This file accompanies a presentation given at the 3rd workshop on Advanced
Distributed Graph Algorithms in Paris on 09/26/2016. The material is not
complete and deviates from the content of the original papers for sake of simpler
presentation of key ideas and concepts to this particular audience.
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Graph G of n nodes
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Message Passing Model
Graph G of n nodes

Each node has data

Local infor-
mation only

H N
Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I Massachusetts Institute of Tachnology



Message Passing Model
Graph G of n nodes

Each node has data

Local infor-
mation only

H N
Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I Massachusetts Institute of Tachnology



Message Passing Model
Graph G of n nodes

Each node has data

Local infor-
mation only

H N
Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I Massachusetts Institute of Tachnology



Message Passing Model

Limited Graph G of n nodes

bandwidth

Synchronized rounds
Reliable communication
No faults/crashes

Local infor-

Free internal comptskations

Graph is one connected c@mrpgnent
Time complexity; ;D
3"
number of
communication rounds
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2.1. The model 17

measuring the distance between u and w looking at G as an unweighted graph, i.e., it is the
minimum number of hops necessary to get from u to w.

1. Formal definition?

Throughout, we denote A = [log Diam(G)].
In o weighted graph G, let Diam™"(G) denote the unweighted diameter of G, i.c., the
‘marimum unweighted distance between any two vertices of G.

Definition 2,1.2 [Radius and center]: For a verter v € V, let Rad(v,G) denote the
distance from v to the verter farthest away from it in the graph G:

Rad(v,G) = Tﬁa;[dista(u,w)}.
Let Rad(G) denote the radius of the network, i.c.,
Rad(€) = mip{Rad(v, G)}.
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A center of G is any verter v realizing the radius of G (i.e., such that Rad(v, G) = Rad(G)).
In order to simplify some of the following definiti we avoid probl arising from 0-
diameter or O-radius graphs, by defining Rad{G) = Diam(G) = 1 for the single-vertex
aranh (2= ([} @)

Complexity of computing D? O(n)

T

2

( EvenifD =3

| First part of talk: O(n) Q‘((n)

[PODC 2012] [SODA 2012]
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Networks cannot compute their
diameter in sublinear time!
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Diameter of a network

Diameter of Unweighted!
this network?

e Distance between two nodes = Number of hops of shortest path

 Diameter of network = Maximum distance, between any two nodes
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Networks cannot compute their
diameter in sublinear time!

Unweighted!
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Networks cannot compute their
diameter in sublinear time!

Skelleton has diameter 3
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Networks cannot compute their
diameter in sublinear time!

has diameter 3
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Networks cannot compute their
diameter in sublinear time!

has diameterR
27
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Networks cannot compute their
diameter in sublinear time! D=2or3?

/

Upper and lower row not connected on any side?

=
<D

Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I I I Massachusetts Institute of Tachnology



Networks cannot compute their
diameter in sublinear time! D=2or3?

/

Upper and lower row not connected on any side?

©(n) nodes ©(n) nodes

O(n2) information ‘~l

L ) { J
©(n) nodes ,_#} %_‘ ©(n) nodes
Vi

O(n) edges Q(n) time
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Now: slightly more details
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

(Y
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

[EN
E N EEEE N EEEENEEEEEEEEEEEEESR
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

jo ot
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Label potential edges

1, /1
3122013
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

1, /1
P2t 21K (3
/= 4
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Given graph

N N
Y 2+2-\3
4 E 4
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

A B
N\ : h
W2 2\3
4 1 4
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Same as “A and B not disjoint?”

A B
N\ : h
2—2\3
4l i 4
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Networks cannot compute their
diameter in sublinear time!

Upper and lower row not connected on any side?

Same as “A and B not disjoint?”

A C [n?] B € [n?]

=
EEEEEEEEEEEEEEEENEEEEEEEENETRm
Y
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Networks cannot compute their
diameter in sublinear time!

“A and B not disjoint?”

A C [n?] B € [n?]

Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I I I Massachusetts Institute of Tachnology



Networks cannot compute their
diameter in sublinear time! D=2or3?

/

Upper and lower row not connected on any side?

Same as “A and B not disjoint?”
Communication Complexity
A C [n2) randomized: Q(n 2) bits B C [n?]

