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The Radio Network Model

Definition

Network topology
described by undirected
graph G = (V ,E )

Time is divided into
synchronous rounds

In each round, each
station can transmit or
listen

Station u ∈ V
successfully receives
message m if station u
listens, exactly one
neighbor transmits,
and it transmits m.
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Backstory

1973: ALOHA

Norman Abramson publishes on ALOHA, one of the very first
computer networks. It happens to be a multihop radio network
(limited to a star topology).
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Backstory

1973 to 1985: Systems Research

The decade that followed the development of the ALOHA network
generated much systems research on multihop radio networks.
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Backstory

1985: Formalizing the Model

Chlamtac and Kutten described these radio networks with a formal
abstraction suitable for algorithm and complexity analysis. This is
the first appearance of the radio network model and the first
formal analysis of the one-to-all broadcast problem.
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Backstory

1987: Solving Broadcast

Chlamtac and Weinstein describe a polynomial time centralized
algorithm that creates a broadcast schedule of length
O(D log2 n) for diameter D and network size n. They discuss how
to make solution distributed given a special control channel.
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Backstory

1987: Solving Distributed Broadcast

Bar-Yehuda, Goldreich and Itai publish a PODC paper that
describes and analyzes a simple randomized distributed algorithm
that solves broadcast with probability at least 1− ε in
O ((D + log (n/ε)) log n) rounds.
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Backstory

The Introduction of Decay

The key to Bar-Yehuda, Goldreich and Itai’s surprisingly effective
broadcast algorithm was a simple distributed strategy they called
Decay.
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The Original Decay Strategy

Decay(k ,m)

Repeat k times:
transmit m
x ← 0 or 1 with equal probability
if x = 0 break
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The Original Decay Strategy

Decay(k ,m)

Repeat k times:
transmit m
x ← 0 or 1 with equal probability
if x = 0 break

Intuition: As we decay a set of sending stations down to 0 there is
a good chance that we first arrive at a round with exactly 1
sending station left active.
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Analyzing Decay

Theorem 1.

Let y be a vertex of G . Assume d ≥ 2 neighbors of y execute
Decay(k ,m) during the interval [0, k) starting at time 0. Then
P(k , d), the probability that y receives a message by time k ,
satisfies:

1 limk→∞ P(k , d) ≥ 2
3 ;

2 for k ≥ 2 · dlog de, P(k, d) > 1
2 .
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Decay(k ,m) during the interval [0, k) starting at time 0. Then
P(k , d), the probability that y receives a message by time k ,
satisfies:

1 limk→∞ P(k , d) ≥ 2
3 ;

2 for k ≥ 2 · dlog de, P(k, d) > 1
2 .

Core technical argument: defines P(k , d) as a recurrence and
bounds inductively; 2

3 is strong bound.
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Analyzing Decay

Theorem 1.

Let y be a vertex of G . Assume d ≥ 2 neighbors of y execute
Decay(k ,m) during the interval [0, k) starting at time 0. Then
P(k , d), the probability that y receives a message by time k ,
satisfies:

1 limk→∞ P(k , d) ≥ 2
3 ;

2 for k ≥ 2 · dlog de, P(k, d) > 1
2 .

Lose a little probability to cover rare event of non-termination in
2 · dlog de rounds.



Radio Networks The Decay Strategy Decay in Dynamic Networks, Take #1 Decay in Dynamic Networks, Take #2

Uniform Decay

First introduced: [Jurdziński,
Stachowiak: ISAAC 2002]

For one cycle, original Decay
has similar basic dynamics:
transmit in i th round with
probability 2−i .

Introduced because algorithm is
uniform—transmit probabilities
fixed in advance—simplifying
lower bound arguments.

Easy to analyze if happy with
smaller constant.

Uniform-Decay(k ,m, n)

Repeat k times:
r ← global round
p ← 2−1−(r mod dlog ne)

transmit m with prob. p
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Analyzing Uniform Decay

Theorem 2.

Assume a d ≤ n stations call Uniform-Decay with k = dlog ne.
The probability one station transmits alone is at least 1/8.
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Analyzing Uniform Decay

Theorem 2.

