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Motivation for Centralized Local Algs
[Rubinfeld, Tamir, Vardi, and Xie 2011]
• Coping with “large” inputs

• “Read” small portion of the input

• Coping with  “large” outputs 
• Access part of output via queries.

• Can we probe “small” parts of the input to answer a query?

• Goal: sublinear number of probes per query.

• Uncoordinated Servers (i.e., no comm)
• Consistency

• Stateless ⇒ no need for comm. (answers ind. of server)
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Example: Maximal Independent Set

• Fix a graph 𝐺 = (𝑉, 𝐸)
• Input: Sequence of queries 𝑣1, 𝑣2, … ∈ 𝑉.

• Output: Answer each query: Does 𝑣𝑖 belong to 𝑀𝐼𝑆(𝐺)?

• Required properties:
• Cent. Local pretends to know a specific solution,

• All the answers are based on the same solution,

• No preprocessing,

• Few probes per query,

• No need to store info about previous queries/answers.
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Other Local Models

• Distributed Local Model
• input spread among network vertices
• local communication & computation (#𝑟𝑜𝑢𝑛𝑑𝑠 = 𝑜(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟))

• Property Testing
• Access input via probes.
• Output: YES/NO.

• Sub-linear approximation algorithms
• Access input via probes.
• Output: apx the size of the optimal solution.

• …
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Outline

• Model

• Connections

• Techniques

• State-of-the-art Algs

• Local Graph Generators

Based on the survey “A (Centralized) Local Guide” by Reut Levi and Moti 
Medina
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The Cent. Local Model
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Centralized Local Algorithm
[Rubinfeld, Tamir, Vardi, Xie 2011, Alon, Rubinfeld, Vardi, Xie 2012]

Π – computation problem over a labeled graph 𝐺.

Given a probe access to 𝐺, the local algorithm:

• Provides query access to 𝑓 ∈ 𝑆𝑜𝑙(G, Π).

• Consistent with the same 𝑓

• 𝑓 is determined by 𝐺 and internal 
randomness.

• For each oracle query, use small (sub.lin.) 
number of probes to 𝐺.

• (Sometimes the w.c. running time per query 
is also measured)

User

Cent.Local

random 
bits

memory 
(state)

answer query

Cent.Local

answer probe



Query-Order-Oblivious [⋆] vs. Stateless [EMR14] Cent. Local Algs

• Query-Order-Oblivious
• Global solution does not depend on the input sequence of queries. 

• [Even, M, Ron 14]: 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠 is 𝑄𝑢𝑒𝑟𝑦 − 𝑜𝑟𝑑𝑒𝑟 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠

[Göös, Hirvonen, Levi, M, Suomela 2016] Observation: 

• 𝑄𝑢𝑒𝑟𝑦 − 𝑜𝑟𝑑𝑒𝑟 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠 can be sim. by 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠

• ⇒ 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠 = 𝑄𝑢𝑒𝑟𝑦 − 𝑜𝑟𝑑𝑒𝑟 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠

• Also show that 𝑆𝑡𝑎𝑡𝑒𝑓𝑢𝑙 ≠ 𝑆𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠
• Variant of leader election

• 𝑂(log 𝑛) state size

•
𝑃𝑟𝑜𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠

𝑃𝑟𝑜𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙
= Ω(𝑛)

We focus on: Stateless algsOur Motto: If you tell the truth, you don't 
have to remember anything.[MT] 8



Connections to Other Models
Distributed Algs,

Property Testing,

Sublinear approximation algorithms
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Centralized Local Algorithms vs. Distributed
Local Algorithms
• Centralized Local Algorithms vs. Distributed Local Algorithms

• Centralized: directly probe any part of the input.
• Distributed: nodes communicate with their neighbors.

• Is Cent. Local Algs> Dist. Local Algs ?

• [GHLMS 16] show that stateless Cent.= Dist. 
• For a large class of graph problems.
•

• ⇒ Transfer lower bounds from Dist. to Cent. !

Dist.

Det. Stateless Cent.

