# Graph Abstractions in Wireless Networking

Magnús M. Halldórsson



Reykjavik University Iceland



## Utilizing wireless networks

- Given: Sources, destinations, and demands.
- Optimize: "Throughput"
- Using:
  - Channels (frequencies, codes)
  - Power control
  - Time multiplexing
  - Space diversity
  - Routing
  - Bit-rate adjustment



## Core subproblem: Link Scheduling

- (Shortest) Link Scheduling problem
- Given: Links (sources, destinations)
- Using:
  - Channels (frequencies, codes)
  - Power control
  - (TDMA) scheduling
  - Space diversity
  - Routing
  - Rate adjustment



Minimize the number of slots used

#### Related problem: MIS

- MIS = "Max Independent Set of Links",
  - "One-shot scheduling"
- Given: Links (sources, destinations)
- Using:
  - Channels (frequencies, codes)
  - Power control
  - (TDMA) scheduling
  - Space diversity
  - Routing
  - Rate adjustment



Maximize number of links in a single slot

#### **Issues at Heart**

Coloring graphs, with few colors

What's the model?

#### **Issues at Heart**

Coloring "graphs", with few colors

What's the model?

#### Wireless communication

#### Node *v* successfully communicates to node *w* if:

- *i.* v transmits (towards w)
- *ii.* v can communicate with w (~ is a neighbor)
- iii. w doesn't experience (too much) interference



## Which problem → Which model?



#### Ground model: Radio networks

• Receiving node experiences interference if:



2+ neighbors transmit



#### Issues with the Radio Networks model

#1: Computational complexity

Approximate (Graph) Coloring is provably intractable

Possible (& necessary) solution: Restrict the graph class

#### Issues with the Radio Networks model

#2 : Modeling communication and interference with the same graph

#### Possible solution:

- Introduce a super-graph for interference
- (Again) Restricted graph classes



#### Issues with the Radio Networks model

#3 : Treating interference as a binary property





Interference adds up





#### What matters:

Is the received signal strength sufficiently large compared with the interference+noise?

→ "Feasibility" is a complicated independence system.

## "Physical" or SINR model

- 1. Interference is additive
- 2. Signal strength/interference decreases polynomially with distance
- 3. Affectance (=Relative interference) threshold
  - = Strength of interference / Strength of (intended) signal





## Feasibility in the SINR model



Given set L of links an edge-weighted digraph G(L). Weight of edge j Relative interference of link i on link j

A set S is **feasible** iff the weighted in-degree of every link within G(S) is  $< 1/\beta$ 

## Properties of SINR model

- Not binary
- Not symmetric
- Faraway interference
- The math can get ugly
  - Intuition is hard to come by

## Surprises in SINR

- Leader election in O(log n) rounds
  - [Fineman, Gilbert, Kuhn, Newport, PODC'16]
  - Compares with  $\Theta(\log^2 n)$  for radio networks
- Leader election in 2 rounds
  - [H, Holzer, Markatou, SIROCCO'17]
  - Requires exponential amount of power control
- Scale-free-ness
  - No fixed radius, or fixed set of interferers
- Power control can be very powerful

#### Approximation Results on MIS in SINR model

#### MIS has constant-factor approximations for:

- Uniform power in R<sup>2</sup>.
   [Goussevskaia,H,Wattenhofer,Welzl'09]
- Other fixed power in general metrics [H, Mitra, SODA'11]
- Arbitrary power control [Kesselheim, SODA'11]
  - Also, with power limitations [Wan'12, Kesselheim'12]
- Variable bit-rates [Kesselheim'12]
- Uniform power with spectrum sharing [H,Mitra'12]
  - with distributed learning [Asgeirsson, Mitra, '11]
  - under jamming [Dams et al...]
- Holds also for an extension to Rayleigh fading [Dams, Hoefer, Kesselheim '13], [H, '16]

## Scheduling in SINR model

#### Scheduling approximation:

- $O(\log n)$ -approximation [Direct from MIS results]
- $O(\log \Delta)$ -approximation ( $\Delta = \text{link length diversity}$ )
- Known algorithms give  $\Omega(\log n)$ -approximation [HKT '15]
- None of the previous techniques suffice to improve the performance guarantee
- → Edge-weighted graphs are harder than graphs



## Graph models: Unit Disc Graphs

- Nodes = transmitters/receivers in the plane
- Adjacent nodes := distance < 1</li>
- Edge → Communication
- & Interference

UDGs are 3-inductive independent Disc graphs are 5-inductive independent



*H* is k-inductive independent if every induced subgraph H contains vertex v with  $\alpha(N[v]) \leq k$ 

## How do these algorithms work?

• The edge-weighted instances induced by wireless links are "sparse"

