
A (Centralized) Local Guide

Moti Medina

ECE, Ben-Gurion University of the Negev

1

Motivation for Centralized Local Algs
[Rubinfeld, Tamir, Vardi, and Xie 2011]
• Coping with “large” inputs

• “Read” small portion of the input

• Coping with “large” outputs
• Access part of output via queries.

• Can we probe “small” parts of the input to answer a query?

• Goal: sublinear number of probes per query.

• Uncoordinated Servers (i.e., no comm)
• Consistency

• Stateless ⇒ no need for comm. (answers ind. of server)

2

Example: Maximal Independent Set

• Fix a graph 𝐺 = (𝑉, 𝐸)
• Input: Sequence of queries 𝑣1, 𝑣2, … ∈ 𝑉.

• Output: Answer each query: Does 𝑣𝑖 belong to 𝑀𝐼𝑆(𝐺)?

• Required properties:
• Cent. Local pretends to know a specific solution,

• All the answers are based on the same solution,

• No preprocessing,

• Few probes per query,

• No need to store info about previous queries/answers.

3

Other Local Models

• Distributed Local Model
• input spread among network vertices
• local communication & computation (#𝑟𝑜𝑢𝑛𝑑𝑠 = 𝑜(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟))

• Property Testing
• Access input via probes.
• Output: YES/NO.

• Sub-linear approximation algorithms
• Access input via probes.
• Output: apx the size of the optimal solution.

• …

4

Outline

• Model

• Connections

• Techniques

• State-of-the-art Algs

• Local Graph Generators

Based on the survey “A (Centralized) Local Guide” by Reut Levi and Moti
Medina

5

The Cent. Local Model

6

Centralized Local Algorithm
[Rubinfeld, Tamir, Vardi, Xie 2011, Alon, Rubinfeld, Vardi, Xie 2012]

Π – computation problem over a labeled graph 𝐺.

Given a probe access to 𝐺, the local algorithm:

• Provides query access to 𝑓 ∈ 𝑆𝑜𝑙(G, Π).

• Consistent with the same 𝑓

• 𝑓 is determined by 𝐺 and internal
randomness.

• For each oracle query, use small (sub.lin.)
number of probes to 𝐺.

• (Sometimes the w.c. running time per query
is also measured)

User

Cent.Local

random
bits

memory
(state)

answer query

Cent.Local

answer probe

Query-Order-Oblivious [⋆] vs. Stateless [EMR14] Cent. Local Algs

• Query-Order-Oblivious
• Global solution does not depend on the input sequence of queries.

• [Even, M, Ron 14]: 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠 is 𝑄𝑢𝑒𝑟𝑦 − 𝑜𝑟𝑑𝑒𝑟 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠

[Göös, Hirvonen, Levi, M, Suomela 2016] Observation:

• 𝑄𝑢𝑒𝑟𝑦 − 𝑜𝑟𝑑𝑒𝑟 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠 can be sim. by 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠

• ⇒ 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠 = 𝑄𝑢𝑒𝑟𝑦 − 𝑜𝑟𝑑𝑒𝑟 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠

• Also show that 𝑆𝑡𝑎𝑡𝑒𝑓𝑢𝑙 ≠ 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠
• Variant of leader election

• 𝑂(log 𝑛) state size

•
𝑃𝑟𝑜𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠

𝑃𝑟𝑜𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙
= Ω(𝑛)

We focus on: Stateless algsOur Motto: If you tell the truth, you don't
have to remember anything.[MT] 8

Connections to Other Models
Distributed Algs,

Property Testing,

Sublinear approximation algorithms

9

Centralized Local Algorithms vs. Distributed
Local Algorithms
• Centralized Local Algorithms vs. Distributed Local Algorithms

• Centralized: directly probe any part of the input.
• Distributed: nodes communicate with their neighbors.

• Is Cent. Local Algs> Dist. Local Algs ?

• [GHLMS 16] show that stateless Cent.= Dist.
• For a large class of graph problems.
•

• ⇒ Transfer lower bounds from Dist. to Cent. !

Dist.

Det. Stateless Cent.

