
Distance Labeling
Understanding the Source of Hardness

Adrian Kosowski
Inria Paris

adrian.kosowski@inria.fr

ADGA, October 20, 2017

Keywords

2Adrian Kosowski Distance Labeling

I will talk about computing graph distances, using:

● Distance oracles

● Distance labeling

● Hub labeling

to obtain: exact distance values (or additive approximation of distance)

on: general graphs, sparse graphs, and planar instances.

Keywords

3Adrian Kosowski Distance Labeling

What I will NOT talk about:

I will talk about computing graph distances, using:

● Distance oracles

● Distance labeling

● Hub labeling

to obtain: exact distance values (or additive approximation of distance)

on: general graphs, sparse graphs, and planar instances.

compact routing
adjacency oracles
graph embedding
additive spanners
(multiplicative) approximation distance oracles
distance preservers
sketching
oracles for dynamic graphs

Querying for information (static, centralized setting)

4Adrian Kosowski Distance Labeling

Data
structure

Query
input

Query Function Answer

Distance Oracle (static, centralized setting)

5Adrian Kosowski Distance Labeling

Data
structure

Graph G

GetDistance (* , *)

Query Function Answer
Query
input

Distance Oracle (static, centralized setting)

6Adrian Kosowski Distance Labeling

Data
structure

Graph G

GetDistance (* , *)

Query Function Answer

(u, v)

u

v

”16”

Query
input

Designing a distance oracle

7Adrian Kosowski Distance Labeling

Compact data
structure G'

Decoder Answer
Query
input

Compact data
structure
G'  G'

Encoder
Data

structure
G  G

Encode once

Use many times

(u, v) dist
G
 (u, v)

Designing a distance oracle (formally)

8Adrian Kosowski Distance Labeling

Given:

- a promise on graph class G

Design:

- an encoder function encode : G → G'  {0,1}*

- a decoder function decode : G' x V2 → N+

Such that:

decode (encode(G), (u,v)) = distG (u,v), for all G  G, for all (u,v)  V2

distG represents distance in the usual graph metric;
we consider both edge-weighted and unweighted graphs

Objectives in distance oracle design

Desirable features:

● Compactness – small (bit-)size of the encoded data structure

● Fast implementation for decoder (e.g., constant-time)

● Fast implementation for encoder (e.g., linear-time)

● Labeling scheme: distributed representation of the distance
oracle; handling distributed queries

+ Variants: approximate answers,
 handling dynamic graphs,
 handling other graph metrics, …

9Adrian Kosowski Distance Labeling

State-of-the-art: unweighted graphs

10Adrian Kosowski Distance Labeling

0.5 n bits/node
O(n2) query time

(adjacency matrix)

Distance oracles

O(n log n) bits/node
O(1) query time

(store all distances)

State-of-the-art: unweighted graphs

11Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

Distance oracles

Distance labeling scheme

A distance oracle distributed over the nodes of the graph.

Initial structure: a n-node graph G = (V,E,id), id : V → {1, 2, …, n}

Encoder computes vertex labels L(v) {0,1}* for v  V

12Adrian Kosowski Distance Labeling

?1

id label L

?2 ?3

?5

?4

Distance labeling scheme

A distance oracle distributed over the nodes of the graph.

Initial structure: a n-node graph G = (V,E,id), id : V → {1, 2, …, n}

Encoder computes vertex labels L(v) {0,1}* for v  V

13Adrian Kosowski Distance Labeling

L(1)1

id label L

L(2)2 L(3)3

L(5)5

L(4)4

Labeling schemes

The decoder must be able to process a distance query
based only on the labels of the involved nodes.

Query: (L(u), L(v))

Decoder: decode (L(u), L(v)) = distG (L(u), L(v))

14Adrian Kosowski Distance Labeling

1

id label L

3

5

4 * 1, 2, 34

2

L(1)

L(2) L(3)

L(5)

L(4)

Labeling schemes

The decoder must be able to process a distance query
based only on the labels of the involved nodes.