Kesselheim, SODA'11, H, Holzer, Mitra, Wattenhofer, SODA'13

- The weighted inductive independence is constant.
  - Greedy algorithms achieve constant approximation for Capacity





## Weighted inductiveness

- A node u in an edge-weighted graph G = (V, E, w) is **t-good** if  $w(u,S) \leq t$ , for any feasible set  $S \subseteq V$ .
- A set of nodes is is *t-inductive independent* if any subset contains a t-good node
- $\rho(L) = \text{smallest } t \text{ s.t. } G(L) \text{ is } t \text{-inductive independent}$
- Gives a t-inductive ordering == ordering links by increasing length



# MODELING SINR WITH GRAPHS

## Which problem → Which model?



## Rethinking graphs for representing interference

- Graphs are preferable to working directly with SINR
  - Less conceptual complexity
  - Simplifies description
  - Lots of theory already established
- How well can graphs work?
- What does it mean to "represent SINR relationship"?

#### First success

- If the links are of similar lengths (Delta = constant), then Unit Disc Graphs are a good approximation [H, ESA'09]
- Additional requirement:
  - Maintain bounded contention in every "neighborhood"
  - Decay algorithm would fail in this respect

## Disc Graphs Fail



Feasible set, but forms a clique in any disc graph

## Approach: Abstract, solve, map back



#### Hierarchies of abstraction



#### Price of abstraction



Price of abstraction :

How much you lose by solving the abstracted problem (rather than solving directly)

## Representing link scheduling with a graph



## Requirement I: Feasibility



Independent sets should be <u>feasible</u>

valid coloring of G

⇒ valid scheduling

#### Requirement II: Near-independence





Feasible linksets should be "nearly independent" in G

Small cost of abstraction!

S feasible  $\Rightarrow \chi(G_S)$  small

## Possible graphs schemas (that fail)

#### Pairwise conflicts

- $d(u, v) \le c \cdot \min(|u|, |v|)$
- Too relaxed (fail feasibility)
- One of the links will always be infeasible



#### Disc graphs

- $d(u, v) \le c \cdot \max(|u|, |v|)$
- Too conservative (high cost)



Solution: Interpolate?



## Conflict graph representations [H,Tonoyan, STOC'15]

#### Adjacency predicate:

$$d(u, w) \le f\left(\frac{|w|}{|u|}\right)|u|,$$
(f monotone)

f linear: disc graphs

f const: pairwise SINR

(w is longer than u)



All such graphs have constant inductive independence, which allows for constant-factor approximation of our problems

## Conflict graph representations [H,Tonoyan, STOC'15]

#### Adjacency predicate:

$$d(u, w) \le f\left(\frac{|w|}{|u|}\right)|u|,$$
(f monotone)

f linear: disc graphs

f const: pairwise SINR

Feasibility holds for  $f(x) = \Omega(\log x)$ 



Cost of abstraction is  $f^*(x)$ , the iterated application of f

For  $f = \log$ , the cost is  $O(\log^* \Delta)$   $\Delta = \text{Diversity in link lengths}$  $(\log^* \Delta \text{ is always less than 4...})$ 

## **Implications**

O(log\* Δ)-approximation of Link Scheduling

#### Implications: Other problems

• Sandwiching property: Given set of links, we form *two* graphs  $G_1$  and  $G_2$  s.t. for all  $S \subseteq L$ ,

$$\chi(G_1(S)) \leq Sched(S) \leq \chi(G_2(S))$$

- Nearly all other scheduling problems can be solved:
  - Multi-channel multi-antennas
  - Multi-hop scheduling with fixed paths
  - Maximum multiflow
  - Maximum concurrent multiflow...
- Other applications:
  - Online algorithms (admission control)
  - Spectrum auctions

### How far can we go? Limits of solvability

- No (theoretical) study is complete without exploring the limits of the doable.
- Can we show that no conflict graph schema can perform better?

### Axioms for conflict graph representations

- Defined by <u>pairwise</u> relationship of links
- Independent of position and scale (scale-free)
- Monotonic with increasing distances
- Symmetric w.r.t. sender and receiver



Every conflict graph schema is sandwich by formulations

$$d(u, w) \le f\left(\frac{|w|}{|u|}\right) |u|,$$

where f is a monotone function



#### Limitation results

- A. Any conflict graph representation incurs a Ω(log\*(Δ)) factor → Price of abstraction is Θ(log\*(Δ))
  - i) For every monotone f, there is an instance that is feasible but whose conflict graph is a clique and requires  $\Omega(f^*(\Delta))$  colors
  - Ii) For  $f = O(\log^{1/\alpha} n)$ , there is an instance whose conflict graph is independent, but requires  $\Theta(\log^*(\Delta))$  slots to schedule.
- Builds on a construction of [H, Mitra, SODA'12]
- B. No approximation in terms of n is possible.
- C. Requires Euclidean or doubling metrics