[Rubinfeld, Tamir, Vardi, Xie 2011,
Alon, Rubinfeld, Vardi, Xie 2012] ⋆

[Linial 1992, Peleg 2000] ≡

10

“Non-Local Probes Do Not Help
with
Many Graph Problems” by
Goos, Hirvonen, Levi, M, Suomela
(DISC 2016)

Cent. Local Algs

• (“Shared” randomness.)

• IDs are known

• Assume IDs = 1,… , 𝑛

• Known bounded degree Δ.

• Each 𝑣 ∈ V is labeled with ℓ 𝑣 ∈ Σ.

• Structure of the input graph 𝐺 = 𝑉, 𝐸 is unknown.

• Alg. Access 𝐺 = 𝑉, 𝐸 via probes
• Probe: Who are the neighbors of 𝑣8?

• Answer: {𝑣1, 𝑣20, 𝑣9000}

• User interface:

• Input: User Query 𝑞 (e.g., 𝑣 ∈ 𝑀𝐼𝑆𝐺?)

• Output: consistent 𝑓(𝑞) (e.g., Yes/No)

• Desired property Query Order Oblivious

• Resources:
• State size, (Random Seed), Computation is “for free”

• Complexity measure: #probes, State size, Seed
length

• Typically 𝑜(𝑛).

Dist. Local Algs

• (Private randomness.)

• IDs are unknown.
• 𝑛 processors

• Bounded degree Δ unknown.

• Each 𝑣 ∈ V is labeled with ℓ 𝑣 ∈ Σ.

• Structure of the input graph 𝐺 = 𝑉, 𝐸 is unknown.

• Each processor communicates with its neighbors in
synch. rounds.

• Each round, each processor: Sends messages, receives
messages, performs local computation.

• After termination each processor 𝑞 known its own
part of the output 𝑓(𝑞).

• Resources:
• Computation is “for free”.

• Complexity measure: #rounds
• Typically 𝑜(𝐷𝑖𝑎𝑚𝑡𝑒𝑟).

11

What can be Explored?

Dist. Local

• After 𝑡 rounds, processor 𝑣
knows 𝑁𝑡(𝑣).

Cent. Local

• After 𝑡 probes, the alg queried
on 𝑣 knows {𝑣} ∪ 𝑖=1

𝑡 𝑁1(𝑝𝑖).

12

From Dist. Local to Cent. Local [Parnas-Ron 07]

• Simulate Dist. Local in Cent. Local.

Det. Dist. Local alg with 𝑡 rounds ⇒

Det. Cent. Local alg with 𝑂(Δ𝑡)
probes.

13

From Cent. Local to Dist. Local ?

Binary consensus:

• Local input {0,1}

• Output:
• ∃ 𝑢 ∀ 𝑣 ∶ 𝐴𝐿𝐺 𝑣 = ℓ(𝑢)

• All nodes need to output the same output.

• The output should equal to (at least) one node.

• Cent. Local: ∀ 𝑞 ∶ 𝐴𝐿𝐺 𝑞 = ℓ(1) . 1 probe…Easy…

• Dist. Local: Ω 𝑛 rounds!
• 0000 0000

• 1111 1111

• 0000 1111

In general, Impossible!

14

Nice Graph Problems
• Bounded degree Δ.

• Defined over labeled graphs 𝐺 = (𝑉, 𝐸)
• 𝑉 = {1, … , 𝑛}

• Given 𝜋: {1, … , 𝑛} → {1,… , 𝑛}, the relabeling of 𝐺 is 𝐺𝜋 = 𝑉, 𝐸𝜋 ,

• 𝐸𝜋 = 𝜋(𝑢), 𝜋(𝑣) | 𝑢, 𝑣 ∈ 𝐸

• Set of Solutions:
• ∀ 𝑃 ∈ NICE ∀𝐺 ∶ 𝑆𝑜𝑙 𝐺, 𝑃 ⊆ 𝐷𝑜𝑚𝑎𝑖𝑛 𝐺, 𝑃 → 𝑅𝑎𝑛𝑔𝑒 𝐺, 𝑃

• E,g., for MIS: 𝑆𝑜𝑙 𝐺, 𝑃 ⊆ 𝑉 → {0,1}.

