Parallel Graph Algorithms

Richard Peng Georgia Tech

OUTLINE

Model and problems

- Graph decompositions
- Randomized clusterings
- Interface with optimization

THE MODEL

THE MODEL

Better upper bounds under dubious(?) assumptions:

• Concurrent read/write, PRAM

Computation

Relative Speedup

10

• Unit cost memory

Split computation up across processors which then process them in parallel

Goal: prove that k processors \rightarrow factor k speedups

MEASURING COST

Multi-processor:

Taking time time t(n) with p(n) processors

Work/depth:

- Work: total operations performed
- Depth: max chain of dependencies

Work efficient: work should be close to sequential algorithms

- $d(n) = t(n), w(n) \le t(n) \times p(n),$
- Many other models for parallelism are inter-reducible with polylog(n) overhead

GRAPH PROBLEMS

Connectivity / Reachability
Shortest paths
Optimization flows, matchings

P-complete under polylog depth reductions

Open: on k processors, provably obtain factor O(k) speedups of directed s \rightarrow t reachability over DFS

Formally: O(mlog^{O(1)}n) work, O(mlog^{O(1)}n/k) depth

UNDIRECTED REACHABILITY

In an undirected graph G, is s connected to t?

Repeatedly:

- Each vertex pick a neighbor
- Contract edges

of vertices halves per roundO(logn) rounds

(omitting details on contract):

O(log²n) depth, O(mlogn) work

- More powerful operation: contract graph
- Communication no longer on original edge, closer to CLIQUE than CONGEST

SHORTEST PATH VIA. MATRICES

Graph, undirected or directed

Find shortest path from s to t

Min-plus matrix multiplication:

 $d(u, v) = min_w d(u, w) + d(w, v)$

Depth: log^{O(1)}n Work: O(n³logn)

Open: better work-depth tradeoffs: e.g. $(1 + \varepsilon)$ approximation in O(mlog²n ε ⁻²) work, O(n^{0.7}) depth

A COMPLETE CALL STACK

Transshipment: match sources to sinks, minimize total distance of paths (no capacity constraints)

[Sherman `16] [Becker- Karrenbauer Inn -Krinninger-Lenzen `16]: O(m^{1+a}) work, O(m^a) depth via:

- Gradient descent
- Divide-and-conquer
- Graph clustering/embedding

Outermost: optimization loops

0.4 0.6 x.

Inner loops: layered partitions of graphs

Bottom level: clustering schemes

OUTLINE

- Model and problems
- Graph decompositions
- Randomized clusterings
- Interface with optimization

[Klein-Subramanian`93][???]: scaling methods give exact h-hop distances in O(h) depth, O(mlogn) work

Hopset: add `short cut' edges so that shortest path lengths are approximated by ones with few hops

MATRIX SQUARING AS A HOPSET

Min-plus matrix multiplication: $d(u, v) = min_w d(u, w) + d(w, v)$

Dist^k(u, v)

- Length of shortest k-hop u-v path
- Can view as a u-v shortcut

DIFFICULTIES IN FINDING GOOD HOPSETS

Highly connected, O(1)-hop graph is dense, expensive

Long paths / tree, need many hop edges

Challenge: avoid paying O(n) steps, each taking O(n)

Implies O(mlogn) work, O(n^{1/2}log²n) depth shortest path algorithm

CONSTRUCTING HOPSETS

- ε-net like: partition into clusters, connect centers
- (In undirected case) recurse on smaller clusters

SOME PREVIOUS WORKS ON HOPSETS

Open: • exact hopsets in nearly-linear work

• Polylog hopcount + size + work

Hop count <i>H</i>	Size	Work	Depth	Note
$\tilde{O}(n^{1/2})$	$\tilde{O}(n)$	$\tilde{O}(mn^{1/2})$	$ ilde{O}(H)$	[UY91, KS97] (directed)
$O(\operatorname{poly}\log n)$	$O(n^{1+lpha})$	$\tilde{O}(mn^{lpha})$	$ ilde{O}(H)$	[Coh00]
$(\log n)^{O((\log \log n)^2)}$	$O(n^{1+O(\frac{1}{\log\log n})})$	$\tilde{O}(mn^{O(\frac{1}{\log\log n})})$	$ ilde{O}(H)$	[Coh00]
$O(n^{\frac{4+\alpha}{4+2\alpha}})$	O(n)	$O(m\log^{3+\alpha}n)$	$ ilde{O}(H)$	[MPVX`15]
O(1)	O(n ^{1+1/H})	O(m ²)	polylog(n)	[EN `16]

OUTLINE

- Model and problems
- Graph decompositions
- Randomized clusterings
- Interface with optimization

KEY TOOL IN DECOMPOSING GRPAHS

Low Diameter Decompositions

- Partition of V into clusters S₁, S₂, ..., S_k s.t.
- The diameter of each S_i is at most *d*.
- βm edges between clusters.

