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Streaming

® |nput Observe stream of edge insertions/deletions.

® Goal Using small memory, compute properties of the graph.

.~ @ (lassic Stream Results Estimate statistics of numerical streams,
- #~.such as quantiles, frequency moments, heavy hitters...

~® Graph Streams Growing body of work on problems with more
. structure: distances, cuts, eigenvalues, random walks, clustering,
- matchings, dense components, vertex covers, hitting sets...

Survey: SIGMOD Record 2014
http://people.cs.umass.edu/~mcgregor/papers/ | 3-graphsurvey.pdf

Class Notes: CMPSCI 71 |, UMass
https://people.cs.umass.edu/~mcgregor/courses/CS71 1S18/



http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

Sketching

® Random linear projection M: Rn—Rk where k«n that

preserves properties of any veRn with high probability.

M — |Mv| —— answer

Many results for numerical statistics and basic geometric
properties... extensive theory with connections to hashing,
compressed sensing, dimensionality reduction, metric
embeddings... widely applicable since embarrassingly
parallelizable and suitable for stream processing.

Question VWWhat about analyzing massive graphs via sketches!?




Summary

® Preliminaries Lo sampling and densest subgraph.

“You can always do uniform sampling; sometimes it suffices.”

= o ”0 Matchmg Story Using sketches to compute exact matchings,
/;;ig.f,apprOX|mate matchings, and planar matchings.

“Sketches enable interesting types of non-uniform sampling that
are useful for graph problems.”

Connectivity Story Using sketches to analyze edge and node
connectivity, build cut and spectral sparsifiers etc.

“Homomorphic compression: sketch first, compute later.”

Other Stories Four small-space results we didn’t have space for.
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Uniform Edge Sampling via Sketches

® |osampling Can use sketches to uniformly sample an edge
from the graph stream using O(polylog(n)) space.
Jowhari, Saglam, Tardos [PODS 1 1], Kapralov et al. [FOCS 17]

® Easy if there’s only edge insertions but non-trivial with
insertions and deletions. Can treat result as a blackbox but
will be important that the result is via linear sketches.




Application to Densest Subgraph

® Given a graph G, the density of a set of nodes S is:

7 of edges with both endpoints in S

D
> # of nodes in S

® Previous Result 2+€ approx of max density D* in O(&2 n) space.
Bhattycharya et al. [STOC [5], Bahmani et al. [PVLDB 12]

® QOur Result One pass |+& approximation using O(€2 n) space:

Use Lo sampling to uniformly sample O(&2 n) edges. Let Ds

be estimate of Ds based on sampled edges. Return maxs Ds.
McGregor, Tench, Vorotnikova,Vu [MFCS [5]

® Analysis For any set of k nodes S, with probability |-n-2,

Ds=Ds % € D*

Use union bound over O(nk) subsets of size k for each k.
see also Mitzenmacher et al. [KDD 1|5], Esfandiari et al. [SPAA 16]
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More details about Lo sampling

Lo Sampling: Theres a random M: RN—RpolylogN such
that for any aeRN, we can find random non-zero
entry of a from Ma whp.

® Entry in ith row of M is 1 w/p 2-i+.. Some entry of Ma
probably corresponds to single entry of a
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<« Too many
«— Too many
«Just right

«—Too few

Detail: Need some extra tricks to a) recognize when entry of Ma
corresponds to a single entry of a and b) determine the index of this entry
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Sometimes Uniform Sampling Isn’t Enough...

4 )

Need to uniformly sample
()(kn) edges before we find
a matching of size 2k.
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What other types of sampling a) are useful for solving graph problems
and b) can be supported on dynamic graph streams via sketches?




Matchings Story

® [xact small matchings: If matching has size < k can find it
exactly in O(k?) samples. Gives optimal stream algorithm.
Chitnis et al. [SODA 16], Bury et al. [Algorithmica 18]

® Approximate matching: Find t-approx matching in O(n2/t3)
samples. Gives optimal stream algorithm.