[Rubinfeld, Tamir, Vardi, Xie 2011, 
Alon, Rubinfeld, Vardi, Xie 2012] ⋆

[Linial 1992, Peleg 2000] ≡

10

“Non-Local Probes Do Not Help 
with 
Many Graph Problems” by 
Goos, Hirvonen, Levi, M, Suomela
(DISC 2016)



Cent. Local Algs

• (“Shared” randomness.)

• IDs are known

• Assume IDs = 1,… , 𝑛

• Known bounded degree Δ.

• Each 𝑣 ∈ V is labeled with ℓ 𝑣 ∈ Σ.

• Structure of the input graph 𝐺 = 𝑉, 𝐸 is unknown.

• Alg. Access  𝐺 = 𝑉, 𝐸 via probes
• Probe: Who are the neighbors of 𝑣8?

• Answer: {𝑣1, 𝑣20, 𝑣9000}

• User interface:

• Input: User Query 𝑞 (e.g., 𝑣 ∈ 𝑀𝐼𝑆𝐺?)

• Output: consistent 𝑓(𝑞) (e.g., Yes/No)

• Desired property Query Order Oblivious

• Resources:
• State size, (Random Seed), Computation is “for free”

• Complexity measure: #probes, State size, Seed 
length

• Typically 𝑜(𝑛).

Dist. Local Algs

• (Private randomness.)

• IDs are unknown.
• 𝑛 processors

• Bounded degree Δ unknown.

• Each 𝑣 ∈ V is labeled with ℓ 𝑣 ∈ Σ.

• Structure of the input graph 𝐺 = 𝑉, 𝐸 is unknown.

• Each processor communicates with its neighbors in 
synch. rounds.

• Each round, each processor: Sends messages, receives 
messages, performs local computation.

• After termination each processor 𝑞 known its own 
part of the output 𝑓(𝑞).

• Resources:
• Computation is “for free”.

• Complexity measure: #rounds
• Typically 𝑜(𝐷𝑖𝑎𝑚𝑡𝑒𝑟).
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What can be Explored?

Dist. Local

• After 𝑡 rounds,  processor 𝑣
knows 𝑁𝑡(𝑣).

Cent. Local

• After 𝑡 probes,  the alg queried 
on 𝑣 knows {𝑣} ∪  𝑖=1

𝑡 𝑁1(𝑝𝑖).
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From Dist. Local to Cent. Local [Parnas-Ron 07]

• Simulate Dist. Local in Cent. Local.

Det. Dist. Local alg with 𝑡 rounds ⇒

Det. Cent. Local alg with 𝑂(Δ𝑡)
probes.
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From Cent. Local to Dist. Local ? 

Binary consensus:

• Local input {0,1}

• Output:
• ∃ 𝑢 ∀ 𝑣 ∶ 𝐴𝐿𝐺 𝑣 = ℓ(𝑢)

• All nodes need to output the same output.

• The output should equal to (at least) one node.

• Cent. Local: ∀ 𝑞 ∶ 𝐴𝐿𝐺 𝑞 = ℓ(1) . 1 probe…Easy…

• Dist. Local: Ω 𝑛 rounds!
• 0000 0000

• 1111 1111

• 0000 1111

In general, Impossible!
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Nice Graph Problems
• Bounded degree Δ.

• Defined over labeled graphs 𝐺 = (𝑉, 𝐸)
• 𝑉 = {1, … , 𝑛}

• Given 𝜋: {1, … , 𝑛} → {1,… , 𝑛}, the relabeling of 𝐺 is 𝐺𝜋 = 𝑉, 𝐸𝜋 ,

• 𝐸𝜋 = 𝜋(𝑢), 𝜋(𝑣) | 𝑢, 𝑣 ∈ 𝐸

• Set of Solutions: 
• ∀ 𝑃 ∈ NICE ∀𝐺 ∶ 𝑆𝑜𝑙 𝐺, 𝑃 ⊆ 𝐷𝑜𝑚𝑎𝑖𝑛 𝐺, 𝑃 → 𝑅𝑎𝑛𝑔𝑒 𝐺, 𝑃

• E,g., for MIS: 𝑆𝑜𝑙 𝐺, 𝑃 ⊆ 𝑉 → {0,1}.