Example: decode (L(2), L(4)) = distG (L(2), L(4))

15Adrian Kosowski Distance Labeling

4 * 1, 2, 34

2 L(2)

L(4)

Centralized view of a labeling scheme

16Adrian Kosowski Distance Labeling

L(1)1

L(2)2 L(3)3

L (5)5
L (4)4

L(1)1

L(2)2

L(3)3

L(4)4

L(5)5

GG

G'

id label L

encoder

Centralized view of a labeling scheme

17Adrian Kosowski Distance Labeling

L(1)1

L(2)2 L(3)3

L (5)5
L (4)4

L(1)1

L(2)2

L(3)3

L(4)4

L(5)5

GG

id label L

2

4

Query: ”distance between nodes
 2 and 4?”

input: (2,4)

Algebraic distance labeling

18Adrian Kosowski Distance Labeling

General idea

● Node labels are vectors in a space with some dot product : L(vx) = (x1, x2, …, xs), for vx V.

● Apply the following decoding:

 dist(vx,vy) = L(vx) L(vy) = s
i=1 xi  yi.

● Label size for v follows from the number of non-zero entries of vector L(v).

First approach: cube embedding

19Adrian Kosowski Distance Labeling

Distance-preserving embedding of the graph in a cube

● Use bit vectors of a given length to represent node labels L

● Choose labels so that: Hamming-Distance (L(u),L(v)) = distG (u,v).

First approach: cube embedding – failed!

20Adrian Kosowski Distance Labeling

Distance-preserving embedding of the graph in a cube

● Use bit vectors of a given length to represent node labels L

● Choose labels so that: Hamming-Distance (L(u),L(v)) = distG (u,v).

● … only possible for some graphs,
regardless of allowed label length.

[Firsov 1965, Djoković 1973, Winkler 1984]

First approach, revisited: squashed cube dimension

21Adrian Kosowski Distance Labeling

Mapping graph nodes to hyperplanes in a cube
[Graham, Pollack 1971]

● Use vectors in {0,1,*}l to represent
node labels L, for some dimension l

● Here, ”*” denotes a wildcard symbol, whose
Hamming distance to any other symbol is 0.

● Choose labels so that:
Hamming-Distance (L(u),L(v)) = distG (u,v).

First approach, revisited: squashed cube dimension

22Adrian Kosowski Compact Data Structures – Lecture 2

Mapping graph nodes to hyperplanes in a cube
[Graham, Pollack 1971]

● Use vectors in {0,1,*}l to represent
node labels L, for some dimension l

● Here, ”*” denotes a wildcard symbol, whose
Hamming distance to any other symbol is 0.

● Choose labels so that:
Hamming-Distance (L(u),L(v)) = distG (u,v).

Theorem [Winkler, 1983]. Every connected n-node
graph admits such a mapping with l  n-1.

The above bound is tight for the complete graph.

Provided distance labels of log23 n  1.58n bits.
In the RAM model, decoding time for a query is almost linear in n. (Encoding time is polynomial.)

State-of-the-art: unweighted graphs

23Adrian Kosowski Compact Data Structures – Lecture 2

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

Distance oracles Distance labeling

O(n) bits/node
O(n) query time

[Winkler 1984]

Second approach: hub labeling

Hub labeling scheme (a.k.a.: landmark labeling, 2-hop-cover)

● Each node v is assigned a hub set Hv  V

● L(v) = [Dv(u) : u V], where: Dv(u) = dist (v, u), for u  H(v),
 = + (omitted), otherwise.

Decoder:

dist (u, v) = min wV (Du (w) + Dv (w))

24Adrian Kosowski Distance Labeling

u v

Hv

Hu

a

c

b

d

Hub labeling

Distance decoding algorithm in practice

25Adrian Kosowski Distance Labeling

Hub labeling

Distance decoding algorithm in practice

26Adrian Kosowski Distance Labeling

Hub labeling

Distance decoding algorithm in practice

27Adrian Kosowski Distance Labeling

Hub label size

Size of L(v) for unweighted graphs:

● O (h log n) bits trivially, where h = |Hv|.