Typically parameters:

- $\beta = \log^{-O(1)} n$,
- $d = O(\log n / \beta)$

EXP START TIME CLUSTERING

Parallel variant of a clustering scheme in [Bartal `96]

- Each vertex u starts unit speed BFS at time -Exp(β)
- BFS stops at 'owned' v, owns any 'sleeping' v reached.

EXP START TIME CLUSTERING ON GRID

β=0.002

β=0.005

β=0.01

β=0.05

β=0.1

β=0.02

ANALYSIS ON UNDIRECTED GRAPHS

More global view:

- Each vertex picks $\delta_u = -Exp(\beta)$
- v assigned to $\operatorname{argmin}_{u} \operatorname{dist}(u) + \delta_{u}$

Diameter: w.h.p. $\min_{u} \delta_{u} \approx -O(\log n / \beta)$

e = uv 'cut' only if first two BFSs reach u within O(1)

'Backward' analysis, view from u:

- Only dist(v, w) and δ_v affect the way things reach u
- Equivalent to star centered at u

ANALYSIS: VIEW GRAPH FROM MIDPOINT

U

 $d_i - Exp(\beta)$

 $d_1 - Exp(\beta)$

 $d_2 - Exp(\beta)$

 $d_3 - Exp(\beta)$

First two BFSs reach O(1) apart ⇔ max and 2nd max of k copies of shifted Exp(β) are within O(1)

 $Exp(\beta)$ can be viewd as particle decay:

- Start from 2nd last particle decayed
- Prob. of last one lasting < O(1): $O(\beta)$

Difference ~ $Exp(\beta)$

OUTLINE

- Model and problems
- Graph decompositions
- Randomized clusterings
- Interface with optimization

ITERATIVE METHODS

Gradual convergence to solution

- Gradient descent
- Newton steps
- Mirror descent

Preconditioning: solve problem in **A** by solving several problems in some $\mathbf{B} \approx \mathbf{A}$, 'error removal'

[Sherman `13] [Kelner-Lee-Orecchia-Sidford `14]: given operator that α -approximates maxflow for ANY demand **d**, can compute (1 + ϵ)-approx maxflow in O(α^2 logn ϵ^{-2}) calls

[Madry `10] [KLOS `13]: $\alpha = O(m^{\theta})$ in $O(m^{1+\theta})$ time

ALGORITHM AS OPERATOR

Tree: unique s-t path, maxflow = demand / bottleneck edge

Multiple (exact) demands: flows along each edge determined via linear mapping, O(n) time

[Racke `01][Racke-Shah-Taubig `14]: ANY undirected graph has a tree that's an O(log^cn) approximator

RECENT: TRANSSHIPMENT PROBLEM

Generalization of shortest paths: match sources to sinks, minimize total distance of paths (no capacity constraints)

- Open: O(mlog^{O(1)}n) work in O(log^{O(1)}n) depth?
 - Implications for shortest paths?

`precondition' using L₁ embeddings:

- [Sherman `16]: O(m^{1+a}) work, O(m^a) depth
- [Becker-Karrenbauer-Krinninger-Lenzen `16]: O(ε⁻¹polylog(n)) distrbibuted rounds

THE OTHER END: THE LAPLACIAN PARADIGM

Open: distributed Laplacian solvers?

Evidence in favor: [Ghaffari-Karrenbauer-Kuhn-Lenzen-Patt-Shamir`15] distributed undirected maxflow

Few iterations:

Eigenvectors,

Heat kernels

Many iterations / modify algorithm Graph problems, Image processing

THE OTHER END: SPARSIFIED SQUARING

I - A_d≈ I

Algorithms involving repeated squaring

- NC algorithm for shortest path
- [Reingold `05] Logspace connectivity
- Multiscale methods
- [P-Spielman `14] Solving Lx = b

MAKING SQUARING FAST: SPARSIFICATION

Approximate a dense graph by a sparse one

[Koutis`14]: build and remove O(logn) spanners, repeat with random half of what's left

- [Abraham-Durfee-Koutis-Krinninger-P`16]: can make dynamic
- [Miller-P-Vladu-Xu `15]: spanners via exp. start time clustering

Question: dynamic exponential time clustering and applications?

QUESTIONS

- Connections between PRAM and other models?
- Speeding up directd s \rightarrow t reachability
- Tight(er) bounds on undirected hopsets?
- Translating PRAM algorithms to data structures?
- Faster transshipment?
- Distributed Laplacian solver / sparsified squaring?
- Numerical approach to more graph problems?