• Invariant under permutation 𝜋.
• ∀𝜋: 𝑆𝑜𝑙 𝐺, 𝑃 ∘ 𝜋 = 𝑆𝑜𝑙 𝐺𝜋 , 𝑃

• Every solution for 𝐺 is also a solution when restricted to each connected 
component.
• Binary consensus is not nice (0000,1111).

• Includes: LCL on bounded degree graphs, minimum spanning forest, MaxIS, MinDS, 
MinVC, Δ + 1 coloring, MaxM, edge coloring,…, APX MCM, APX MWM, APX VC,… 15



Main Result: Simulating Cent. Local in Dist. Local

Thm.

• ∀ Stateless det. Cent. Local alg. 𝐷, that solves a problem ∈ 𝑁𝐼𝐶𝐸

• with probe complexity 𝑡(𝑛) = 𝑜 log 𝑛 , 

• ∃ Det. Dist. Local alg. that solves 𝑃 by simulating 𝐷

• #𝑟𝑜𝑢𝑛𝑑𝑠 ≤ 𝑡 Θ 𝑛log 𝑛 .

Dist. Local 𝑡 Θ 𝑛log 𝑛

S.less det. Cent. Local 𝑡 𝑛

16



Proof Outline
• Goal: solve the problem on input graph 𝐺

• 𝑛 vertices, bounded degree Δ.

• Dist. Local Simulates Cent. Local on 𝐺 ∪ 𝐻:
• Disjoint graphs,

• 𝐻 is a virtual graph of Θ 𝑛log 𝑛 vertices.

• All vertices know 𝐻.

• Random “reshuffling” 𝜋 of IDs
• Known to all vertices (public randomness).

• ⇒Far probe “lands” w.h.p. in 𝐻
• 𝐻 is known ⇒ consistent answers to probes.

• Derandomization: There is a “good” 𝜋 for all graphs
• On 𝑛 vertices, bounded degree Δ.

𝑛𝑁
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Coro: New Lower bounds in the Cent. Local Model

Ω #𝑅𝑜𝑢𝑛𝑑𝑠 𝑃, 2 log 𝑛 = Ω 𝑃𝑟𝑜𝑏𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑃, 𝑛

For Δ = 𝑂 1 .

• Example:
Ω log log ℓ|

ℓ=2 log 𝑛
= Ω log log 𝑛

• Hence: 
Problem Cent. Local #Probes 

(Det. Stateless)
[EMR14]

Dist.Local Lower Bound
[Linial 92, Lenzen

Wattenhofer 2008]

MIS 𝑂(log∗ 𝑛) Ω(log∗ 𝑛)

MM 𝑂(log∗ 𝑛) Ω(log∗ 𝑛)

Δ + 1 -color 𝑂(log∗ 𝑛) Ω(log∗ 𝑛)

(1 − 𝜖)-MCM 𝑂(Polylog∗ 𝑛) Ω(log∗ 𝑛)

(1 − 𝜖)-MWM 𝑂 min Γ,
𝑛

𝜖
⋅ log∗ 𝑛 Ω(log∗ 𝑛)
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Stateless Cent. Local to “Localized” Stateless Cent. Local

Thm.

• ∀ Stateless Cent. Local alg. 𝐴, that 
solves a problem ∈ 𝑁𝐼𝐶𝐸
• Probe complexity 𝑡(𝑛) = 𝑜  𝑛1/4 Δ , 
• Seed length 𝑠 𝑛 ,
• Error probability ℙ𝕣 𝐴 .

• ∃ Stateless Cent. Local alg. that solves 
𝑃 by simulating 𝐴
• Probe complexity 𝑡 𝑛4 ,
• Probe radius 𝑡 𝑛4 ,

• Seed length 𝑠 𝑛4 + 𝑂 𝑡 𝑛4 ⋅ Δ ⋅ log 𝑛 ,
• Error probability ℙ𝕣 𝐴 + 𝑂  1 𝑛 .

Remarks:

• Polynomial “blow-up”.

• Constructive.

• Applies also  for randomized algs.

