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• Input Observe stream of edge insertions/deletions.

• Goal Using small memory, compute properties of the graph.

• Classic Stream Results Estimate statistics of numerical streams, 
such as quantiles, frequency moments, heavy hitters...

• Graph Streams Growing body of work on problems with more 
structure: distances, cuts, eigenvalues, random walks, clustering, 
matchings, dense components, vertex covers, hitting sets…

• Survey: SIGMOD Record 2014
• http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

• Class Notes: CMPSCI 711, UMass
• https://people.cs.umass.edu/~mcgregor/courses/CS711S18/
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ABSTRACT

Over the last decade, there has been considerable in-

terest in designing algorithms for processing massive

graphs in the data stream model. The original moti-

vation was two-fold: a) in many applications, the dy-

namic graphs that arise are too large to be stored in the

main memory of a single machine and b) considering

graph problems yields new insights into the complexity

of stream computation. However, the techniques devel-

oped in this area are now finding applications in other

areas including data structures for dynamic graphs, ap-

proximation algorithms, and distributed and parallel com-

putation. We survey the state-of-the-art results; iden-

tify general techniques; and highlight some simple al-

gorithms that illustrate basic ideas.

1. INTRODUCTION

Massive graphs arise in any application where there

is data about both basic entities and the relationships

between these entities, e.g., web-pages and hyperlinks;

neurons and synapses; papers and citations; IP addresses

and network flows; people and their friendships. Graphs

have also become the de facto standard for representing

many types of highly-structured data. However, analyz-

ing these graphs via classical algorithms can be chal-

lenging given the sheer size of the graphs. For exam-

ple, both the web graph and models of the human brain

would use around 10
10 nodes and IPv6 supports 212

8

possible addresses.

One approach to handling such graphs is to process

them in the data stream model where the input is de-

fined by a stream of data. For example, the stream could

consist of the edges of the graph. Algorithms in this

model must process the input stream in the order it ar-

rives while using only a limited amount memory. These

constraints capture various challenges that arise when

processing massive data sets, e.g., monitoring network

traffic in real time or ensuring I/O efficiency when pro-

cessing data that does not fit in main memory. Related
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questions that arise include how to trade-off size and ac-

curacy when constructing data summaries and how to

quickly update these summaries. Techniques that have

been developed to the reduce the space use have also

been useful in reducing communication in distributed

systems. The model also has deep connections with a

variety of areas in theoretical computer science includ-

ing communication complexity, metric embeddings, com-

pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-

ular over the last twenty years although the focus of

much of the early work was on processing numerical

data such as estimating quantiles, heavy hitters, or the

number of distinct elements in the stream. The earli-

est work to explicitly consider graph problems was the

influential by paper by Henzinger et al. [36] which con-

sidered problems related to following paths in directed

graphs and connectivity. Most of the work on graph

streams has occurred in the last decade and focuses on

the semi-streaming model [27, 52]. In this model the

data stream algorithm is permittedO(n polylog
n) space

where n is the number of nodes in the graph. This is

because most problems are provably intractable if the

available space is sub-linear in n, whereas many prob-

lems become feasible once there is memory roughly pro-

portional to the number of nodes in the graph.

In this document we will survey the results known

for processing graph streams. In doing so there are nu-

merous goals including identifying the state-of-the-art

results for a variety of popular problems and identify-

ing general algorithmic techniques. It will also be nat-

ural to discuss some important summary data structures

for graphs, such as spanners and sparsifiers. Through-

out, we will present various simple algorithms, some of

which may not be optimal, that illustrate basic ideas and

would be suitable for teaching in an undergraduate or

graduate classroom setting.

Notation. Throughout this document we will use n and

m to denote the number of nodes and edges in the graph

under consideration. For any natural number k, we use

[k] to denote the set {1, 2, . . .
, k}. We write a = b ± c

Streaming
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• Random linear projection M: ℝn→ℝk where k≪n that 
preserves properties of any v∈ℝn with high probability.   

• Many results for numerical statistics and basic geometric 
properties... extensive theory with connections to hashing, 
compressed sensing, dimensionality reduction, metric 
embeddings...  widely applicable since embarrassingly 
parallelizable and suitable for stream processing. 

? Question What about analyzing massive graphs via sketches? 

�! answer
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• Preliminaries L0 sampling and densest subgraph.

“You can always do uniform sampling; sometimes it suffices.”

• Matching Story Using sketches to compute exact matchings, 
approximate matchings, and planar matchings.