### Conflict graph w/ data rates [H,Tonoyan ICALP'17]



Effective length of link u:  $\ell_u = |u| \cdot \beta_u^{1/\alpha}$ 

Adjacency predicate: 
$$d_{uw}d_{wu} \leq f\left(\frac{\ell_u}{\ell_w}\right)\ell_u\ell_w,$$
 (for  $\ell_u \geq \ell_w$ )

# Conflict graph w/ data rates [H,Tonoyan ICALP'17]

#### Adjacency predicate:

$$d_{uw}d_{wu} \le f\left(\frac{|w|}{|u|}\right)|u||w|,$$
(f monotone)



For  $f(x) = \sqrt[c]{x}$ , the cost of abstraction is  $O(\log \log \Delta)$ 

Achievable with *oblivious* power: depends only on link length.

 $\Theta(\log \log \Delta)$  is also best possible

#### Handling Bit-Rates and Utilities

"It's the rate.... stupid"

- Attain Θ(log log Δ)-approximation for capacity problems involving bitrates
- Can handle arbitrary fixed or variable bitrates
  - Graphs have the same desirable properties (inductive indep.)

- The original "complexity of connectivity" problem of [Moscibroda, Wattenhofer, 2006]:
  - Connect all nodes into a (convergecast) tree
  - Choose power assignment
  - Schedule the edges, in the fewest number of slot.
- Corresponds to achievable rate of aggregation
- $O(\log^* \Delta)$  time slots suffice
  - Uses the Minimum Spanning Tree
- Ω(log\* Δ) slots necessary for scheduling an MST

# **NOW WHAT?**

# Challenge: Robustness, dynamicity

Robustness, dynamicity

Heterogeneity

#### Challenge: New technologies

- SINR-like models correct only for uncorrelated signals
- Using alignment of signals, can achieve:
  - Directional transmissions
  - = Beamforming
  - More diversity => avoid weak links
  - Multiple Receive/transmit => Higher bandwidth
  - Transmit multiple message streams (MIMO)
- High frequency channels

# Challenge: Modeling

### Open questions

- Still have not answered the question if truly constantfactor approximation is possible
- Can we leverage this graph representation further?
- Distributed algorithms
- Handling dynamic situations
- New modes of communication (interference alignment)
  - Beamforming, MIMO, cooperative, cancellation,...

### Open questions

- Uniform power
  - Only one power level
  - Should be "easier", but we understand it less analytically
- Understanding SINR
- The role of CS theory in wireless computing

### Take-home message

- Graphs are maybe (more than) fine!
  - Question of the level of abstraction
- The meta question of the right model

#### Collaborators

Tigran Tonoyan



• Eyjólfur Ásgeirsson



 Roger Wattenhofer (ETH)



 Stephan Holzer (MIT)



ICE-TCS

Icelandic Centre of Excellence in Theoretical Computer Science

#### Experimental group at RU:

- Helga Gudmundsdottir
- Ýmir Vigfusson
- Joe Foley

#### Alumni:

 Pradipta Mitra (Google)



Marijke
 Bodlaender





#### Other contributions

- Q: What about results that hold only in the plane, like most distributed algorithms?
- A: These generally carry over also to decay spaces that form doubling metrics
  - We introduce a new term that represents the cumulative interference from a uniformly spread set of nodes
  - If this is constant bounded, then most algorithms work
- Q: Which algorithms don't work?
- A: Those that depend on Euclidean properties:
  - SINR diagrams
  - Algorithms using angles

#### Open Issues

- Temporal variability, dynamicity
  - Major issue, largely untouched
  - How is it dependent across time? What time window is static?
- Interference alignment
  - Alignment, cancellation, beamforming

#### Take-home message

- When chosen with care, graphs are surprisingly good.
- Constant approximations for Scheduling probably not possible.
- Results in the geometric SINR model carry over to general, realistic settings....
- ... as long as brittle assumptions are avoided

# Modeling Wireless Communications Algorithmically

- When is a wireless transmission successful?
- How much communication can take place simultaneously?
- How to schedule it, to maximize thruput, minimize latency

#### **Core Questions**

- How to schedule it, to maximize thruput, minimize latency
- How do we study/analyze such algorithms?
- How do we model signal reception, propagation?

#### **Extras**

- Brilliance
  - <a href="https://www.youtube.com/watch?v=-ciFTP\_KRy4">https://www.youtube.com/watch?v=-ciFTP\_KRy4</a>