• [Levi, Rubinfeld, Yodpinyanee 2016] 
• Rand. (1 − 𝜖)-MCM with remote probes,
• Probe complexity 𝑃𝑜𝑙𝑦(Δ, log 𝑛), 
• Underlying  assumption that the input 

graph is connected,
• ⇒simulation cannot be applied.

S.less Cent. Local 𝑡 𝑛4

S.less Cent. Local 𝑡 𝑛
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Conclusion
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Open Questions

• Smaller “blow-up” for Cent. Local to Dist. Local ?

• Constructive simulation for Cent. Local to Dist. Local ?

• Carrying lower bounds that depend also on  Δ .
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Cent. Local vs. Property Testing

• Property Testing
• Distinguish: Have a property/𝜖 −far from having the property.
• General scheme (one sided error): 

• Probe the object, #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑓 𝜖−1 , 𝑜( 𝑂𝑏𝑗𝑒𝑐𝑡 )
• If object have the property answer YES,
• If the object is 𝜖 −far answer NO w.p≥ 2/3

• A tester answers a question about a global property by inspecting the 
object locally.

• Borrowing lower bounds from Property Testing to Cent. Local.
• Example: Using LSSG Cent.Local in cycle-freeness testing [Levi Ron Rubinfeld 

14]
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Cent. Local to Sublinear Approximation
By Example: Vertex Cover (Adapted from [Parnas Ron 2007])

• Given a (det) Cent.Local alg 𝐴𝐿𝐺 for 𝛼-apx VC
• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑝
• 𝐴𝐿𝐺 𝑣 = 1 ↔ 𝑣 ∈ 𝑉𝐶

• U.a.r select 𝑠 = 𝑂(𝜖−2) vertices from 𝐺.
• Denote the selected subset by 𝑆.

• For each 𝑣 ∈ 𝑆, 
• 𝜒𝑣 ← 𝐴𝐿𝐺(𝑣)

• Output:  𝑉𝐶 =
𝑛

𝑠
⋅  𝑣∈𝑠 𝜒𝑣 +

𝜖

2
𝑛.

• We get: 
• 𝛼 ⋅ 𝑂𝑃𝑇 ≤  𝑉𝐶 ≤ 𝛼 ⋅ 𝑂𝑃𝑇 + 𝜖 ⋅ 𝑛 w.p.≥ 2/3

• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝜖−2 ⋅ 𝑝
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Carrying Lower bounds from Sublinear Approximation to Cent. Local #1
By Example: Vertex Cover (Adapted from [Parnas Ron 2007])

• Given a (det) Cent.Local alg 𝐴𝐿𝐺 for 𝛼-apx VC
• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑝

• We get:
• 𝛼 ⋅ 𝑂𝑃𝑇 ≤  𝑉𝐶 ≤ 𝛼 ⋅ 𝑂𝑃𝑇 + 𝜖 ⋅ 𝑛 w.p.≥ 2/3

• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝜖−2 ⋅ 𝑝

• Sublin apx lower bound:

• ∀ 𝛼 > 1, 𝑏 ≤
𝑛−1

4𝛼
, 𝜖 <

1

4

• ∀(𝛼, 𝜖)-apx VC alg requires Ω(𝑏) probes
•  Δ = Θ(𝑏)

⇒ ∀ 𝛼-apx VC Cent.Local alg requires Ω( Δ) probes
24



Carrying Lower bounds from Sublinear Approximation to Cent. Local #2
By Example: Vertex Cover (Adapted from [Trevisan] [Parnas Ron 2007])

• Given a (det) Cent.Local alg 𝐴𝐿𝐺 for 𝛼-apx VC
• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑝

• We get:
• 𝛼 ⋅ 𝑂𝑃𝑇 ≤  𝑉𝐶 ≤ 𝛼 ⋅ 𝑂𝑃𝑇 + 𝜖 ⋅ 𝑛 w.p.≥ 2/3

• #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝜖−2 ⋅ 𝑝

• Sublin apx lower bound:
• ∀ 𝛾, 𝜖 constants

• ∃Δ constant

• ∀(2 − 𝛾, 𝜖)-apx VC alg requires Ω( 𝑛) probes
• For graphs of degree Δ

⇒ ∀2 − 𝛾-apx VC Cent.Local alg requires Ω( 𝑛) probes
25



Outline

• Model

• Connections

• Techniques
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Techniques
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Localization of Local-Sequential Algs [Mansour, 
[Rubinstein, Vardi, Xie 2012], [Even,M,Ron 2014]