( Q(n) time

O(n) edges/
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Networks cannot compute their
diameter in sublinear time!

Abboud, Censor-Hillel, Khoury - DISC 2016:
Even in sparse / constant degree graphs!
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Networks cannot compute their
diameter in sublinear time!
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Networks canret compute their
diameter in sublinear time!
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APSP in O(n)

H N
Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I I I Massachusetts Institute of Tachnology



APSP in O(n)

Compute All Pairs Shortest Paths
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APSP in O(n)

Knows its distance
to all other nodes

Compute All Pairs Shortest Paths

l
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Compute All Pairs Shortest Paths
For each node {
compute distances to all other nodes;
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APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
compute distances to all other nodes; O(D)
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APSP in O(n)

Compute All Pairs Shortest Paths

For each node { O(n)
compute distances to all other nodes; O(D)
} O(nD)
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APSP in O(n)

Compute All Pairs Shortest Paths

For each node { O(n)
compute distances to all other nodes; O(D)
O(nD)

Limited parallelism:
Only some nodes active.
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APSP in O(n)

Compute All Pairs Shortest Paths

For each node { O(n)
compute distances to all other nodes; O(D)

} \ O(nD)

Limited parallelism:
Only some nodes active.

Wanted: All nodes
active all the time! -
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APSP in O(n)
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APSP in O(n)

Compute All Pairs Shortest Paths
1. Pick aroot-node r;
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Compute All Pairs Shortest Paths

1. Pick aroot-node r;
2. T:=BFS-Tree(r);
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1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T
in preorder;
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APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T
in preorder;
4. If P visits node v first time{
wait 1 timeslot;
start shortest paths(v);
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APSP in O(n)

>

Animation by Jukka Suomela, Aalto University, Finland
—
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APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T
in preorder;
4. If P visits node v first time{
wait 1 timeslot;
start shortest paths(v);

Vv
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APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T

in preorder; St
arts att
4. If P visits node v first time{ ®
wait 1 timeslot;

start shortest paths(v);

W
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APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T

in preorder; Starts at t
4. If P visits node v first time{
wait 1 timeslot;

start shortest paths(v);
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APSP in O(n)

Compute All Pairs Shortest Paths
1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T
in preorder;
4. If P visits node v first time{
wait 1 timeslot;
start shortest paths(v);

}

Arrivesat t+ d(u,v)

Starts at t
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APSP in O(n)

Compute All Pairs Shortest Paths
1. Pick aroot-node r;
2. T:=BFS-Tree(r);
3. Pebble P traverses T
in preorder;
4. If P visits node v first time{
wait 1 timeslot;
start shortest paths(v);

}

Arrivesat t+ d(u,v)
Arrivesat >t + d(u, v) +1
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APSP in O(n)

Compute All Pairs Shortest Paths

1. Pick aroot-node r;

2. T:=BFS-Tree(r);

3. Pebble P traverses T

in preorder;

4. If P visits node v first time{
wait 1 timeslot;
start shortest paths(v);

Starts at t

V ne\}/er active foru and w
Adtithe same timel(y, 1)
Arrives at = t + Runtimel
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Complexity of computing D? ©(n) |

Sequential: open
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Extentions
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Extentions
N e I R 2 B R A

APSP O(n) O(n) O(n) O(n)

eccentricity O (™, p)  o(% p) Q( %m) - - e(D)
diameter O (™, p) o(%p) Q( \/%"D) O(v7i+D) O( \/%w) e(D)
radius o(n) o(2+p) - - - e(D)
center oM o(2ip) o(2+p) Q( \/gm) . - 0
p-vertices 00 (% p) o(24p) Q( ng) - - 0
girth O(n) - o(mm(gwlogg,n))

Poblem | w29 | (2

girth Q(? +D) O(n2/3 + D log S)
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Extentions
e o [eona o Lo L

APSP O(n) O(n) O(n)

o

eccentricity a(Z+0) o(E+p) Q( \/%m) - - a(D)

diameter  ©(n) (% n D) 0 (% n D) Q( J%+D> O(v/n +D) O( \/% N D) o(D)

radius o(n) - oZ+p) - . . o(D)

center °m a(2+0) o(2+d) q 0
(n

<= s
\?/
]