Assume a d ≤ n stations call Uniform-Decay with k = dlog ne.
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The Optimality of Decay

Upper Bounds Lower Bounds

Local Broadcast Local Broadcast

Global Broadcast Global Broadcast

(Results shown for high probability of success.)
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O(log2 n)
[BGI: PODC 1987], [JS: ISAAC

2002]

Ω(log2 n)
[Farach-Colton: LATIN 2006],

[Newport: DISC 2014]

Global Broadcast Global Broadcast
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[BGI: PODC 1987]

(Results shown for high probability of success.)
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The Optimality of Decay

Upper Bounds Lower Bounds

Local Broadcast Local Broadcast

O(log2 n)
[BGI: PODC 1987], [JS: ISAAC

2002]

Ω(log2 n)
[Farach-Colton: LATIN 2006],

[Newport: DISC 2014]

Global Broadcast Global Broadcast

O(D log n + log2 n)
[BGI: PODC 1987]

Ω(D log (n/D) + log2 n)
[Alon, bar-Noy, Linial, Peleg: Jour-

nal of Comp. and Sys. Sciences,

1991], [Kushilevitz and Mansour:

SIAM J. Comp. 1998], [Newport,

PODC 2013]

(Results shown for high probability of success.)
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Diving Deeper on Decay

The Big Question

Does Decay’s surprising effectiveness depend on the stability of the
underlying radio network topology?
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The Dual Graph Model [Kuhn, Lynch, Newport: PODC
2009]

Adding Unreliable Edges to Radio Network Model

Network described by two graphs: G = (V ,E ), G ′ = (V ,E ′),
where E ⊆ E ′.

Edges from E are always present.

In each round, an adversary adds subset of edges from E ′ \E .
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The Dual Graph Model [Kuhn, Lynch, Newport: PODC
2009]

Adding Unreliable Edges to Radio Network Model

Network described by two graphs: G = (V ,E ), G ′ = (V ,E ′),
where E ⊆ E ′.

Edges from E are always present.

In each round, an adversary adds subset of edges from E ′ \E .

Two types of adversary

online adaptive can use the current state of the network (but not
future random choices) to choose edges to add.

oblivious must make all edge decisions at beginning of
execution.
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Diving Deeper on Decay Revisited

Refined Big Question

Is Decay still effective when the radio network topology can
change; i.e., in the dual graph model?
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A Negative Answer

Theorem 3. [Ghaffari, Lynch and Newport: PODC 2013]

There exists a constant diameter dual graph network in which both
local and global broadcast require Ω(n/ log n) rounds to solve
w.h.p. with an online adaptive adversary.
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A Negative Answer

Theorem 3. [Ghaffari, Lynch and Newport: PODC 2013]

There exists a constant diameter dual graph network in which both
local and global broadcast require Ω(n/ log n) rounds to solve
w.h.p. with an online adaptive adversary.

.

.

.

clique	of	size	n	- 1	

=	has	msg
=	needs	msg
=	unreliable	edge
=	reliable	edge
(selected	randomly)

.

.

.

E[transmitters]	≤ 𝜷 𝐥𝐨𝐠 𝒏

.

.

.

E[transmitters]	> 𝜷 𝐥𝐨𝐠 𝒏

Succeed	with	prob:
≤ ()*+ ,

,

Collision	w.h.p.
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A Negative Answer

Theorem 3. [Ghaffari, Lynch and Newport: PODC 2013]

There exists a constant diameter dual graph network in which both
local and global broadcast require Ω(n/ log n) rounds to solve
w.h.p. with an online adaptive adversary.

Not Quite Right: If E [transmitter ] is small and receiver sends,
then endpoint of single reliable edge learns its identity. To fix
requires we replace 1 receiver with clique of n/2 receivers.
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A Negative Answer

Theorem 4. [Ghaffari, Lynch and Newport: PODC 2013]

There exists a dual graph network in which local broadcast requires
Ω(
√
n/ log n) rounds to solve w.h.p. with an oblivious adversary.
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A Negative Answer

Theorem 4. [Ghaffari, Lynch and Newport: PODC 2013]

There exists a dual graph network in which local broadcast requires
Ω(
√
n/ log n) rounds to solve w.h.p. with an oblivious adversary.

.

.

.

√𝑛 bands	of	 length	Θ( 𝑛)

…

…

…

…

…

clique	

For	first	Θ( 𝑛) rounds,	 sender	
transmission	behavior	only	a	function	
of	initial	random	bits	assigned	 to	its	
band.	Can	model	transmission	
sequences	during	 these	rounds	as	
independent	 random	variables,	
enabling	good	guesses	at	expected	
number	of	transmitters.
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Some Good News

Positive Results for Oblivious Adversary [Ghaffari, Lynch and
Newport: PODC 2013]

Global broadcast can be solved in O(D log (n/D) + log2 n)
rounds in the dual graph model with oblivious adversary and a
broadcast message that can fit lots of random bits.