• Greedy Sequential MIS Algorithm:
• 𝑀𝐼𝑆 ← ∅

• Fix vertex ordering 𝑣1, … , 𝑣𝑛
• For 𝑖 = 1 to 𝑛:

• Add 𝑣𝑖 to 𝑀𝐼𝑆 if 𝑀𝐼𝑆 ∩ Γ 𝑣𝑖 = ∅

• Similar Greedy algs:
• Δ + 1 greedy vertex coloring

• Maximal Matching

• Question: Can we simulate Greedy algs by a Cent. Local alg?
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Localization of Local-Sequential Algs, cont.

• Assume 𝑂𝐵𝑅(𝑝, 𝑟) Cent. Local alg
• Query: {𝑢, 𝑣} ∈ 𝐸

• Output: 𝑢 → 𝑣 𝑜𝑟 𝑣 → 𝑢

• Probe complexity 𝑝

• Objective: compute an acyclic orientation with maximum rechability 𝑟.

• Simulate the Greedy Sequential MIS Algorithm – how?
• DFS-MIS!

29
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Obs. #𝑝𝑟𝑜𝑏𝑒𝑠 = reachability set of 𝑣.
• 𝑂𝐵𝑅 𝑝, 𝑟 ⇒ #𝑝𝑟𝑜𝑏𝑒𝑠 = 𝑟



0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗



Amplification via Far Probes

• We saw that “far” probes are not useful for Nice problems.

• In sublinear apx, far probes are used for estimation.
• Apx size of Maximum Matching, Minimum Vertex Cover, etc.

• Can also be used for Amplification [Levi, Rubinfeld, Yodpinyanee
2016]
• Given rand Cent.Local

• Success prob. ≥ 𝟐/𝟑

• ⇒Success prob. ≥ 𝟏 − 𝟏/𝐏𝐨𝐥𝐲(𝒏)
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Amplification via Far Probes, cont.
• Can also be used for Amplification [Levi, Rubinfeld, Yodpinyanee 2016]

• Given rand Cent.Local
• Success prob. ≥ 2/3
• ⇒Success prob. ≥ 1 − 1/Poly(𝑛)

• Idea:
1. Pick u.a.r. a random seed,
2. Estimation of solution by a random sample (problem dep.),

• Far probes.

3. If estimation is “bad” then repeat.
4. Fix the “good” seed.

• Total of ≈ #𝑝𝑟𝑜𝑏𝑒𝑠 𝑎𝑙𝑔 ⋅ log 𝑛

• Can be used every time before answering a query, or

• As a preprocessing stage.

• Example: 1 − 𝜖 −𝑀𝐶𝑀.
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Local Improvement [Nguyen, Onak 2008]
By Example: Maximum Cardinality Matching.

• Following [Hopcroft, Karp 73]:

• (1 − 𝜖)-apx “Global” alg:
• For 𝑖 = 0 to 1/𝜖 do

• 𝑃𝑖+1 ← 𝑀𝑖 −Aug. paths of length 2𝑖 + 1,

• 𝑃𝑖+1
∗ ← 𝑀𝐼𝑆(intersection graph over 𝑃𝑖+1),

• 𝑀𝑖+1 ← 𝑀𝑖⨁𝐸(𝑃𝑖+1
∗ ).

•Challenge [LPSP-08, NO-08, MV-13]
• Simulate by a dist. alg/ CENTLOCAL?
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Local Improvement [NO 08]
By Example: Maximum Cardinality Matching.

• Technique introduced for sublin-apx-algs

• Global alg with 𝑘 phases to 𝑘 Cent.Loal algs for each phase.
• 𝑖th oracle gives access tp 𝑖th phase’s output.

• “Inner” queries are generated to “previous” oracles.

• Each oracle probes also the graph.

• Simulation of (1 − 𝜖)-apx

global alg by Cent.Loal
• Requires sim probes to 𝑃𝑖+1.