Chitnis et al. [SODA 16], Assadi, Khanna, Li, Yaroslavtsev [SODA 16]
related: Konrad [ESA 15], Bury, Schwiegelshohn [ESA [5]

Planar matching: Can 5+& approx matching size in planar
graphs using O(n*?3) space. Polylog space suffices if there
are no edge deletions.

Chitnis et al. [SODA 16], Bury, Schwiegelshohn [ESA |5]

McGregor,Vorotnikova [APPROX [ 6], Cormode et al. [ESA 7]
McGregor,Vorotnikova [SOSA [8]




Matchings Story

® [xact small matchings: If matching has size < k can find it
exactly in O(k?) samples. Gives optimal stream algorithm.
Chitnis et al. [SODA 16], Bury et al. [Algorithmica 18]




Sample-Nodes-And-Pick-Edge Sampling

® TJo get a single SNAPE Sample:

® Sample each node with probability I/k and delete rest

® Pick a random edge amongst those that remain.

Theorem If G has max matching size k, then O(k? log k)
SNAPE samples will include a max matching from G.
Chitnis et al. [SODA 16], related: Bury, Schwiegelshohn [ESA 15]




Why SNAPE Sampling Works...

® Consider a maximum matching M of size k and focus
on arbitrary edge {u,v} in this matching.

{7 1 el ik
) V\W.

@ u and v only endpoints of M sampled with prob. Q(k-2).

@ Hence, when we pick one of the remaining edges its
either {u,v} or another edge thats equally useful.

@ Take O(k2 log k) samples; apply analysis to all edges.



Matchings Story

® Approximate matching: Find t-approx matching in O(nZ2/t3)
samples. Gives optimal stream algorithm.

Chitnis et al. [SODA 16], Assadi, Khanna, Li, Yaroslavtsev [SODA 16]
related: Konrad [ESA 15], Bury, Schwiegelshohn [ESA [5]




Matchings Story

® Planar matching: Can 5+& approx matching size in planar
graphs using O(n*?3) space. Polylog space suffices if there
are no edge deletions.

Chitnis et al. [SODA 16], Bury, Schwiegelshohn [ESA |5]
McGregor,Vorotnikova [APPROX [ 6], Cormode et al. [ESA 7]
McGregor,Vorotnikova [SOSA [8]




Estimating Matching Size in Planar Graphs

A graph has arboricity a if any induced subgraph on r nodes has
at most ar edges. For a planar graph a=3.

Lemma: match(G)/(2+a) < A< match(G) where A is total edge
weight if each edge uv gets weight

. 1 1
Fuv = TN (deg(u) + 1" deg(v) + 1)

Thm: Can 2+a+¢ approximate match(G) using O(n*5) space:
If match(G)<n?>, can find exactly using earlier algorithm.
Otherwise, evaluate A on random set of = n%> nodes.

Corollary: 5+¢ approx for planar graphs.




Proof of Lemma

® The edge weights are a fractional matching, i.e., for any node u:

1
Z Horw = Z deg(u) + 1 <1

vel(u) vel(u)
® Jo prove total weight < match(G): Use Edmond’s matching
polytope thm since weight on subgraph of r nodes is <(r-1)/2.

® To prove total weight = match(G)/(2+0):

Total weight of edges incident to “high degree” vertices H at
least |H|/(2+0) and all other weights are at least |/(2+a).

Matching size is at most |H| + “edges not incident to H”
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Computing with sketches...

® Problem:n people each with a list of their friends amongst the
group. In parallel, each sends a small number of bits to a central
player who must determine if underlying graph is connected.

® Thm: O(log3 n) bits from each player suffices.

® Any approach just using sampling fails... e.g., players can’t
distinguish bridge edges from other edges in the graph.




Problem: n people each with a list of their friends amongst the
group. In parallel, each sends a small number of bits to a central
player who must determine if underlying graph is connected.

Thm: O(log? n) bits from each player suffices.

Any approach just using sampling fails... e.g., players can’t
distinguish bridge edges from other edges in the graph.




Computing with sketches...

® Players send carefully-designed sketches of address books.