Idea. Randomly permute the order of probabilities used by
Decay after execution begins.
Note. There exist good random number generators for this
purpose that require only a O(polylog(n))-size seed. [Newport:
PODC 2016]
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Diving Even Deeper on Decay

Further Refined Big Question

Is Decay still effective when the radio network topology can change
in a realistic manner?
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The Fading Adversary

Intuition

Two types of changes to the topology:

Short-term “fades” are stochastic (e.g., background noise).

Long-term “fades” are adversarial (e.g., radio moves).
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In each round: adversary draws unreliable edges to include in
the topology from an arbitrary distribution over P(E ′ \ E ).

The adversary can change the distribution at most once
every τ steps. Note: τ = 1 reduces to standard adversaries
and τ =∞ is purely stochastic.

Allows lots of short-term stochastic changes and arbitrary long
term changes.
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The Fading Adversary

Intuition

Two types of changes to the topology:

Short-term “fades” are stochastic (e.g., background noise).

Long-term “fades” are adversarial (e.g., radio moves).

Fading Adversary [Gilbert, Lynch, Newport and Pajak: 2018]

In each round: adversary draws unreliable edges to include in
the topology from an arbitrary distribution over P(E ′ \ E ).

The adversary can change the distribution at most once
every τ steps. Note: τ = 1 reduces to standard adversaries
and τ =∞ is purely stochastic.

Allows lots of short-term stochastic changes and arbitrary long
term changes.

In basic case, the samples in each round are independent.
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Dynamic Decay

For τ̂ = log ∆: Dynamic-Decay
reduces to Uniform-Decay.

For smaller τ̂ the samples of
probabilities in range 1/∆ to
1/2 becomes sparser.

Dynamic-Decay(k, τ̂ ,m,∆)

Repeat k times:
r ← global round mod τ̂

p ← ∆−
(r+1)
τ̂

transmit m with prob. p
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Dynamic Decay Performance

Theorem 5.

When called with k = Θ(log (1/ε)∆
1
τ̂ τ̂), Dynamic-Decay solves

local broadcast with probability 1− ε.
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1
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local broadcast with probability 1− ε. Thus: for τ ≥ log ∆,
Uniform-Decay solves local broadcast with a fading adversary with
high probability in O(log2 n) rounds, matching result for standard
radio network model.
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Dynamic Decay Performance
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Intuition:

Every distribution must put a “reasonable” amount of
probability mass on receiver degrees near at least one target d
(counting argument).

This target stays the same for stable phases of length τ̂
rounds.

Dynamic-Decay samples τ̂ evenly spread guesses of d during
stable phase. If τ̂ is big, one of these guesses will be within
constant factor of d .
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Dynamic Decay Performance: Optimized Bounds

[Results from GLNP: 2018]...

Problem Time Prob. Remarks

Local bcast

O
(

∆1/τ̄ ·τ̄ 2

log ∆ · log (1/ε)
)

1− ε τ̄ = min{τ, log ∆}

Ω
(

∆1/ττ
log ∆

)
1
2 τ ∈ O(log ∆)

Ω
(

∆1/ττ 2

log ∆

)
1
2 τ ∈ O

(
log ∆

log log ∆

)

Global bcast

O
(

(D + log(n/ε)) · ∆1/τ̄ τ̄ 2

log ∆

)
1− ε τ̄ = min{τ, log ∆}

Ω
(
D · ∆1/ττ

log ∆

)
1
2 τ ∈ O(log ∆)

Ω
(
D · ∆1/ττ 2

log ∆

)
1
2 τ ∈ O

(
log ∆

log log ∆

)
Note: Slightly optimized Dynamic-Decay considered here multiples

probabilities by Θ(log ∆/τ̂) factor. This still reduces to Uniform-Decay

for τ̂ = log ∆, but performs slightly better for small τ̂ .
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Conclusion

Some Surprising Observations...

Thirty years ago: Bar-Yehuda, Goldreich, and Itai proved
that a basic distributed strategy of cycling through
transmission probabilities solved radio network broadcast
better than the best-known centralized solution. This is
surprising.

This simple decay strategy turned out to be provably optimal
for both local and global distributed broadcast tasks in the
radio network model. This is surprising.

This simple strategy continues to efficiently and optimally
solve these problems in highly dynamic versions of the radio
network model (so long as the dynamism is realistically
modeled). This is surprising.

Conclusion: This strategy is unreasonably effective!
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