45

(1 − 𝜖)-apx “Global” alg:
For 𝑖 = 0 to 1/𝜖 do

𝑃𝑖+1 ← 𝑀𝑖 −Aug. paths of length 2𝑖 + 1,
𝑃𝑖+1
∗ ← 𝑀𝐼𝑆(intersection graph over 𝑃𝑖+1),
𝑀𝑖+1 ← 𝑀𝑖⨁𝐸(𝑃𝑖+1

∗ ).
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State-of-the-Art Algs
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Graph Coloring Algs

• Graph 𝐺 = 𝑉, 𝐸

• 𝑐-coloring of 𝐺
• 𝑐: 𝑉 → [𝑐], 𝑐 ∈ ℕ

• ∀ 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑐 𝑢 ≠ 𝑐(𝑣)
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Δ2-coloring

• [Linial 1992]: Dist.Local[𝑂(log∗ 𝑛)]

• Simple Dist.Local to Cent.Local: Cent.Local ΔO(log
∗ 𝑛)

• [Even, M, Ron 2014]: Cent.Local[Δ4 ⋅ log∗ 𝑛]
• Partition 𝐺 into edge-disjoint subgraphs od degree 2 [Barenboim, Elkin, Kuhn 

2014]

• ⇒ Simple Dist.Local to Cent.Local on each subgraph: Cent.Local[𝑂(log∗ 𝑛)]

• ⇒ 4Δ-coloring

• Apply color reduction tech. by [Linial 1992]: Dist.Local[𝑂(1)]
⇒Cent.Local[Poly(Δ)].
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(Δ + 1)-coloring

• [Even,M,Ron 2014]: Localization of Greedy coloring: Cent.Local Δ𝑂 Δ
2
⋅ log∗ 𝑛

• [Fraigniaud, Heinrich, Kosoeski 2016]: Cent.Local Δ𝑂 Δ⋅log2.5 Δ ⋅ log∗ 𝑛

• Given Δ2-coloring

• From Δ2 to (Δ + 1)-coloring: Dist.Local 𝑂 Δ ⋅ log2.5 Δ

• We already know how to color efficiently in Δ2 colors.

• We get the new bound by applying Dist.Local to Cent.Local.
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Coloring: Open questions

• Lower bounds in term of Δ.

• Randomized Algs?
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Acyclic Orientation with Bounded Reachability (OBR) 
[Even, M, Ron 2014]

• Instance: A graph 𝐺 = 𝑉, 𝐸

• Solution: Directed acyclic graph 𝐻 = (𝑉, 𝐴)
• Underlying graph is 𝐺

• Objective: Minimize max reachability 
• max

𝑣
| 𝑢 𝑣 ⇝ 𝑢}|

• Cent.Local version:
• “is the edge from 𝑢 to 𝑣 is outgoing?

• Trivial bad solution: From high to low ID
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OBR: Randomized Algs

• Randomized ranking [Nguyen, Onak 2008]:
• 𝑟 𝑣 ← 𝑈[0,1]

• 𝔼 𝑅𝑒𝑎𝑐ℎ = 𝑒Δ/Δ

• 𝑅𝑒𝑎𝑐ℎ = 2𝑂 Δ log 𝑛 w.h.p. [Reingold, Vardi 2016]
• 𝑂(log 𝑛) seed length.
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OBR: Deterministic Algs

• [Even,M,Ron 2014]: Observation: use vertex 𝑐-coloring
• 𝑢 → 𝑣 if 𝑐 𝑢 > 𝑐(𝑣)

• 𝑅𝑒𝑎𝑐ℎ ≤ 𝑂(Δ𝑐)

• Apply coloring algs:
• Δ2-coloring: Cent.Local[Δ4 ⋅ log∗ 𝑛]

• (Δ + 1)-coloring: Cent.Local Δ𝑂 Δ⋅log2.5 Δ ⋅ log∗ 𝑛

• Looks “to expensive” at first – actually beneficial.
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OBR: Open questions

• Optimization version: minimize maximum reachability.
• Apx alg

• Lower bounds in terms of Δ.