• Invariant under permutation 𝜋.
• ∀𝜋: 𝑆𝑜𝑙 𝐺, 𝑃 ∘ 𝜋 = 𝑆𝑜𝑙 𝐺𝜋 , 𝑃

• Every solution for 𝐺 is also a solution when restricted to each connected
component.
• Binary consensus is not nice (0000,1111).

• Includes: LCL on bounded degree graphs, minimum spanning forest, MaxIS, MinDS,
MinVC, Δ + 1 coloring, MaxM, edge coloring,…, APX MCM, APX MWM, APX VC,… 15

Main Result: Simulating Cent. Local in Dist. Local

Thm.

• ∀ Stateless det. Cent. Local alg. 𝐷, that solves a problem ∈ 𝑁𝐼𝐶𝐸

• with probe complexity 𝑡(𝑛) = 𝑜 log 𝑛 ,

• ∃ Det. Dist. Local alg. that solves 𝑃 by simulating 𝐷

• #𝑟𝑜𝑢𝑛𝑑𝑠 ≤ 𝑡 Θ 𝑛log 𝑛 .

Dist. Local 𝑡 Θ 𝑛log 𝑛

S.less det. Cent. Local 𝑡 𝑛

16

Proof Outline
• Goal: solve the problem on input graph 𝐺

• 𝑛 vertices, bounded degree Δ.

• Dist. Local Simulates Cent. Local on 𝐺 ∪ 𝐻:
• Disjoint graphs,

• 𝐻 is a virtual graph of Θ 𝑛log 𝑛 vertices.

• All vertices know 𝐻.

• Random “reshuffling” 𝜋 of IDs
• Known to all vertices (public randomness).

• ⇒Far probe “lands” w.h.p. in 𝐻
• 𝐻 is known ⇒ consistent answers to probes.

• Derandomization: There is a “good” 𝜋 for all graphs
• On 𝑛 vertices, bounded degree Δ.

𝑛𝑁

17

Coro: New Lower bounds in the Cent. Local Model

Ω #𝑅𝑜𝑢𝑛𝑑𝑠 𝑃, 2 log 𝑛 = Ω 𝑃𝑟𝑜𝑏𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑃, 𝑛

For Δ = 𝑂 1 .

• Example:
Ω log log ℓ|

ℓ=2 log 𝑛
= Ω log log 𝑛

• Hence:
Problem Cent. Local #Probes

(Det. Stateless)
[EMR14]

Dist.Local Lower Bound
[Linial 92, Lenzen

Wattenhofer 2008]

MIS 𝑂(log∗ 𝑛) Ω(log∗ 𝑛)

MM 𝑂(log∗ 𝑛) Ω(log∗ 𝑛)

Δ + 1 -color 𝑂(log∗ 𝑛) Ω(log∗ 𝑛)

(1 − 𝜖)-MCM 𝑂(Polylog∗ 𝑛) Ω(log∗ 𝑛)

(1 − 𝜖)-MWM 𝑂 min Γ,
𝑛

𝜖
⋅ log∗ 𝑛 Ω(log∗ 𝑛)

18

Stateless Cent. Local to “Localized” Stateless Cent. Local

Thm.

• ∀ Stateless Cent. Local alg. 𝐴, that
solves a problem ∈ 𝑁𝐼𝐶𝐸
• Probe complexity 𝑡(𝑛) = 𝑜 𝑛1/4 Δ ,
• Seed length 𝑠 𝑛 ,
• Error probability ℙ𝕣 𝐴 .

• ∃ Stateless Cent. Local alg. that solves
𝑃 by simulating 𝐴
• Probe complexity 𝑡 𝑛4 ,
• Probe radius 𝑡 𝑛4 ,

• Seed length 𝑠 𝑛4 + 𝑂 𝑡 𝑛4 ⋅ Δ ⋅ log 𝑛 ,
• Error probability ℙ𝕣 𝐴 + 𝑂 1 𝑛 .

Remarks:

• Polynomial “blow-up”.

• Constructive.

• Applies also for randomized algs.

• [Levi, Rubinfeld, Yodpinyanee 2016]
• Rand. (1 − 𝜖)-MCM with remote probes,
• Probe complexity 𝑃𝑜𝑙𝑦(Δ, log 𝑛),
• Underlying assumption that the input

graph is connected,
• ⇒simulation cannot be applied.