● O (h log (n/h)) bits: [folklore; overview in Gawrychowski, K., Uznanski, DISC 2016]

● Trick: L(v) = [Dv(u) : u V], nodes u enumerated in a specific order u = 1..n
(e.g., preorder traversal of a fixed spanning tree).

● Use an optimal-entropy encoding of Dv(u+1)-Dv(u) in the label.

Example:

Put Hv = V and h = n. The latter bound gives labels of size O(n).

28Adrian Kosowski Distance Labeling

State-of-the-art: unweighted graphs

29Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

Distance oracles Distance labeling Hub labeling

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

O(n) bits/node
O(n) query time

[Winkler 1984]

State-of-the-art: unweighted graphs

30Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

 ...

Distance oracles Distance labeling Hub labeling

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

O(n) bits/node
O(n) query time

[Winkler 1984]

11 n bits/node
O(log log n) query time
[Gavoille, Peleg, Perennez, Raz
SODA 2001]

O(n) bits/node
O(n) query time

[Winkler 1984]

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

State-of-the-art: unweighted graphs

31Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

 ...

(0.5 log23) n bits/node
O(1) query time

[Alstrup, Gavoille, Halvorsen,
and Petersen, SODA 2016]

Distance oracles Distance labeling Hub labeling

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

O(n) bits/node
O(n) query time

[Winkler 1984]

11 n bits/node
O(log log n) query time
[Gavoille, Peleg, Perennez, Raz
SODA 2001]

O(n) bits/node
O(n) query time

[Winkler 1984]

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

State-of-the-art: unweighted graphs

32Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

 ...

(0.5 log23) n bits/node
O(1) query time

[Alstrup, Gavoille, Halvorsen,
and Petersen, SODA 2016]

Distance oracles Distance labeling Hub labeling

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

O(n) bits/node
O(n) query time

[Winkler 1984]

11 n bits/node
O(log log n) query time
[Gavoille, Peleg, Perennez, Raz
SODA 2001]

O(n) bits/node
O(n) query time

[Winkler 1984]

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

But this is not
the final word

of Hub labeling!

Hub labeling in sparse graphs

● Simplifying assumption: max degree = constant (i.e., 3)

● Define hub set Hv: [Gawrychowski, K., Uznański, DISC 2016]

Ball of radius R =  log2 n around v

All nodes at distance x, x + R, x + 2R, x + 3R,... from v
(x < R is appropriately chosen)

 O(n) decoding time

33Adrian Kosowski Distance Labeling

Back to the general case

Hub Labeling + (general idea)

34Adrian Kosowski Distance Labeling

● Hub labeling method for sparse graphs works also in dense graphs

● Condition for small hub set size for v: ball around v must have small average
degree

● Fix: handle high-degree nodes separately

● Let X  V be a dominating set for nodes of V with large degree (> log n)

● Choose X with |X| = o(n).

● Add X to hub sets of all nodes.

● Caveat: not an exact distance scheme but 2-additive.

● Label size: o(n), decoding time: (1)

u v

x X

Unweighted graphs: cutoff in additive approximation

Any exact distance oracle requires  n/2 – O(1) bits per node

● Decode the adjacency matrix of G from its (exact) distance oracle

Any 1-additive distance oracle requires  n/4 – O(1) bits per node

● Decode the adjacency matrix of G from its 1-additive distance oracle
if G is bipartite

A 2-additive hub labeling uses only o(n) bits per node.

Is this some kind of universal issue?

● Similar story possible for time complexity of additive approximation of APSP
[Dor, Halperin, Zwick, SICOMP 2000]

● Fixing 2-additive labeling  exact labeling: 0.5 log23 n extra bits per node

35Adrian Kosowski Distance Labeling

State-of-the-art: unweighted graphs

36Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

 ...