55



Maximal Independent Set (MIS) (and Maximal 
Matching)

• Instance: Graph 𝐺 = 𝑉, 𝐸

• 𝑀𝐼𝑆 ⊆ 𝑉
• Each pair in MIS is not an edge

• Set is maximal w.r.t. inclusion

• Cent.Local version:
• “is vertex 𝑣 is in the MIS?”
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MIS: Deterministic Algs

• [Even,M,Ron 2014]: Cent.Local Δ𝑂(Δ) ⋅ log∗ 𝑛

• Use Cent.Local Δ𝑂 Δ⋅log2.5 Δ ⋅ log∗ 𝑛

• Obtain reach of Δ𝑂(Δ)

• Follows by Localization of Greedy coloring.

57



MIS: Randomized Algs

• [Mohsen 2016]: Cent.Local 2𝑂 log
2 Δ ⋅ log2 𝑛 w.h.p

• Space: 2𝑂 log
2 Δ ⋅ log3 𝑛

• Shattering [Alon, Rubinfeld, Vardi, Xie 2012], [Beck 91]

• “Brute force” on each piece.
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Efficient Exploration of the Reachability Set
By example: MIS

• Also called “pruning”.

• Applied [Yoshida Yamamoto, Ito 2012], [Onak, Ron, Rosen, Rubinfeld 
2012] in the context of Sublin-apx.

• A “twist” by [Yoshida Yamamoto, Ito 2012]:
• Scan the reachability set from lower rank to higher rank

• 𝔼 𝑅𝑒𝑎𝑐ℎ = 𝑒Δ/Δ goes down to 𝔼 𝑅𝑒𝑎𝑐ℎ ≈ 𝑂(Δ2)
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Pruning: “Open” questions

• Simpler proof of [Yoshida Yamamoto, Ito 2012].
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Approximate Maximum (Weighted) Matching 
(MCM,MWM)

• Instance: Graph 𝐺 = 𝑉, 𝐸

• 𝑀𝐶𝑀 ⊆ 𝐸
• MCM is a matching, subgraph of deg 1.
• Maximum possible number of edge.

• 𝛼-apx version:
• 𝐴𝐿𝐺 ≥ 𝛼 ⋅ 𝑀𝐶𝑀∗

• Cent.Local version:
• “is edge 𝑒 is in the 𝛼-apx MCM?”
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MCM,MWM: Deterministic Algs

• [Even,M,Ron 2014] (1 − 𝜖)-MCM: Cent.Local log∗ 𝑛 𝑂(
1

𝜖
) ⋅ 2𝑂(Δ

1/𝜖)

• “Local improvement” over [Hopcroft and Karp 1973]

• With Cent.Local MIS

• [Even,M,Ron] (1 − 𝜖)-MWM: Cent.Local log∗ 𝑛 𝑂(
1

𝜖
log
1

𝜖
) ⋅ (𝑤𝑚𝑖𝑛(𝜖))

𝑂(Δ1/𝜖)

• “Local improvement” over [Hougardy, Vinkemeir 2006]

• With (a variant of) Cent.Local MIS
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• [Fischer, Ghaffari 2017] Θ(1)-MWM: Cent.Local[2log
3 Δ ⋅ log∗ 𝑛]

• Transform the graph to Bipartite graph.

• Compute frac apx MCM + rounding by Dist.Local[𝑂(log2 Δ)]

• MIS in Dist.Local[𝑂(log∗ Δ)] [Panconesi, Rizzi 2001]
• Requires Δ2-coloring
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MCM,MWM: Randomzied Algs

• [Levi, Rubinfeld, Yodpinyanee 2016]: Cent.Local Poly Δ ⋅ log2 𝑛 log log 𝑛
• For Constant 𝜖 (exp dep.)

• Seed length: Poly Δ ⋅ log3 𝑛 log log 𝑛

• Amplification via Far Probes over  [Yoshida Yamamoto, Ito 2012]
• Roughly: expected #probes = Poly Δ .
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MCM,MWM: Open questions

• Best of all worlds? 𝑃𝑜𝑙𝑦 Δ and log∗ 𝑛? Study the t.off?