S.less Cent. Local 𝑡 𝑛4

S.less Cent. Local 𝑡 𝑛

19

Conclusion

20

Open Questions

• Smaller “blow-up” for Cent. Local to Dist. Local ?

• Constructive simulation for Cent. Local to Dist. Local ?

• Carrying lower bounds that depend also on Δ .

21

Cent. Local vs. Property Testing

• Property Testing
• Distinguish: Have a property/𝜖 −far from having the property.
• General scheme (one sided error):

• Probe the object, #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑓 𝜖−1 , 𝑜(𝑂𝑏𝑗𝑒𝑐𝑡)
• If object have the property answer YES,
• If the object is 𝜖 −far answer NO w.p≥ 2/3

• A tester answers a question about a global property by inspecting the
object locally.

• Borrowing lower bounds from Property Testing to Cent. Local.
• Example: Using LSSG Cent.Local in cycle-freeness testing [Levi Ron Rubinfeld

14]

22

Cent. Local to Sublinear Approximation
By Example: Vertex Cover (Adapted from [Parnas Ron 2007])

• Given a (det) Cent.Local alg 𝐴𝐿𝐺 for 𝛼-apx VC
• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑝
• 𝐴𝐿𝐺 𝑣 = 1 ↔ 𝑣 ∈ 𝑉𝐶

• U.a.r select 𝑠 = 𝑂(𝜖−2) vertices from 𝐺.
• Denote the selected subset by 𝑆.

• For each 𝑣 ∈ 𝑆,
• 𝜒𝑣 ← 𝐴𝐿𝐺(𝑣)

• Output: 𝑉𝐶 =
𝑛

𝑠
⋅ 𝑣∈𝑠 𝜒𝑣 +

𝜖

2
𝑛.

• We get:
• 𝛼 ⋅ 𝑂𝑃𝑇 ≤ 𝑉𝐶 ≤ 𝛼 ⋅ 𝑂𝑃𝑇 + 𝜖 ⋅ 𝑛 w.p.≥ 2/3

• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝜖−2 ⋅ 𝑝

23

Carrying Lower bounds from Sublinear Approximation to Cent. Local #1
By Example: Vertex Cover (Adapted from [Parnas Ron 2007])

• Given a (det) Cent.Local alg 𝐴𝐿𝐺 for 𝛼-apx VC
• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑝

• We get:
• 𝛼 ⋅ 𝑂𝑃𝑇 ≤ 𝑉𝐶 ≤ 𝛼 ⋅ 𝑂𝑃𝑇 + 𝜖 ⋅ 𝑛 w.p.≥ 2/3

• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝜖−2 ⋅ 𝑝

• Sublin apx lower bound:

• ∀ 𝛼 > 1, 𝑏 ≤
𝑛−1

4𝛼
, 𝜖 <

1

4

• ∀(𝛼, 𝜖)-apx VC alg requires Ω(𝑏) probes
• Δ = Θ(𝑏)

⇒ ∀ 𝛼-apx VC Cent.Local alg requires Ω(Δ) probes
24

Carrying Lower bounds from Sublinear Approximation to Cent. Local #2
By Example: Vertex Cover (Adapted from [Trevisan] [Parnas Ron 2007])

• Given a (det) Cent.Local alg 𝐴𝐿𝐺 for 𝛼-apx VC
• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑝

• We get:
• 𝛼 ⋅ 𝑂𝑃𝑇 ≤ 𝑉𝐶 ≤ 𝛼 ⋅ 𝑂𝑃𝑇 + 𝜖 ⋅ 𝑛 w.p.≥ 2/3

• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝜖−2 ⋅ 𝑝

• Sublin apx lower bound:
• ∀ 𝛾, 𝜖 constants

• ∃Δ constant

• ∀(2 − 𝛾, 𝜖)-apx VC alg requires Ω(𝑛) probes
• For graphs of degree Δ

⇒ ∀2 − 𝛾-apx VC Cent.Local alg requires Ω(𝑛) probes
25

Outline

• Model

• Connections

• Techniques

• State-of-the-art Algs

• Local Graph Generators

26

Techniques

27

Localization of Local-Sequential Algs [Mansour,
[Rubinstein, Vardi, Xie 2012], [Even,M,Ron 2014]

• Greedy Sequential MIS Algorithm:
• 𝑀𝐼𝑆 ← ∅

• Fix vertex ordering 𝑣1, … , 𝑣𝑛
• For 𝑖 = 1 to 𝑛:

• Add 𝑣𝑖 to 𝑀𝐼𝑆 if 𝑀𝐼𝑆 ∩ Γ 𝑣𝑖 = ∅

• Similar Greedy algs:
• Δ + 1 greedy vertex coloring

• Maximal Matching

• Question: Can we simulate Greedy algs by a Cent. Local alg?