“Sketches enable interesting types of non-uniform sampling that 
are useful for graph problems.”

• Connectivity Story Using sketches to analyze edge and node 
connectivity, build cut and spectral sparsifiers etc. 

“Homomorphic compression: sketch first, compute later.”

• Other Stories Four small-space results we didn’t have space for. 

Summary



part 0: Preliminaries
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part 3: Other Stories



Uniform Edge Sampling via Sketches

• L0 sampling Can use sketches to uniformly sample an edge  
from the graph stream using O(polylog(n)) space.

 Jowhari, Saglam, Tardos [PODS 11], Kapralov et al. [FOCS 17]

• Easy if there’s only edge insertions but non-trivial with 
insertions and deletions. Can treat result as a blackbox but 
will be important that the result is via linear sketches.



• Given a graph G, the density of a set of nodes S is:

• Previous Result 2+ε approx of max density D* in Õ(ε-2 n) space.
• Bhattycharya et al. [STOC 15], Bahmani et al. [PVLDB 12]

• Our Result One pass 1+ε approximation using Õ(ε-2 n) space:

• Use L0 sampling to uniformly sample Õ(ε-2 n) edges. Let ĎS 
be estimate of DS based on sampled edges. Return maxS ĎS. 

• McGregor, Tench, Vorotnikova, Vu [MFCS 15]

• Analysis For any set of k nodes S, with probability 1-n-2k,

• ĎS = DS ± ε D*

• Use union bound over O(nk) subsets of size k for each k.  
• see also Mitzenmacher et al. [KDD 15], Esfandiari et al. [SPAA 16]

DS =
# of edges with both endpoints in S

# of nodes in S

Application to Densest Subgraph



L0 Sampling: There’s a random M: ℝN→ℝpolylog N such 
that for any a∈ℝN, we can find random non-zero 
entry of a from Ma whp.

Entry in ith row of M is 1 w/p 2-i+1. Some entry of Ma 
probably corresponds to single entry of a

More details about L0 sampling

Detail: Need some extra tricks to a) recognize when entry of Ma 
corresponds to a single entry of a and b) determine the index of this entry
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What other types of sampling a) are useful for solving graph problems 
and b) can be supported on dynamic graph streams via sketches?
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n≫k k
Need to uniformly sample 
Ω(kn) edges before we find 

a matching of size 2k.

Sometimes Uniform Sampling Isn’t Enough…



• Exact small matchings: If matching has size ≤ k can find it 
exactly in Õ(k2) samples. Gives optimal stream algorithm.

 Chitnis et al. [SODA 16], Bury et al. [Algorithmica 18]

• Approximate matching: Find t-approx matching in Õ(n2/t3) 
samples. Gives optimal stream algorithm.

 Chitnis et al. [SODA 16],  Assadi, Khanna, Li,  Yaroslavtsev [SODA 16]
related: Konrad [ESA 15], Bury, Schwiegelshohn [ESA 15]

• Planar matching: Can 5+ε approx matching size in planar 
graphs using Õ(n4/5) space. Polylog space suffices if there 
are no edge deletions.

 Chitnis et al. [SODA 16], Bury, Schwiegelshohn [ESA 15]
McGregor, Vorotnikova [APPROX 16], Cormode et al. [ESA 17]

McGregor, Vorotnikova [SOSA 18]

Matchings Story
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Sample-Nodes-And-Pick-Edge Sampling

• To get a single SNAPE Sample:

• Sample each node with probability 1/k and delete rest

• Pick a random edge amongst those that remain.

• Theorem If G has max matching size k, then O(k2 log k) 
SNAPE samples will include a max matching from G. 

Chitnis et al. [SODA 16], related: Bury, Schwiegelshohn [ESA 15]



Consider a maximum matching M of size k and focus 
on arbitrary edge {u,v} in this matching.


u and v only endpoints of M sampled with prob. Ω(k-2).

Hence, when we pick one of the remaining edges it’s 
either {u,v} or another edge that’s equally useful.

Take O(k2 log k) samples; apply analysis to all edges.

Why SNAPE Sampling Works…

u

v
w
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• A graph has arboricity ɑ if any induced subgraph on r nodes has 
at most ɑr edges. For a planar graph ɑ=3.

• Lemma: match(G)/(2+ɑ) ≤ A≤ match(G) where A is total edge 
weight if each edge uv gets weight 

• Thm: Can 2+ɑ+ε approximate match(G) using Õ(n4/5) space: 

If match(G)≤n2/5, can find exactly using earlier algorithm.