O
+
S
~
[®)
A/ —
+
O
N~
o

p.vertices  O(n) (f n D)

girth O(n) --

o
—
2
=
A/~
QS
+
o]
S
[0)°]
Q|
3
~
~
]
]
]

Problem | ___(v2e) | (v2le)

girth Q(? +D) O(n2/3 + D log S)
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Extentions
e o [eona o Lo L

APSP O(n) O(n) O(n)

eccentricity O[n) Q(% n D) 0 (% n D) Q(\/E+D> - = o(D)
D

diameter a(Z+0) of%+0) Q( \/%m) O+ D) O( e D) o(D)

radius O(n) = 0 (% n D) = = = o(D)

center O(n) Q(%+ D) 0 (%+ D) Q(\/%m) - 0

p.vertices  O(n) (% n D) 0 (% + D) Q(\Em) - - 0

girth O(n) --

o
—
2
=
A/~
QS
+
o]
S
[0)°]
Q|
3
~
~
]
]
]

Problem | ___(v2e) | (v2le)

girth Q(? +D) O(n2/3 + D log S)
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Extentions
Routing tables [HIEEE RN NE N MCE

APSP O(n) o(n) o(n) O(n)
eccentricity O(n) n n - - - o(D)
y Q(D+D) O(D+D Q<\E+D>

diameter  ©(n) (E n D) 0 (f D
D

Q( %+D> OWn+D) o(\/%+0) o(P)

)
)
radius o Social networks ) - - - o(D)
)
)

\LJ
== = 0
\/E +D>
D
n - -
D

center o(n) Q(f D) (2 D
D + 0 D +

p. vertices  O(n) (f + D) 0 (_ +D
D

girth °"'N Fighting spam |e;.

Problem | ___(v2e) | (v2le)

girth Q(‘/ﬁ +D) O(n2/3 + D log g)

D
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Extentions
Routing tables [HIEEE RN NE N MCE

APSP O(n) o(n) O(n) 6(n)

eccentricity ©O(n) (% n D) 0 (% n D) Q(\/%+D> = = o(D)

diameter  ©(n) (% + D) 0 (% n D) Q( %+D> O(yn +D) O(\/% . D) (D)

radius oy Social networks ) - - - o(D)
vo

center o(n) g (% n D) 0 (% n D) Q(\/%+D> 0

p.vertices O(n) o (% n D) 0 (% n D) Q(\/%+D) 0

=)
[0)°]
Q|
3
~_
~_

girth O\ Fighting spam

: algorithms for weighted
girth Q(?+D) O(n2/3 + D logg) graphs known. [Henzinger,
g Nanongkai et al.]
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(x,1+€)-Approximating Diameter
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)

Shortest paths between S x V
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)

Shortest paths between S x V

Knows its distance
to nodes in S
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)

Shortest paths between S x V

ALGO:

1. Start BFS in all S-nodes

2. Messages are forwarded
depending on ID and
distance traveled so far

H
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)

S:=Small
O(D/g)-Dominating Set

[Kutten, Peleg 1998]
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)

S:=Small
O(D/g)-Dominating Set

[Kutten, Peleg 1998]

Runtime: O(D + en/D + D)
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S| + D)

S:=Small
O(D/g)-Dominating Set

[Kutten, Peleg 1998]

Runtime: O(n/D + D)
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S]| + D)

S:=Small

O(D/g)-Dominating Set
Runtime: O(n/D + D)
Maximal error: D/s
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(x,1+€)-Approximating Diameter

S-Shortest Path in O(|S]| + D)

S:=Small

O(D/g)-Dominating Set
Runtime: O(n/D + D)
Maximal error: D/ vs. D
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3/2-approximating the Diameter in
0(y/nlogn + D)
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3/2-approximating the Diameter in
O(y/nlogn + D)

Sample Vn ® ® ®
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3/2-approximating the Diameter in
O(y/nlogn + D)

Sample\n ® ® ®
® of largest distance to {® ® @}
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3/2-approximating the Diameter in
O(y/nlogn + D)

Sample\n ® ® ®
® of largest distance to {® ® @}

JYnclosest® ® ® to @
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3/2-approximating the Diameter in

O(y/nlogn + D)
Sample\n ® ® ® Compute BFS
® of largest distance to {® ® @} from each
Jnclosest® ® @ to @ 000
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3/2-approximating the Diameter in