® Homomorphic Compression: Instead of running algorithm on
original data, run algorithm on sketched data.

ORIGINAL GRAPH
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Ingredient 1: Basic Algorithm

& Algorithm (Spanning Forest):
@ For each node: pick incident edge
@ For each connected component: pick incident edge

@ Repeat until no edges between connected comp.

® Lemma After O(log n) rounds selected edges include
spanning forest.



Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: aili,jl=1 if j>i and aili,jl=-1 if j«i.

{12} {1,3} {14} {15} {23} {24} {25} {34} {35} {45}

a; = (Rkesl 0BG 0 0" 0 Qi |
a;= (=1 068 0.1 0 0 050
a1+a2:(0100100000)

® Lemma For any subset of nodes ScV, non-zero
entries of ) ._ca; are edges across cut (SV\S)

@ Player j sends M(a;) where M is “Lo sampling” sketch.



Recipe: Sketch & Compute on Sketches

@ Player with Address Books: Player j sends Ma,;

@ Central Player: “"Runs Algorithm in Sketch Space”
@ Use Ma,; to get incident edge on each node |
@ For i=2 to log n:

@ To get incident edge on component ScV use:

Z Ma; = M(Z aj) — non-zero elt. of Z a; = edge across cut

JES JES J€S

Detail: Actually each player sends log n independent sketches Miaj, Mzaj, ...
and central player uses Mia; when emulating ith iteration of the algorithm.



Connectivity Story

Connectivity: Test k-edge connectivity with O(k) bit sketches.
Ahn, Guha, McGregor [SODA 12]

Cut sparsification: Estimating size of every cut up to (| +¢)
factor with O(g-2) bit sketches.
Ahn, Guha, McGregor [PODS 2], Goel, Kapralov, Post [ArXiv 12]

Spectral sparsification: Estimating eigenvalues up to (| +¢)
factor with O(g-2) bit sketches.

Kapralov, Lee, Musco, Musco, Sidford [FOCS [4]
related: Ahn, Guha, McGregor [APPROX 13], Kapralov, Woodruff [PODC 14]

Node connectivity: Test k-node connectivity using O(k?) bits.
Guha, McGregor,Tench [PODS 15]




Connectivity Story

® Connectivity: Test k-edge connectivity with O(k) bit sketches.
Ahn, Guha, McGregor [SODA 12]




Extending to k-Edge-Connectivity

£ o Algorithm: For i=l fo k:

% Let F; be spanning forest of G(V,E-Fi-...-Fi.1)
f;,’-’, ® Lemma: Fi+..+Fk is k-edge-connected iff G is.

@

, @ Sketch: Simultaneously construct k independent
S connectivity sketches My(G), M2(G), ..., Mk(G).

< o Run Algorithm in Sketch Space:

% @ Use M((G) to find a spanning forest F; of G
. © Use MAG)-MuF)=Mo(G-F)) to find F2

5 o Use M3(G)-Ms(F1)-M3(F2)=M3(G-Fi-F2) to find Fs...
5

@ Extension: Can recover a set of “weak” edges whose
removal leaves connected components with min-cuf > k.



Connectivity Story

® (Cut sparsification: Estimating size of every cut up to (| +¢)
factor with O(g-2) bit sketches.
Ahn, Guha, McGregor [PODS 2], Goel, Kapralov, Post [ArXiv |2]




Cut Sparsification

@ Algorithm:

Let Go, Gi, ... Go(log n) Where Go=G, and G formed from
Gi.1 by deleting each edge with probability 1/2

Let Wi be set of edges in Gi whose removal leaves a
graph where non-zero cuts have Q(s-2 log n) edges.

Basic Algorithm

@ Lemma: Whp can estimate all cuts in G given W; and
Gi-1... can estimate all cuts in G given Wy, Wi, ... Wo(log n)

@ Skeftch: For each i, use the k-edge-connectivity sketches
of Gi to find W,.