28

Localization of Local-Sequential Algs, cont.

• Assume 𝑂𝐵𝑅(𝑝, 𝑟) Cent. Local alg
• Query: {𝑢, 𝑣} ∈ 𝐸

• Output: 𝑢 → 𝑣 𝑜𝑟 𝑣 → 𝑢

• Probe complexity 𝑝

• Objective: compute an acyclic orientation with maximum rechability 𝑟.

• Simulate the Greedy Sequential MIS Algorithm – how?
• DFS-MIS!

29

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

MIS with directed DFS. Query: is v in the MIS?

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

MIS with directed DFS. Query: is v in the MIS? No!

Obs. #𝑝𝑟𝑜𝑏𝑒𝑠 = reachability set of 𝑣.
• 𝑂𝐵𝑅 𝑝, 𝑟 ⇒ #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑟

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

Amplification via Far Probes

• We saw that “far” probes are not useful for Nice problems.

• In sublinear apx, far probes are used for estimation.
• Apx size of Maximum Matching, Minimum Vertex Cover, etc.

• Can also be used for Amplification [Levi, Rubinfeld, Yodpinyanee
2016]
• Given rand Cent.Local

• Success prob. ≥ 𝟐/𝟑

• ⇒Success prob. ≥ 𝟏 − 𝟏/𝐏𝐨𝐥𝐲(𝒏)

42

Amplification via Far Probes, cont.
• Can also be used for Amplification [Levi, Rubinfeld, Yodpinyanee 2016]

• Given rand Cent.Local
• Success prob. ≥ 2/3
• ⇒Success prob. ≥ 1 − 1/Poly(𝑛)

• Idea:
1. Pick u.a.r. a random seed,
2. Estimation of solution by a random sample (problem dep.),

• Far probes.

3. If estimation is “bad” then repeat.
4. Fix the “good” seed.

• Total of ≈ #𝑝𝑟𝑜𝑏𝑒𝑠 𝑎𝑙𝑔 ⋅ log 𝑛

• Can be used every time before answering a query, or

• As a preprocessing stage.

• Example: 1 − 𝜖 −𝑀𝐶𝑀.

43

Local Improvement [Nguyen, Onak 2008]
By Example: Maximum Cardinality Matching.

• Following [Hopcroft, Karp 73]:

• (1 − 𝜖)-apx “Global” alg:
• For 𝑖 = 0 to 1/𝜖 do

• 𝑃𝑖+1 ← 𝑀𝑖 −Aug. paths of length 2𝑖 + 1,

• 𝑃𝑖+1
∗ ← 𝑀𝐼𝑆(intersection graph over 𝑃𝑖+1),

• 𝑀𝑖+1 ← 𝑀𝑖⨁𝐸(𝑃𝑖+1
∗).

•Challenge [LPSP-08, NO-08, MV-13]
• Simulate by a dist. alg/ CENTLOCAL?

44

Local Improvement [NO 08]
By Example: Maximum Cardinality Matching.

• Technique introduced for sublin-apx-algs

• Global alg with 𝑘 phases to 𝑘 Cent.Loal algs for each phase.
• 𝑖th oracle gives access tp 𝑖th phase’s output.

• “Inner” queries are generated to “previous” oracles.

• Each oracle probes also the graph.

• Simulation of (1 − 𝜖)-apx

global alg by Cent.Loal
• Requires sim probes to 𝑃𝑖+1.