Otherwise, evaluate A on random set of ≈ n4/5 nodes.

• Corollary: 5+ε approx for planar graphs.

Estimating Matching Size in Planar Graphs

xuv = min

✓
1

deg(u) + 1
,

1

deg(v) + 1

◆



Proof of Lemma
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• The edge weights are a fractional matching, i.e., for any node u:

• To prove total weight ≤ match(G): Use Edmond’s matching 
polytope thm since weight on subgraph of r nodes is ≤(r-1)/2.

• To prove total weight ≥ match(G)/(2+ɑ):

Total weight of edges incident to “high degree” vertices H at 
least |H|/(2+ɑ) and all other weights are at least 1/(2+ɑ).

Matching size is at most |H| + “edges not incident to H”



part 0: Preliminaries
part 1: Matchings
part 2: Connectivity
part 3: Other Stories



...

• Problem: n people each with a list of their friends amongst the 
group. In parallel, each sends a small number of bits to a central 
player who must determine if underlying graph is connected.

• Thm: O(log3 n) bits from each player suffices. 

• Any approach just using sampling fails… e.g., players can’t 
distinguish bridge edges from other edges in the graph. 

Computing with sketches…



Computing with sketches…

• Problem: n people each with a list of their friends amongst the 
group. In parallel, each sends a small number of bits to a central 
player who must determine if underlying graph is connected.

• Thm: O(log3 n) bits from each player suffices. 

• Any approach just using sampling fails… e.g., players can’t 
distinguish bridge edges from other edges in the graph. 



• Players send carefully-designed sketches of address books.

• Homomorphic Compression: Instead of running algorithm on 
original data, run algorithm on sketched data. 

AlgorithmAlgorithm ANSWER

Sketch
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Computing with sketches…



Algorithm (Spanning Forest): 

For each node: pick incident edge

For each connected component: pick incident edge

Repeat until no edges between connected comp.


Lemma After O(log n) rounds selected edges include 
spanning forest.

Ingredient 1: Basic Algorithm



For node i, let ai be vector indexed by node pairs.  
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.


Lemma For any subset of nodes S⊂V, non-zero 
entries of           are edges across cut (S,V\S)

Player j sends M(aj) where M is “L0 sampling” sketch. 

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
j2S aj



Player with Address Books: Player j sends Maj

Central Player: “Runs Algorithm in Sketch Space”


Use Maj to get incident edge on each node j

For i=2 to log n:


To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

X

j2S

Maj = M(
X

j2S

aj)

Detail: Actually each player sends log n independent sketches M1aj, M2aj, ... 
and central player uses Miaj when emulating ith iteration of the algorithm.  

�! non-zero elt. of
X

j2S

aj = edge across cut



• Connectivity: Test k-edge connectivity with Õ(k) bit sketches.
Ahn, Guha, McGregor [SODA 12]

• Cut sparsification: Estimating size of every cut up to (1+ε) 
factor with Õ(ε-2) bit sketches.

 Ahn, Guha, McGregor [PODS 12],  Goel, Kapralov, Post [ArXiv 12]

• Spectral sparsification: Estimating eigenvalues up to (1+ε) 
factor with Õ(ε-2) bit sketches.

 Kapralov, Lee, Musco, Musco, Sidford [FOCS 14]
related: Ahn, Guha, McGregor [APPROX 13], Kapralov, Woodruff [PODC 14]

• Node connectivity: Test k-node connectivity using Õ(k2) bits.
Guha, McGregor, Tench [PODS 15]

Connectivity Story
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Algorithm: For i=1 to k: 

• Let Fi be spanning forest of G(V,E-F1-...-Fi-1)


Lemma: F1+...+Fk is k-edge-connected iff G is.


Sketch: Simultaneously construct k independent 
connectivity sketches M1(G), M2(G), ..., Mk(G).

Run Algorithm in Sketch Space:


Use M1(G) to find a spanning forest F1 of G 

Use M2(G)-M2(F1)=M2(G-F1) to find F2


Use M3(G)-M3(F1)-M3(F2)=M3(G-F1-F2) to find F3…

Extension: Can recover a set of “weak” edges whose 
removal leaves connected components with min-cut > k.

Extending to k-Edge-Connectivity
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Algorithm: 

•Let G0, G1, … GO(log n) where G0=G, and G formed from 
Gi-1 by deleting each edge with probability 1/2

•Let Wi be set of edges in Gi whose removal leaves a 
graph where non-zero cuts have Ω(ε-2 log n) edges.