Emulation in
Sketch Space



Connectivity Story

® Node connectivity: Test k-node connectivity using O(k2) bits.
Guha, McGregor,Tench [PODS [5]




k-Node-Connectivity

@ Algorithm:

Let Hi, Hz, ... H- where r=k3 log n and H; is induced
subgraph on random set of n/k nodes.

Let Fi be a spanning forest of Hi.

Basic Algorithm

@ Lemma: Whp, Fi+Fz+...4F¢ is k-node connected iff G is.

@ Sketch: Construct connectivity sketch for each Hi, and
use this to find Fi.

Emulation in
Sketch Space
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Other Stories

® (Other Problems Max-cut, clustering coefficients and triangles,
degree distribution, correlation clustering, independent sets

Cormode et al. [ICML 15], Bulteau et al. [Algorithmic 16], McGregor et al.
[PODS 16], Cormode, Dark, Konrad [arXiv |7], Kapralov et al. [SODA 17]

® |f stream consists of m subsets of nodes...

® Set-cover ©(mn/t) space for t-approx in one pass also

tight space/pass/approx. trade-offs. Assadi et al. [STOC 16]
Chakrabarti,Wirth [SODA 16], Har-Peled et al. [PODS 16]

Hitting set Optimal hitting of size k in O(kd) if all sets have
size at most d. Chitnis et al. [SODA 16]

Max k-Coverage |-g approx in O(me-2min(e-',k)) space or

0.5 approx in O(k) space.
McGregor,Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]




Clustering + Maximal Independent Set

® Consider a complete graph where edges are labelled
attractive or repulsive. Given a node partition, an attractive
edge is sad if it is cut and a repulsive edge is sad if it is not cut.

Correlation Clustering Find partition minimizing # sad edges.
See tutorial Bonchi, Garcia-Soriano, Liberty [KDD [4]

3-Approx Algorithm a) Pick random node. b) Form cluster with
it and its attracted neighbors. c) Remove cluster from graph
and repeat until nodes remain.  Ailon, Charikar, Newman [J.ACM 08]




Clustering + Maximal Independent Set

® [Emulating algorithm in two passes:

Preprocess Randomly order nodes, vy, vy,..., V.

First Pass Store all attractive edges incident to {vi,...,Vvn }.
Now can emulate first +/n iterations of the algorithm.

Second Pass Store all remaining attractive edges. Now can
emulate remaining steps of the algorithm.

® Thm Algorithm uses O(n'5) space. Ahn et al. [ICML 16]

® Proof Idea At most n!- edges stored in first pass. In second,
pass, can show remaining node have at most n%> neighbors.

® With more work, can get O(n) space with O(log log n) passes.
Can also find maximal independent sets.




Coloring

® (Coloring With min number of colors, assign a color to every

4

node such that no edge has monochromatic endpoints.

Thm Can color a graph in A+1 colors where A is max degree.

How can we do this in a few passes with O(n) space?

O(A log log n) passes via independent sets. Let’s do better!




Coloring

® (|+¢&)A Coloring a) Randomly color with A/r colors. b) Store
edges E’ with monochromatic endpoints. c) Shade colors such
that E’ edges no longer monochromatic.  Berq, Ghosh [ArXiv 18]

W ol

Spbace Analysis |E’|=O(nr) since probability edge in E’ is r/A.

Colors Analysis If r=e2log n, max degree in E’ is Ap<(l+€)r and
final number of colors is (1+Ag)A/r= (1+€)A.

A+1 Coloring Idea For node v, pick Syc{l,...,A+1} of O(log n)

random colors. May assume Vv’s color in Sy. Assadi et al. [SODA 19]




Wrapping Up

Matching Story Using sketches to compute exact matchings,
~approximate matchings, and planar matchings.

“Sketches enable interesting types of sampling via sketches
that are useful for graph problems.”

e ~ Connectivity Story Using sketches to analyze edge and node
connectivity, build cut and spectral sparsifiers etc.

“Homomorphic compression: sketch first, compute later.”

Other Stories Densest subgraph, clustering coefficients and
triangles, correlation clustering, set cover and hitting sets...

Thanks!