• Det MCM,MWM: 
• Gap in terms of 𝑛
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Local Generation
Based on the paper “Sublinear Random Access Generators for Preferential Attachment Graphs”, by 
Guy Even, Reut Levi, Moti Medina, and  Adi Rosén, (ICALP 2017).
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Motivation

Can we give access to a very large random graph without generating 
the whole graph?



Random Access Generator

• 𝔇𝑛 - distribution over graphs with 𝑛 vertices labelled by 1,… , 𝑛.

• Random Access Generator for 𝔇𝑛 gives random access to 
a graph 𝐺 ∼ 𝔇𝑛

• Interface:

• The time complexity of the generator per query should be small.

Next-neighbor(𝑖)
• Returns next neighbor of vertex 𝑖

(or ⊥ if all neighbors already returned). 
• Neighbors are sorted by their labels. 



Barabási–Albert Preferential Attachment 
Model (BA-graphs)
Out-degree 𝑚 = 1.

Vertex 𝑣𝑛 points to vertex 𝑣𝑖 with probability  
deg 𝑖, 𝐺𝑛−1

2(𝑛−1)
.

𝑣1

𝑣2𝑣3

𝑣4

𝑣5

rich get richerpower-law degree 
distribution



Recursive Tree Model

Out-degree 𝑚 = 1.

Vertex 𝑣𝑛 points to vertex 𝑣𝑖 with probability  
1

𝑛−1
.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎

uniform parent



Reduction from BA-graphs to Recursive Tree

In BA-graphs: 𝑣𝑛 points to 𝑣𝑖 with probability:  

deg 𝑖, 𝐺𝑛−1
2(𝑛 − 1)

=
1

2
⋅

1

𝑛 − 1
+
deg𝑖𝑛 𝑖, 𝐺𝑛−1
𝑛 − 1

Pointers are direct (blue) or in-direct (red) with probability 1/2.

u        v means: parent(u) = v

u        v means: parent(u) = parent(v)

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎



Model

The performance is measured by:

1) running time (per query)

2) memory

3) random bits

as a function of:

𝑛 - size of the graph

𝑞 - the number of queries

User

Graph 
Generator

random 
bits

memory 
(state)

answer query



Result

Random Access Generator for BA-graphs:

1) running time (per query): Poly(log 𝑛)

2) memory: 𝑞 ⋅ Poly(log 𝑛) 

3) random bits: 𝑞 ⋅ Poly(log 𝑛)

𝑛 = size of the graph
𝑞 = total #queries



Open Questions

• Random Access Generators for other evolving graphs models (e.g., 
Forest-Fire Model, Random Surfer Webpage Model).

• Random Access Generators for other Markov Chains.



I didn’t cover

• Cent. Local Mechanism Design [Hassidim, Mansour, Vardi 2009].

• Apx Maximum Weight Spanning tree [Mansour, Patt-Shamir, Vardi 2015].

• Local Sparse Spanning Graphs [Levi, Ron, Rubinfeld 2014] [Levi, Ron,  Rubinfeld 2016], 
[Levi, Moshkovitz, Ron, Rubinfeld, Shapira 2016], [Lenzen, Levi]

• Random access support for Lempel-Ziv compression [Dutta, Levi, Ron, Rubinfeld 2013]

• Partition Oracle [Hassidim, Kelner, Nguyen, Onak 2009], [Levi, Ron 2013]

• Shattering technique [Beck 1991] [Rubinfeld Tamir Vardi Xie 2011] [Alon Rubinfeld Vardi
Xie 2012] [Barenboim Elkin Pettie Schneider 2012][Ghaffari 2016] [Levi, Rubinfeld, 
Yodpinyanee 2016]

• 2-coloring of Bipartite Graphs [Czumaj, Mansour, Vardi 2017]

• Apx Vertex Cover [Feige, Mansour, Schapire 2015]

• MWM to MCM [Mansour, Patt-Shamir, Vardi], Set cover [Indyk, Mahabadi, Rubinfeld, 
Vakilian, Yodpinyanee 2018]…
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Thank you!
• moti.medina@gmail.com

• Survey is available in: 
https://sites.google.com/site/motimedina/publications/LocalGuide

• These slides are based on talk slides by Reut Levi and myself.
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