
Parallel Graph Algorithms

Richard Peng
Georgia Tech

• Model and problems

• Graph decompositions

• Randomized clusterings

• Interface with optimization

OUTLINE

THE MODEL

‘Typcial’ spec:

• 64 cores

• 64GB RAM

‘Typcial’ spec:

• 256 cores

• 1TB RAM

[Madduri-Bader-Berry-
Crobak`07]: shortest path

The `scale up’ approach:

• Have a number of processors

• Shared memory

THE MODEL
Better upper bounds under
dubious(?) assumptions:

• Concurrent read/write, PRAM

• Unit cost memory
Memory

CPU
1

CPU
2

CPU
k…

Split computation up across processors
which then process them in parallel

Computation

1 2 … k

Goal: prove that
k processors 
factor k speedups

MEASURING COST

Work efficient: work should be close to sequential algorithms

Input

1 2 … kWork/depth:

• Work: total operations performed

• Depth: max chain of dependencies

Multi-processor:

Taking time time t(n) with p(n) processors

1 2

1 2 k

• d(n) = t(n), w(n) ≤ t(n) × p(n),

• Many other models for parallelism are
inter-reducible with polylog(n) overhead

GRAPH PROBLEMS

• Connectivity / Reachability

• Shortest paths

• Optimization: flows, matchings

Open: on k processors, provably obtain factor O(k)
speedups of directed s  t reachability over DFS

P-complete under polylog depth reductions

Formally: O(mlogO(1)n) work, O(mlogO(1)n/k) depth

UNDIRECTED REACHABILITY

In an undirected graph G, is s connected to t?

Repeatedly:

• Each vertex pick a neighbor

• Contract edges

of vertices halves per round

O(logn) rounds

(omitting details on contract):

O(log2n) depth, O(mlogn) work

• More powerful operation: contract graph

• Communication no longer on original
edge, closer to CLIQUE than CONGEST

logO(1)n time with
O(n3) processors

SHORTEST PATH VIA. MATRICES

Graph, undirected or directed

Find shortest path from s to t

Min-plus matrix multiplication:

d(u, v) = minwd(u, w) + d(w, v)

Open: better work-depth tradeoffs: e.g. (1+ ε)-
approximation in O(mlog2nε-2) work, O(n0.7) depth

Depth: logO(1)n

Work: O(n3logn)

A COMPLETE CALL STACK

[Sherman `16]
[Becker- Karrenbauer
-Krinninger-Lenzen `16]:
O(m1+a) work, O(ma) depth via:

• Gradient descent

• Divide-and-conquer

• Graph clustering/embedding

` `

Outermost: optimization loops

Inner loops: layered partitions of graphs

Bottom level: clustering schemes

Transshipment: match sources to
sinks, minimize total distance of
paths (no capacity constraints)

+ +

- -

10

10 5 18

20

OUTLINE

• Model and problems

• Graph decompositions

• Randomized clusterings

• Interface with optimization

Hopset: add `short cut’ edges so that shortest path
lengths are approximated by ones with few hops

[Klein-Subramanian`93][???]: scaling methods give
exact h-hop distances in O(h) depth, O(mlogn) work

HOPSETS

MATRIX SQUARING AS A HOPSET

Min-plus matrix multiplication:

d(u, v) = minwd(u, w) + d(w, v)

Distk(u, v)

• Length of shortest k-hop u-v path

• Can view as a u-v shortcut

DIFFICULTIES IN FINDING GOOD HOPSETS

Challenge: avoid paying O(n) steps, each taking O(n)

Highly connected, O(1)-hop
graph is dense, expensive

Long paths / tree, need
many hop edges

[Miller-Xu][folklore?] connect n random pairs
by exact shortest path distances between them

Implies O(mlogn) work, O(n1/2log2n) depth shortest path algorithm

EXISTENCE OF GOOD HOPSETS

n1/2 vertices n1/2 verticesn1/2 × n1/2 pairs,
one hop expected

• ε-net like: partition into clusters, connect centers

• (In undirected case) recurse on smaller clusters

CONSTRUCTING HOPSETS

Hop count 𝑯 Size Work Depth Note

෨𝑂(𝑛1/2) ෨𝑂(𝑛) ෨𝑂(𝑚𝑛1/2) ෨𝑂(𝐻)
[UY91, KS97]

(directed)

𝑂(poly log 𝑛) 𝑂(𝑛1+𝛼) ෨𝑂(𝑚𝑛𝛼) ෨𝑂(𝐻) [Coh00]

log 𝑛 𝑂(log log 𝑛 2)
𝑂(𝑛

1+𝑂(
1

log log 𝑛
)
) ෨𝑂(𝑚𝑛

𝑂(
1

log log 𝑛
)
)

෨𝑂(𝐻) [Coh00]

𝑂(𝑛
4+𝛼
4+2𝛼) 𝑂(𝑛) 𝑂(𝑚 log3+𝛼 𝑛) ෨𝑂 𝐻 [MPVX`15]

O(1) O(n1+1/H) O(m2) polylog(n) [EN `16]

SOME PREVIOUS WORKS ON HOPSETS
• exact hopsets in nearly-linear work

• Polylog hopcount + size + work

Open:

OUTLINE

• Model and problems

• Graph decompositions

• Randomized clusterings

• Interface with optimization

Typically parameters:
• β = log-O(1)n,
• d = O(logn / β)

KEY TOOL IN DECOMPOSING GRPAHS
Low Diameter Decompositions
• Partition of V into clusters S1, S2, … , Sk s.t.
• The diameter of each Si is at most 𝑑.
• βm edges between clusters.