45

(1 − 𝜖)-apx “Global” alg:
For 𝑖 = 0 to 1/𝜖 do

𝑃𝑖+1 ← 𝑀𝑖 −Aug. paths of length 2𝑖 + 1,
𝑃𝑖+1
∗ ← 𝑀𝐼𝑆(intersection graph over 𝑃𝑖+1),
𝑀𝑖+1 ← 𝑀𝑖⨁𝐸(𝑃𝑖+1

∗).

Outline

• Model

• Connections

• Techniques

• State-of-the-art Algs

• Local Graph Generators

46

State-of-the-Art Algs

47

Graph Coloring Algs

• Graph 𝐺 = 𝑉, 𝐸

• 𝑐-coloring of 𝐺
• 𝑐: 𝑉 → [𝑐], 𝑐 ∈ ℕ

• ∀ 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑐 𝑢 ≠ 𝑐(𝑣)

48

Δ2-coloring

• [Linial 1992]: Dist.Local[𝑂(log∗ 𝑛)]

• Simple Dist.Local to Cent.Local: Cent.Local ΔO(log
∗ 𝑛)

• [Even, M, Ron 2014]: Cent.Local[Δ4 ⋅ log∗ 𝑛]
• Partition 𝐺 into edge-disjoint subgraphs od degree 2 [Barenboim, Elkin, Kuhn

2014]

• ⇒ Simple Dist.Local to Cent.Local on each subgraph: Cent.Local[𝑂(log∗ 𝑛)]

• ⇒ 4Δ-coloring

• Apply color reduction tech. by [Linial 1992]: Dist.Local[𝑂(1)]
⇒Cent.Local[Poly(Δ)].

49

(Δ + 1)-coloring

• [Even,M,Ron 2014]: Localization of Greedy coloring: Cent.Local Δ𝑂 Δ
2
⋅ log∗ 𝑛

• [Fraigniaud, Heinrich, Kosoeski 2016]: Cent.Local Δ𝑂 Δ⋅log2.5 Δ ⋅ log∗ 𝑛

• Given Δ2-coloring

• From Δ2 to (Δ + 1)-coloring: Dist.Local 𝑂 Δ ⋅ log2.5 Δ

• We already know how to color efficiently in Δ2 colors.

• We get the new bound by applying Dist.Local to Cent.Local.

50

Coloring: Open questions

• Lower bounds in term of Δ.

• Randomized Algs?

51

Acyclic Orientation with Bounded Reachability (OBR)
[Even, M, Ron 2014]

• Instance: A graph 𝐺 = 𝑉, 𝐸

• Solution: Directed acyclic graph 𝐻 = (𝑉, 𝐴)
• Underlying graph is 𝐺

• Objective: Minimize max reachability
• max

𝑣
| 𝑢 𝑣 ⇝ 𝑢}|

• Cent.Local version:
• “is the edge from 𝑢 to 𝑣 is outgoing?

• Trivial bad solution: From high to low ID

52

OBR: Randomized Algs

• Randomized ranking [Nguyen, Onak 2008]:
• 𝑟 𝑣 ← 𝑈[0,1]

• 𝔼 𝑅𝑒𝑎𝑐ℎ = 𝑒Δ/Δ

• 𝑅𝑒𝑎𝑐ℎ = 2𝑂 Δ log 𝑛 w.h.p. [Reingold, Vardi 2016]
• 𝑂(log 𝑛) seed length.

53

OBR: Deterministic Algs

• [Even,M,Ron 2014]: Observation: use vertex 𝑐-coloring
• 𝑢 → 𝑣 if 𝑐 𝑢 > 𝑐(𝑣)

• 𝑅𝑒𝑎𝑐ℎ ≤ 𝑂(Δ𝑐)

• Apply coloring algs:
• Δ2-coloring: Cent.Local[Δ4 ⋅ log∗ 𝑛]

• (Δ + 1)-coloring: Cent.Local Δ𝑂 Δ⋅log2.5 Δ ⋅ log∗ 𝑛

• Looks “to expensive” at first – actually beneficial.

54

OBR: Open questions

• Optimization version: minimize maximum reachability.
• Apx alg

• Lower bounds in terms of Δ.

55

Maximal Independent Set (MIS) (and Maximal
Matching)

• Instance: Graph 𝐺 = 𝑉, 𝐸

• 𝑀𝐼𝑆 ⊆ 𝑉
• Each pair in MIS is not an edge

• Set is maximal w.r.t. inclusion

• Cent.Local version:
• “is vertex 𝑣 is in the MIS?”