(0.5 log23) n bits/node
O(1) query time

[Alstrup, Gavoille, Halvorsen,
and Petersen, SODA 2016]

Distance oracles Distance labeling Hub labeling

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

O(n) bits/node
O(n) query time

[Winkler 1984]

11 n bits/node
O(log log n) query time
[Gavoille, Peleg, Perennez, Raz
SODA 2001]

O(n) bits/node
O(n) query time

[Winkler 1984]

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

State-of-the-art: unweighted graphs

37Adrian Kosowski Distance Labeling

(0.5 log23) n bits/node
O(1) query time

[Nitto and Venturini, CPM 2008]

O(n log n) bits/node
O(1) query time

(store all distances)

0.5 n bits/node
O(n2) query time

(adjacency matrix)

 ...

(0.5 log23) n bits/node
O(1) query time

[Alstrup, Gavoille, Halvorsen,
and Petersen, SODA 2016]

Distance oracles Distance labeling Hub labeling

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

O(n) bits/node
O(n) query time

[Winkler 1984]

11 n bits/node
O(log log n) query time
[Gavoille, Peleg, Perennez, Raz
SODA 2001]

(0.5 log23) n bits/node
(1) query time

[Gawrychowski, K., Uznanski,
DISC 2016]

Hub labeling +

O(n) bits/node
O(n) query time

[Winkler 1984]

O(n) bits/node
O(n) query time

(incremental entropy
encoding of all distances)

State-of-the-art: unweighted graphs

38Adrian Kosowski Distance Labeling

0.5 n bits/node
O(n2) query time

(adjacency matrix)

Distance oracles Distance labeling

(0.5 log23) n bits/node
(1) query time

[Gawrychowski, K., Uznanski,
DISC 2016]

Hub labeling +

The right constant: 0.5 or 0.5 log2 3 ?

● Disclaimers:
- Possibly neither is right.
- Possibly different constants for the different regimes.

● We can handle nodes at large distances easily, it is constant distances
which pose problems.

● If 0.5 log2 3 is the right answer, then the entropy of the distance matrix must be
sufficiently large (log2 3 bits to encode a single entry)

● Is there a graph in which a uniformly random pair of nodes has equal
probability to be at distances 1, 2, and 3? [probably not...]

● Possible to construct a graph with equal probability of node distances
2, 3, and 4 - but there seem to be few such graphs.*
* - this does not preclude lower bounds, but makes finding them harder (no counting arguments).

39Adrian Kosowski Distance Labeling

Unweighted sparse graphs

40Adrian Kosowski Distance Labeling

O(1) bits/node
O(n) query time

(adjacency list)

Distance oracles Distance labeling Hub labeling

Ô(n / log n) bits/node
O(1) query time

[Alstrup, Dahlgaard,
Knudsen, Porat, ESA 2016]
[Gawrychowski, K.,
Uznański, DISC 2016]

Unweighted sparse graphs

41Adrian Kosowski Distance Labeling

O(1) bits/node
O(n) query time

(adjacency list)

Distance oracles Distance labeling Hub labeling

Ô(n / log n) bits/node
O(1) query time

[Alstrup, Dahlgaard,
Knudsen, Porat, ESA 2016]
[Gawrychowski, K.,
Uznański, DISC 2016]Trade-offs?

Any smaller distance labelings in sparse graphs?

● Conjectured answer: no.

● Existence of Ruzsa-Szemerédi graphs kills hub labeling.

[= Very dense graphs with almost a linear number of edge-
disjoint induced matchings.]

[More details provided during the talk]

42Adrian Kosowski Distance Labeling

What's going on for planar graphs?

43Adrian Kosowski Distance Labeling

Weighted planar graphs:

● O(n1/2log n) bits distance labeling, tight up to polylog factors. [Gavoille et al. 2001]

Unweighted planar graphs:

● Upper bound: O(n1/2) bits for hub labeling [Gawrychowski, Uznański: arXiv: 1611.06529]

● Lower bound: W(n1/3) bits distance labeling [Gavoille et al. 2001]

What's going on for planar graphs?

