peleg FOCS’93] [Peleg, Rubinovich FOCS’99]

[Elkin STOC’04]

Ω (D + n 1/2)

King, Kutten, Thorup
PODC’15:

Message Complexity 
o(m)
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Broadcasting

Efficient broadcasting

Routing

Multicasting



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
112

Distributed algorithms for the above problems require 
Ω(n1/2+D) time

General technique
for lower bounds

Connects commu-
nication complexity
to distributed comp.

Connects 
verification
to approximation

Many bounds tight

Systematic study
of distributed
verification
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Distributed equality verification
lower bound Ω(n1/2)

ST verification lower 
bound Ω(n1/2)

Direct equality verification
lower bound Ω(n)

Well-known result in 
communication complexity

Similar to lower bounds of 
graph streaming algorithms

Three steps of reduction
Distributed AlgorithmsCommunication Complexity

simulation
theorem

Approx MST lower 
bound Ω(n1/2)

Similar to hardness of TSP
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Communication complexity of EQUALITY

x ∈ {0, 1}k y ∈ {0, 1}k

x=y?

Deterministic: Ω(k)
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Distributed time complexity 
of EQUALITY
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x ∈ {0, 1}n y ∈ {0, 1}n

n1/2 green nodes

Alice and Bob are connected by many paths of 
length n1/2

∞

1/2
1/2
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x ∈ {0, 1}n y ∈ {0, 1}n

n1/2 green nodes

Alice and Bob are connected by many paths of 
length n1/2

∞

1/2
1/2 Ω(n1/2)
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Make the diameter smaller
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n1/2 green nodes

5 green nodes 5 green nodes

Now the diameter is n1/2 /5 
How many steps do we need?

x ∈ {0, 1}n y ∈ {0, 1}n
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n1/2 green nodes

5 green nodes 5 green nodes

Now the diameter is n1/2 /5 
How many steps do we need?

No high speedup

x ∈ {0, 1}n y ∈ {0, 1}n
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Reduce diameter ...
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Diameter = log n
n1/

2
pa

th
s

n1/2 green nodes

Ω(n1/2)

x ∈ {0, 1}n y ∈ {0, 1}n
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Three steps of reduction

Distributed equality verification
lower bound Ω(n1/2)

ST verification lower 
bound Ω(n1/2)

Distributed equality verification
lower bound Ω(n1/2)

Direct equality verification
lower bound Ω(n1/2)

Well-known result in 
communication complexity

Similar to lower bounds of 
graph streaming algorithms

Distributed AlgorithmsCommunication Complexity

simulation
theorem

Approx MST lower 
bound Ω(n1/2)

Similar to hardness of TSP
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x ∈ {0, 1}n y ∈ {0, 1}n
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x ∈ {0, 1}n y ∈ {0, 1}n1/21/2
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x1

x2

xn1/2

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

x1

x2

xn1/2 yn1/2

y2

y1

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

x1

x2

xn1/2 yn1/2

y2

y1

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

x1

x2

xn1/2 yn1/2

y2

y1

Example:       x=01…1      y=01…1

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

x1

x2

xn1/2 yn1/2

y2

y1

Example:       x=01…1      y=01…1

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

x1

x2

xn1/2 yn1/2

y2

y1

Example:       x=01…1      y=01…1

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2



Theory of Distributed Systems Group      Stephan Holzer www.stephanholzer.com
Slide by Danupon

x1

x2

xn1/2 yn1/2

y2

y1

Example:       x=01…1      y=01…1
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Disconnected subgraph
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Another Example:       x=01…1      y=01…0

Subgraph with cycle

x ∈ {0, 1}n y ∈ {0, 1}n1/21/2
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Three steps of reduction

Distributed equality verification
lower bound Ω(n1/2)

ST verification lower 
bound Ω(n1/2)

Distributed equality verification
lower bound Ω(n1/2)

Direct equality verification
lower bound Ω(n1/2)

Well-known result in 
communication complexity

Similar to lower bounds of 
graph streaming algorithms

Distributed AlgorithmsCommunication Complexity

simulation
theorem

Approx MST lower 
bound Ω(n1/2)

Similar to hardness of TSP
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Given: G and subgraph H Use α-approximation
for MST to decide if
H is ST
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From ST-Verification to MST-Approximation

Given: G and subgraph H

1

1
1
1 1

1
1 11

αn αn
αn αn

αn αn

αn

αn

αn
αn

αn

Use α-approximation
for MST to decide if
H is ST

Observe: iff H is ST,
H is MST of weight n-1

Observe: iff H is ST,
no α-MST besides H

Thus: α-approximating
a MST takes Ω(n1/2)

αn
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Three steps of reduction

Deterministic lower bound.

Randomized: use DISJOINTNESS and 
Different intermediate steps.

Simulation Theorem: works for any function.

Distributed equality verification
lower bound Ω(n1/2)

ST verification lower 
bound Ω(n1/2)

Distributed equality verification
lower bound Ω(n1/2)

Direct equality verification
lower bound Ω(n1/2)

Well-known result in 
communication complexity

Similar to lower bounds of 
graph streaming algorithms

Distributed AlgorithmsCommunication Complexity

simulation
theorem

Approx MST lower 
bound Ω(n1/2)

Similar to hardness of TSP
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Comparison of the Techniques

General: yes yes
Approximation LB: yes yes
Best LB possible: Ω(n) Ω(n1/2)
Diameter of graph: 3 O(log n)
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Comparison of the Techniques

General: yes yes
Approximation LB: yes yes
Best LB possible: Ω(n) Ω(n1/2)
Diameter of graph: 3 O(log n)
Problems applied to: >15 >22
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Summary

Diameter Ω(n) Diameter O(n)

G         H

Verification harder
than computing

α-MST
Ω(n1/2)

Simulation Theorem22 Lower bounds

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T

in preorder;
4. If P visits node v first time{

wait 1 timeslot;
start shortest paths(v);

}
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Thanks! 
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