56

MIS: Deterministic Algs

• [Even,M,Ron 2014]: Cent.Local Δ𝑂(Δ) ⋅ log∗ 𝑛

• Use Cent.Local Δ𝑂 Δ⋅log2.5 Δ ⋅ log∗ 𝑛

• Obtain reach of Δ𝑂(Δ)

• Follows by Localization of Greedy coloring.

57

MIS: Randomized Algs

• [Mohsen 2016]: Cent.Local 2𝑂 log
2 Δ ⋅ log2 𝑛 w.h.p

• Space: 2𝑂 log
2 Δ ⋅ log3 𝑛

• Shattering [Alon, Rubinfeld, Vardi, Xie 2012], [Beck 91]

• “Brute force” on each piece.

58

Efficient Exploration of the Reachability Set
By example: MIS

• Also called “pruning”.

• Applied [Yoshida Yamamoto, Ito 2012], [Onak, Ron, Rosen, Rubinfeld
2012] in the context of Sublin-apx.

• A “twist” by [Yoshida Yamamoto, Ito 2012]:
• Scan the reachability set from lower rank to higher rank

• 𝔼 𝑅𝑒𝑎𝑐ℎ = 𝑒Δ/Δ goes down to 𝔼 𝑅𝑒𝑎𝑐ℎ ≈ 𝑂(Δ2)

59

Pruning: “Open” questions

• Simpler proof of [Yoshida Yamamoto, Ito 2012].

60

Approximate Maximum (Weighted) Matching
(MCM,MWM)

• Instance: Graph 𝐺 = 𝑉, 𝐸

• 𝑀𝐶𝑀 ⊆ 𝐸
• MCM is a matching, subgraph of deg 1.
• Maximum possible number of edge.

• 𝛼-apx version:
• 𝐴𝐿𝐺 ≥ 𝛼 ⋅ 𝑀𝐶𝑀∗

• Cent.Local version:
• “is edge 𝑒 is in the 𝛼-apx MCM?”

61

MCM,MWM: Deterministic Algs

• [Even,M,Ron 2014] (1 − 𝜖)-MCM: Cent.Local log∗ 𝑛 𝑂(
1

𝜖
) ⋅ 2𝑂(Δ

1/𝜖)

• “Local improvement” over [Hopcroft and Karp 1973]

• With Cent.Local MIS

• [Even,M,Ron] (1 − 𝜖)-MWM: Cent.Local log∗ 𝑛 𝑂(
1

𝜖
log
1

𝜖
) ⋅ (𝑤𝑚𝑖𝑛(𝜖))

𝑂(Δ1/𝜖)

• “Local improvement” over [Hougardy, Vinkemeir 2006]

• With (a variant of) Cent.Local MIS

62

• [Fischer, Ghaffari 2017] Θ(1)-MWM: Cent.Local[2log
3 Δ ⋅ log∗ 𝑛]

• Transform the graph to Bipartite graph.

• Compute frac apx MCM + rounding by Dist.Local[𝑂(log2 Δ)]

• MIS in Dist.Local[𝑂(log∗ Δ)] [Panconesi, Rizzi 2001]
• Requires Δ2-coloring

63

MCM,MWM: Deterministic Algs, cont.

MCM,MWM: Randomzied Algs

• [Levi, Rubinfeld, Yodpinyanee 2016]: Cent.Local Poly Δ ⋅ log2 𝑛 log log 𝑛
• For Constant 𝜖 (exp dep.)

• Seed length: Poly Δ ⋅ log3 𝑛 log log 𝑛

• Amplification via Far Probes over [Yoshida Yamamoto, Ito 2012]
• Roughly: expected #probes = Poly Δ .

64

MCM,MWM: Open questions

• Best of all worlds? 𝑃𝑜𝑙𝑦 Δ and log∗ 𝑛? Study the t.off?

• Det MCM,MWM:
• Gap in terms of 𝑛

65

Outline

• Model

• Connections

• Techniques

• State-of-the-art Algs

• Local Graph Generators

66

Local Generation
Based on the paper “Sublinear Random Access Generators for Preferential Attachment Graphs”, by
Guy Even, Reut Levi, Moti Medina, and Adi Rosén, (ICALP 2017).