Parallel variant of a clustering scheme in [Bartal `96]

• Each vertex u starts unit speed BFS at time -Exp(β)

• BFS stops at ‘owned’ v, owns any ‘sleeping’ v reached.

6

EXP START TIME CLUSTERING

β=0.002 β=0.005 β=0.01

β=0.1β=0.05β=0.02

EXP START TIME CLUSTERING ON GRID

ANALYSIS ON UNDIRECTED GRAPHS

e = uv ‘cut’ only if first two BFSs reach u within O(1)

‘Backward’ analysis, view from u:

• Only dist(v, w) and δv affect the
way things reach u

• Equivalent to star centered at u

More global view:

• Each vertex picks δu = -Exp(β)

• v assigned to argminu dist(u) + δu

Diameter: w.h.p. minu δu ≈ -O(logn / β)

u v

u

ANALYSIS: VIEW GRAPH FROM MIDPOINT
First two BFSs reach O(1) apart
max and 2nd max of k copies
of shifted Exp(β) are within O(1)

d1 - Exp(β)

d2 - Exp(β)

d3 - Exp(β)
Exp(β) can be viewd as particle decay:

• Start from 2nd last particle decayed

• Prob. of last one lasting <O(1): O(β)

Difference ~ Exp(β)

u

di - Exp(β)

OUTLINE

• Model and problems

• Graph decompositions

• Randomized clusterings

• Interface with optimization

ITERATIVE METHODS
Gradual convergence to solution

• Gradient descent

• Newton steps

• Mirror descent

[Sherman `13] [Kelner-Lee-Orecchia-Sidford `14]: given
operator that α-approximates maxflow for ANY demand d,
can compute (1 +ε)-approx maxflow in O(α2lognε-2) calls

[Madry `10] [KLOS `13]: α = O(mθ) in O(m1+θ) time

Preconditioning: solve problem in A by solving
several problems in some B ≈ A, ‘error removal’

-2
3

Tree: unique s-t path, maxflow =
demand / bottleneck edge

s
t

1
-2

Multiple (exact) demands: flows along
each edge determined via linear
mapping, O(n) time

ALGORITHM AS OPERATOR

[Racke `01][Racke-Shah-Taubig `14]: ANY undirected
graph has a tree that’s an O(logcn) approximator

RECENT: TRANSSHIPMENT PROBLEM

`precondition’ using L1 embeddings:

• [Sherman `16]: O(m1+a) work, O(ma) depth

• [Becker-Karrenbauer-Krinninger-Lenzen `16]:
O(ε-1polylog(n)) distrbibuted rounds

• O(mlogO(1)n) work in O(logO(1)n) depth?

• Implications for shortest paths?

Generalization of shortest paths: match
sources to sinks, minimize total distance
of paths (no capacity constraints)

+ +

- -

10

10 5 18

20

Open:

Directly related:

Elliptic systems

Few iterations:
Eigenvectors,

Heat kernels

Many iterations / modify algorithm

Graph problems, Image processing

THE OTHER END: THE LAPLACIAN PARADIGM

Open: distributed Laplacian solvers?

Evidence in favor: [Ghaffari-Karrenbauer-Kuhn-Lenzen-
Patt-Shamir`15] distributed undirected maxflow

I - A1 ≈ε I – A2

I – A2 ≈ε I – A1
2

…

I – Ai ≈ε I – Ai-1
2

I - Ad ≈ I

I - A0

I - Ad≈ I

Algorithms involving repeated squaring

• NC algorithm for shortest path

• [Reingold `05] Logspace connectivity

• Multiscale methods

• [P-Spielman `14] Solving Lx = b

≈ : approximations of graphs

THE OTHER END: SPARSIFIED SQUARING

Open: more graph algorithms
via sparsified squaring?

MAKING SQUARING FAST: SPARSIFICATION

[Koutis`14]: build and remove
O(logn) spanners, repeat with
random half of what’s left

• [Abraham-Durfee-Koutis-Krinninger-P`16]: can make dynamic

• [Miller-P-Vladu-Xu `15]: spanners via exp. start time clustering

Approximate a dense graph by a sparse one

Question: dynamic exponential time clustering and applications?

QUESTIONS

• Connections between PRAM and other models?

• Speeding up directd st reachability

• Tight(er) bounds on undirected hopsets?

• Translating PRAM algorithms to data structures?

• Faster transshipment?

• Distributed Laplacian solver / sparsified squaring?

• Numerical approach to more graph problems?