O(y/nlogn + D)
Sample Vn @ @ @ Compute BFS
® of largest distance to {® ® @} from each
Jnclosest® ® @ to @ 000

J Output: max. BFS-depth f O
4 O
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Distributed verification can be hard
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(Minimum) Spanning Trees

Spanning tree: Minimum spanning tree:
Subgraph of a graph Spanning tree of minimal
that includes all nodes total edge weight

and is a tree

Weighted!
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Distributed verification can be hard
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Distributeo@iﬂc@nd Hardness of
Distributed Approximation

Sequential world: CONGEST world:

NP-complete problem SAT
Solving: seems hard

Verifying assignment: easy

Sequential: Verification Verify: H spanning tree of G?
Q(nl/2)

Distributed: Verification can be ©
harder than computing

ed

The



Time of Distributed MST-Algorithms

MST O(D + n?/2) Q(D + n/2)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]

Slide by Danupon
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Time of Distributed MST-Algorithms

MST O(D + n?/2) Q(D + n/2)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]
o-approx. MST OPEN

o-approximation:
Let T be a MST of G and w(T) its weight.

A spanning tree T is an a-approximate MST if
w(T) £ aw(T)
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Time of Distributed MST-Algorithms

MST O(D + n'/2) Q(D + n'/?)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]
o-approx. MST OPEN Q(D + (n /a)/?)
[Elkin STOC'04]

o-approximation:
Let T be a MST of G and w(T) its weight.

A spanning tree T is an a-approximate MST if
w(T) £ aw(T)
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Time of Distributed MST-Algorithms

MST O(D + n'/2) Q(D + n'/?)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]
o-approx. MST OPEN Q(D + (n /a)/?)
[Elkin STOC’04]
ST Verification
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Time of Distributed MST-Algorithms

MST O(D + n'/2) Q(D + n'/?)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]
o-approx. MST OPEN Q(D + (n /a)/?)
[Elkin STOC’04]
ST Verification O(D + n%/2)
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Time of Distributed MST-Algorithms

MST O(D + n?/2) Q(D + n/2)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]

a-approx. MST OPEN Q(D + (nM/z)
[Elkin STOC’04] '>

ST Verification O(D + n%/?) 0O (D +n 1/2)
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Time of Distributed MST-Algorithms

MST O(D + n?/2) Q(D + n/2)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]

a-approx. MST ELES Q(D + (”M/z)
[Elkin STOC’04] '>

ST Verification O(D + n%/?) 0O (D +n 1/2)
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Time of Distributed MST-Algorithms

MST O(D + n?/2) Q(D + n/2)
[Garay, Kutten, Peleg FOCS'93] [Peleg, Rubinovich FOCS'99]

a-approx. MST ELES Q(D + (”N/z)
[Elkin STOC’04] ‘>

ST Verification O(D + n%/?) 0O (D +n 1/2)

@ )
King, Kutten, Thorup

PODC’15:

Message Complexity
c o(m) )
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Theory of Di
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General technique
for lower bounds

Connects commu-
nication complexity
to distributed comp.

Connects
verification
to approximation

Many bounds tight
Systematic study

of distributed
verification

Public-Coin e-error

Deterministic
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connectivity
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. e e Distributed Distributed
Communication, L | .
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Distributed algorithms for the above problems require

time




Three steps of reduction

Direct equality verification 4_ Distributed equality verification

lower bound €2(n) lower bound Q(n1/2)
|

Well-known result in Similar to lower bounds of

o , simulation _ ,
communication complexity theorem graph streaming algorithms

ST verification lower
bound Q(n/2)

|

Similar to hardness of TSP

l

Approx MST lower
bound Q(n1/2)

Slide by Danupon
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Communication complexity of EQUALITY

x=y?

x € {0, 1} Deterministic: Q(k) y € {0, 1}

Slide by Danupon
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Distributed time complexity
of EQUALITY