Lemma: Whp can estimate all cuts in Gi given Wi and 
Gi-1… can estimate all cuts in G given W0, W1, … WO(log n)


Sketch: For each i, use the k-edge-connectivity sketches 
of Gi to find Wi.

Cut Sparsification
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Algorithm: 

•Let H1, H2, … Hr where r=k3 log n and Hi is induced 
subgraph on random set of n/k nodes.

•Let Fi be a spanning forest of Hi.


Lemma: Whp, F1+F2+…+Fr is k-node connected iff G is.


Sketch: Construct connectivity sketch for each Hi, and 
use this to find Fi.

k-Node-Connectivity
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• Other Problems Max-cut, clustering coefficients and triangles, 
degree distribution, correlation clustering, independent sets 

 Cormode et al. [ICML 15], Bulteau et al. [Algorithmic 16], McGregor et al. 
[PODS 16], Cormode, Dark, Konrad [arXiv 17], Kapralov et al. [SODA 17]

• If stream consists of m subsets of nodes…

• Set-cover Θ(mn/t) space for t-approx in one pass also 
tight space/pass/approx. trade-offs. Assadi et al. [STOC 16]

• Chakrabarti, Wirth [SODA 16], Har-Peled et al. [PODS 16]

• Hitting set Optimal hitting of size k in Õ(kd) if all sets have 
size at most d. Chitnis et al. [SODA 16]

• Max k-Coverage 1-ε approx in Õ(mε-2 min(ε-1,k)) space or 
0.5 approx in Õ(k) space.  

McGregor, Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]

Other Stories



• Consider a complete graph where edges are labelled 
attractive or repulsive. Given a node partition, an attractive 
edge is sad if it is cut and a repulsive edge is sad if it is not cut.  

• Correlation Clustering Find partition minimizing # sad edges. 
 See tutorial Bonchi, Garcia-Soriano, Liberty [KDD 14]

• 3-Approx Algorithm a) Pick random node. b) Form cluster with 
it and its attracted neighbors. c) Remove cluster from graph 
and repeat until nodes remain.  Ailon, Charikar, Newman [J. ACM 08]

Clustering + Maximal Independent Set



• Emulating algorithm in two passes:

• Preprocess Randomly order nodes, v1, v2, . . . , vn. 

• First Pass Store all attractive edges incident to {v1 , . . . , v√n }. 
Now can emulate first √n iterations of the algorithm. 

• Second Pass Store all remaining attractive edges. Now can 
emulate remaining steps of the algorithm. 

• Thm Algorithm uses Õ(n1.5) space.  Ahn et al. [ICML 16]

• Proof Idea At most n1.5 edges stored in first pass. In second, 
pass, can show remaining node have at most n0.5 neighbors.

• With more work, can get Õ(n) space with O(log log n) passes. 
Can also find maximal independent sets.

Clustering + Maximal Independent Set



• Coloring With min number of colors, assign a color to every 
node such that no edge has monochromatic endpoints.

• Thm Can color a graph in Δ+1 colors where Δ is max degree.

? How can we do this in a few passes with Õ(n) space? 

• O(Δ log log n) passes via independent sets. Let’s do better!

Coloring



• (1+ε)Δ Coloring a) Randomly color with Δ/r colors. b) Store 
edges E’ with monochromatic endpoints. c) Shade colors such 
that E’ edges no longer monochromatic. Bera, Ghosh [ArXiv 18]

• Space Analysis |E’|=O(nr) since probability edge in E’ is r/Δ.

• Colors Analysis If r≈ε-2 log n, max degree in E’ is ΔE’<(1+ε)r and 
final number of colors is (1+ΔE’)Δ/r= (1+ε)Δ.

• Δ+1 Coloring Idea For node v, pick Sv⊂{1,…,Δ+1} of O(log n) 
random colors. May assume v’s color in Sv. Assadi et al. [SODA 19]

Coloring



• Matching Story Using sketches to compute exact matchings, 
approximate matchings, and planar matchings.

“Sketches enable interesting types of sampling via sketches 
that are useful for graph problems.”

• Connectivity Story Using sketches to analyze edge and node 
connectivity, build cut and spectral sparsifiers etc. 

“Homomorphic compression: sketch first, compute later.”

• Other Stories Densest subgraph, clustering coefficients and 
triangles, correlation clustering, set cover and hitting sets…

Thanks!

Wrapping Up