44Adrian Kosowski Distance Labeling

Weighted planar graphs:

● O(n1/2log n) bits distance labeling, tight up to polylog factors. [Gavoille et al. 2001]

Unweighted planar graphs:

● Upper bound: O(n1/2) bits for hub labeling [Gawrychowski, Uznański: arXiv: 1611.06529]

● Lower bound: W(n1/3) bits distance labeling [Gavoille et al. 2001]

● Evidence that the lower bound technique cannot be improved further without
significantly new ideas [Abboud, Gawrychowski, Mozes, Weimann, SODA 2018]

● Proof that distance labelings are not the best distance oracle possible when we are only
interested in distances between some subset of the nodes.
[Abboud, Gawrychowski, Mozes, Weimann, SODA 2018]

● Non-trivial fast distance oracles: Õ(1) decoding time with Õ(n2/3) space per node
[Cabello, SODA 2017]

● No comparable fast distance labelings are known.

Distance Labelings  Hub Labelings?

45Adrian Kosowski Distance Labeling

● Hub labeling techniques are practical and in practice can be implemented
in a parallelizable way.

● There seem to be no (non-artificial) graph classes where a distance labeling technique
visibly outperforms hub labeling... [Open problem: change this state of affairs!]

● Polynomial-time algorithms to O(log n)-approximate average/maximum hub set size
[Cohen et al. 2003; Goldberg et al. ICALP 2013]

● Polynomial-time algorithm to O(log diam)-approximate average hub set size for
(weighted) graphs with unique shortest paths
[Angelidakis, Makarychev, Oparin, SODA 2017]

● For planar graphs, hub labelings are not the best distance oracle known.

● But: for practical planar instances (road/infrastructure networks), they seem to be
among the best.

● Attempts at theoretical explanation: [Abraham et al. SODA 2011, K. & Viennot SODA 2017]

● Q: What's the situation for percolation graphs?

An alternative view for a hub labeling

46Adrian Kosowski Distance Labeling

● Assumption: don't care about log-factors in analysis; unique shortest path graph.

● Equivalence between a hub set and the BFS subtree it induces

BFS (v)

An alternative view for a hub labeling

47Adrian Kosowski Distance Labeling

● Assumption: don't care about log-factors in analysis; unique shortest path graph.

● Equivalence between a hub set and the BFS subtree it induces

BFS (v)

H(v)

An alternative view for a hub labeling

48Adrian Kosowski Distance Labeling

● Assumption: don't care about log-factors in analysis; unique shortest path graph.

● Equivalence between a hub set and the BFS subtree it induces

T* (v) [trimmed BFS tree]

H(v)

An alternative view for a hub labeling

49Adrian Kosowski Distance Labeling

● Assumption: don't care about log-factors in analysis; unique shortest path graph.

● Equivalence between a hub set and the BFS subtree it induces

T* (v)

H(v)

An alternative view for a hub labeling

50Adrian Kosowski Distance Labeling

● Assumption: don't care about log-factors in analysis; unique shortest path graph.

● Equivalence between a hub set and the BFS subtree it induces

T* (v)

H(v)

|H(v)|  number of leaves of T* (v)

[Angelidakis, Makarychev, Oparin, SODA 2017] [K.& Viennot, SODA 2017]

An alternative view for a hub labeling

51Adrian Kosowski Distance Labeling

● Idea: construct trees T* instead of hub sets

● Condition: Shortest u-v path is covered by union of T*(u) and T*(v)

An alternative view for a hub labeling

52Adrian Kosowski Distance Labeling

● Idea: construct trees T* instead of hub sets

● Condition: Shortest u-v path is covered by union of T*(u) and T*(v)

● Obtaining a small hub labeling  Choosing the right place to cut each tree BFS(v) to T*(v).

● Polynomial time constant-factor approximation [Angelidakis, Makarychev, Oparin, SODA 2017]

● Cutting tree branches in the middle works "in practice” [K.& Viennot, SODA 2017]

Shortest path tree for Barcelona

53Adrian Kosowski Distance Labeling

T*(Barcelona) after prunning ends of branches

54Adrian Kosowski Distance Labeling

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55