W — Slide by Danupon
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Alice and Bob are connected by many paths of
length n/2

n/2 green nodes

o000
o0 o
° °
Y ([ J
Y ([ J
o000
1/2
1/2 e {0, 1"
X E {O’ 1}n y { V4 }
I W — Slide by Danupon
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Alice and Bob are connected by many paths of
length n/2

n/2 green nodes

o000
o0 o
° °
Y ([ J
Y ([ J
o000
‘ 1/2
1/2 e {0, 1"
X E {O’ 1}n y { V4 }
I W — Slide by Danupon
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes
)

x € {0, 1}

1/2

Theory of Distributed Systems Group

Stephan Holzer = www.stephanholzer.com

1/2

y € {0, 1}
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes
A

x € {0, 1}

1/2

Theory of Distributed Systems Group

Stephan Holzer = www.stephanholzer.com
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y € {0, 1}
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes
A

1/2

x € {0, 1}

Theory of Distributed Systems Group
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes
A

(

o
o
o

1/2

x € {0, 1}
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes
A

(

([ J
[ J
([ J

1/2

x € {0, 1}
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes

(o o]

A
[ \
x e {0, 1}

Theory of Distributed Systems Group
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes

A
[ |
000
x € {0, 1)

Theory of Distributed Systems Group
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes

A
[ |
..
o0
o0
x € {0, 1)

Theory of Distributed Systems Group
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Alice and Bob are connected by many paths of

length n/2

n/2 green nodes
)

1/2

x € {0, 1}

Theory of Distributed Systems Group
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Alice and Bob are connected by many paths of

1/2

x € {0, 1}

Theory of Distributed Systems Group

length n/2

n/2 green nodes

Q(nl/z)

Stephan Holzer = www.stephanholzer.com

y € {0, 1}
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Make the diameter smaller

Slide by Danupon

I H N
Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I I I Massachusetts Institute of Tachnology



Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes

x € {0, 1} @ @ y € {0, 1}"

5 green nodes 5 green nodes

Slide by Danupon
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
)

® h .4
XE{O, 1}n k J °ee e ye{ol l}n

Y | v /
5 green nodes 5 green nodes
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
\

” eooo

! |
5 green nodes 5 green nodes

y € {0, 1}
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
A

e
g{o,l}n\ ® - © | @ -0

Y
5 green nodes 5 green nodes
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
A

0000
g{o,l}n\ ‘—4 Y ’ve{o,l}n

Y
5 green nodes 5 green nodes
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
A

00000 - --
g{o,l}n\ ‘—4 Y ’ve{o,l}n

Y
5 green nodes 5 green nodes
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
A

000000 --
g{o,l}n\ ‘—* Y ’ve{o,l}n

Y
5 green nodes 5 green nodes
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Now the diameter is n¥/2 /5
How many steps do we need?

n/2 green nodes
A

00000600 --

5 green nodes 5 green nodes

No high speedup
W — Slide by Danupon
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Reduce diameter ...
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Diameter = log n

nl/2 green nodes

nl/2 paths
[ N N )

x € {0, 1}

H
Theory of Distributed Systems Group  Stephan Holzer = www..__phanholzer.com III I

y € {0, 1}

Q( N 1/2)
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Three steps of reduction

Direct equality verification
lower bound Q(n?/2)

Well-known result in
communication complexity

H
Theory of Distributed Systems Group  Stephan Holzer = www.stephanholzer.com I II I

o

simulation
theorem

° ° . N ol . \
_ Distributed equality verification’

lower bound Q(n%/2* -

Similar to lower bounds of
graph streaming algorithms

Y

ST verification lower
bound Q2(n'/2)

|

Similar to hardness of TSP

l

Approx MST lower
bound Q(n1/2)

Slide by Danupon
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o-ole ole
T

)
\

x € {0, 1} y € {0, 1}
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OO0 O 0000 @ n0=02 05050
/5
N>

P W‘
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|

Q O QY O O g

QO

x € {0, 1}
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OO0 O 0000 @ n0=02 05050
/5
N>

P W‘
Q...OQQQQ.Q...OP
\

y € {0, 1}"”

QO

x € {0 1}n1/2 ’ ‘ ‘ ‘ ‘ ‘
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$29,0,000.,0,0,0,0,0.,0,,0.0.0.0
90000 0.,9.0.0.0.0.0.0.0.0. 0
) @)
) @)
029,00 00, 0,6 .0.0..0.0 .0.0.0, @

1/2

x € {0, 1}
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$29,0,000.,0,0,0,0,0.,0,,0.0.0.0
TN @000 0@ 0,0, 0,000,000 .0
) @)
Xzo (.“ .“ O
(®) (@)
029,00 00, 0,6 .0.0..0.0 .0.0.0, @