67

Motivation

Can we give access to a very large random graph without generating
the whole graph?

Random Access Generator

• 𝔇𝑛 - distribution over graphs with 𝑛 vertices labelled by 1,… , 𝑛.

• Random Access Generator for 𝔇𝑛 gives random access to
a graph 𝐺 ∼ 𝔇𝑛

• Interface:

• The time complexity of the generator per query should be small.

Next-neighbor(𝑖)
• Returns next neighbor of vertex 𝑖

(or ⊥ if all neighbors already returned).
• Neighbors are sorted by their labels.

Barabási–Albert Preferential Attachment
Model (BA-graphs)
Out-degree 𝑚 = 1.

Vertex 𝑣𝑛 points to vertex 𝑣𝑖 with probability
deg 𝑖, 𝐺𝑛−1

2(𝑛−1)
.

𝑣1

𝑣2𝑣3

𝑣4

𝑣5

rich get richerpower-law degree
distribution

Recursive Tree Model

Out-degree 𝑚 = 1.

Vertex 𝑣𝑛 points to vertex 𝑣𝑖 with probability
1

𝑛−1
.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎

uniform parent

Reduction from BA-graphs to Recursive Tree

In BA-graphs: 𝑣𝑛 points to 𝑣𝑖 with probability:

deg 𝑖, 𝐺𝑛−1
2(𝑛 − 1)

=
1

2
⋅

1

𝑛 − 1
+
deg𝑖𝑛 𝑖, 𝐺𝑛−1
𝑛 − 1

Pointers are direct (blue) or in-direct (red) with probability 1/2.

u v means: parent(u) = v

u v means: parent(u) = parent(v)

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎

Model

The performance is measured by:

1) running time (per query)

2) memory

3) random bits

as a function of:

𝑛 - size of the graph

𝑞 - the number of queries

User

Graph
Generator

random
bits

memory
(state)

answer query

Result

Random Access Generator for BA-graphs:

1) running time (per query): Poly(log 𝑛)

2) memory: 𝑞 ⋅ Poly(log 𝑛)

3) random bits: 𝑞 ⋅ Poly(log 𝑛)

𝑛 = size of the graph
𝑞 = total #queries

Open Questions

• Random Access Generators for other evolving graphs models (e.g.,
Forest-Fire Model, Random Surfer Webpage Model).

• Random Access Generators for other Markov Chains.

I didn’t cover

• Cent. Local Mechanism Design [Hassidim, Mansour, Vardi 2009].

• Apx Maximum Weight Spanning tree [Mansour, Patt-Shamir, Vardi 2015].

• Local Sparse Spanning Graphs [Levi, Ron, Rubinfeld 2014] [Levi, Ron, Rubinfeld 2016],
[Levi, Moshkovitz, Ron, Rubinfeld, Shapira 2016], [Lenzen, Levi]

• Random access support for Lempel-Ziv compression [Dutta, Levi, Ron, Rubinfeld 2013]

• Partition Oracle [Hassidim, Kelner, Nguyen, Onak 2009], [Levi, Ron 2013]

• Shattering technique [Beck 1991] [Rubinfeld Tamir Vardi Xie 2011] [Alon Rubinfeld Vardi
Xie 2012] [Barenboim Elkin Pettie Schneider 2012][Ghaffari 2016] [Levi, Rubinfeld,
Yodpinyanee 2016]

• 2-coloring of Bipartite Graphs [Czumaj, Mansour, Vardi 2017]

• Apx Vertex Cover [Feige, Mansour, Schapire 2015]

• MWM to MCM [Mansour, Patt-Shamir, Vardi], Set cover [Indyk, Mahabadi, Rubinfeld,
Vakilian, Yodpinyanee 2018]…

76

Thank you!
• moti.medina@gmail.com

• Survey is available in:
https://sites.google.com/site/motimedina/publications/LocalGuide

• These slides are based on talk slides by Reut Levi and myself.

77

mailto:moti.medina@gmail.com
https://sites.google.com/site/motimedina/publications/LocalGuide