Xn1/2

1/2

x € {0, 1}
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Y1

Y@ _0 L 0 0 0@ 0,0 00000000000
©) (@)
90, 00, 0. .00 0.0, .00 000, O
yn1/2

Xn1/2

1/2

x € {0, 1}" y € {0, 1)
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Y1

TG =0 00 -0 0,000 0,0- 0000
O (@]
$=0.00 0 0::0-0-0-0.-0.0.- 000, O

Xn1/2

1/2

x € {0, 1}

y € {0, 1}"”
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Example: x=01..1 vy=01..1

Y1
Y@ _0 L 0 0 0@ 0,0 00000000000
©) (@)
90, 00, 0. .00 0.0, .00 000, O
Xp1/2 mz
X € {O’ l}nl/z ‘ ‘ y c {O’ 1}n1/2
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Example: x=01..1 vy=01..1

$29,0,000.,0,0,0,0,0.,0,,0.0.0.0
Y1

‘....‘.Q..‘...
) @)
$.90..0.0 0. .00 00 . 0.0 . 000
Xp1/2 \Wz

x € {0, 1} - & y € {0, 1}
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Example: x=01..1 vy=01..1

Y1
/ 920,000,000 0
(@)
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Example: x=01..1 vy=01..1

Valid spanning tree
9§00 000000000000

¢ ANNAN,

1/2

x € {0, 1}

Slide by Danupon

Theory of Distributed Systems Group  Stephan Holzer = www:stephanholzer.com I II II Massachusetts Institute of Tachnology



Another Example: x=01..0 vy=01...1

Disconnected subgraph
9000 0‘0000‘000.
S

¢ ANmAN,

1/2

x € {0, 1}

Slide by Danupon
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Another Example: x=01..1 vy=01...0

Subgraph with cycle
9000 0‘0000‘000.

O~~~ O~ao~0-0~
AR iR

Slide by Danupon
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Three steps of reduction

Communication Complexity Distributed Algorithms

Direct equality verification
lower bound Q(n?/2)

Well-known result in simulation Similar to lgwer bounds of
communication complexity graph stre*ng algorithms

Similar to hardness of TSP

Slide byDanupon
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From ST-Verification to MST-Approximation

Given: G and subgraph H Use a-approximation
for MST to decide if
His ST
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From ST-Verification to MST-Approximation

Given: G and subgraph H Use a-approximation
for MST to decide if
His ST
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From ST-Verification to MST-Approximation

Given: G and subgraph H Use a-approximation
for MST to decide if
His ST

Observe: iff H is ST,
H is MST of weight n-1

Observe: iff His ST,
no o-MST besides H

Thus: a-approximating
a MST takes Q(n?/2)

H N
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Three steps of reduction

Direct equality verification _ Distributed equality verificatior/\

lower bound Q(n*/?) - lower bound Q(n¥/2"
|

Well-known result in simulation Similar to lower bounds of
communication complexity theorem graph streaming algorithms
y e
Deterministic lower bound. Rl Eelieation) per \J y
bound Q(n¥2) =/

|
Randomized: use DISJOINTNESS and ~ >miertoligdnessof P

l

Approx MST lower
bound Q(n/2) -

Different intermediate steps.

t‘\\\/

Simulation Theorem: works for any function.

I W — Slide by Danupon
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Comparison of the Techniques

\ N 4 i_

) — .

J :
General: yes yes
Approximation LB: yes yes
Best LB possible: Q(n) Q(n1/2)
Diameter of graph: 3 O(log n)
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Comparison of the Techniques

\ N 4 1_

 J —\ .

J :
General: yes yes
Approximation LB: yes yes
Best LB possible: Q(n) Q(n/2)
Diameter of graph: 3 O(log n)
Problems applied to: >15 >22
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Summary

: 1. Pick a root-noder;
- 2. T := BFS-Tree(r);
- ] _ 3. Pebble P traverses T
N: f B e M e
N LT
J - /> ) '
" @+—3)
Diameter Q(n) Diameter O(n) Verification harder

than computing

!

a-MST
w Q(n1/2)

22 “I“_ower 56'Unds Simulation Theorem
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Thanks!
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