# Recent Algorithmic Advances in Population Protocols 

Rati Gelashvili

# Population Protocols <br> [Angluin,Aspnes,Diamadi,Fischer,Peralta'04] 

- n Nodes: simple, identical agents
- Each node is the same finite state automaton
- For example: a molecule
- Interactions are pairwise
- According to a scheduler, e.g. random, weakly or globally fair
- Among the edges of an underlying communication graph
- Nodes update their state following interactions
- Computation is performed collectively
- Global configuration: \#nodes in each state
- No "fixed" decision time


## In This Talk

Focus on a clique as an underlying graph

- Can be generalized to other communication graphs: [Draief,Vojnovic'12], [Sudo,Ooshita,Kakugawa,Masuzawa'12], [Mertzios,Nikoletseas,Raptopoulos,Spirakis'14]

Overview the model

- Number of interesting and studied settings and tasks


## Essential Techniques for Protocol Design \& Application Examples

- Phase Clocks
- Synthetic Coins
- Population Splitting


## Computation

## Stabilization:

Given an execution sequence up to a configuration, configuration \& all reachable configurations (must) satisfy a given predicate $P$

- strongest possible requirement


## Convergence:

From a configuration in a given interaction sequence, configuration \& all reachable configurations satisfy a given predicate $P$

- good enough for many practical applications
- allows bypassing strong lower bounds for stabilization [Doty,Soloveichik'15,...]

Always correct vs with high probability correct

## Complexity Measures: Time

Meaningful requirements for scheduler

- weakly fair: nodes interacting
- globally fair: reachable configurations reached
- probabilistic: most commonly, uniform random

Stabilization (parallel) Time: E[\# interactions until stabilization] / $n$
Convergence (parallel) Time: E[\# interactions until convergence] / $n$


Parallel time: interpreted as interactions per node, or number of rounds

## Complexity Measures: Space

## State Complexity: \# distinct states per node

Most important measure

- Critical to be as small as possible
- Can be super-constant


## What Can We Compute?

We can perform interactions of the type

## Computing OR


rumor (epidemy) spreading: takes $O(\log n)$ parallel time w.h.p.

## Tasks: Majority

## Two initial states: A, B

## Output:

A if \#A > \#B initially.
B, otherwise.


- The cell cycle switch implements approximate majority [Cardelli,Csikasz-Nagy'12]
- Implementation in DNA: [Chen,Dalchau,Srnivas,Philipps,Cardelli,Soloveichik,Seelig'13, Nature Nanotechnology]


## Example 3-State Protocol for Approximate Majority

[Angluin,Aspnes,Eisenstat'08, Draief,Vojnovic'12]


## State Transition Rules:

Initial Discrepancy $\varepsilon=|\# A-\# B| / n \geq 1 / n$.


Given $n$ nodes and discrepancy $\varepsilon>\log n / \sqrt{ }$, the running time is $O($ polylog $n$ )
Error probability can be as high as constant for lower
discrepancy.

## Tasks: Leader Election

## Input:

- All nodes start in the same initial state


## Output:

- Exactly one node is in a "leader" state, remains leader forever


Correct, but slow

## Example: Leader-Minion Algorithm

[Alistarh,Gelashvili'15]

## Idea: use eliminated nodes as minions



If two contenders have values $c \log n$ apart, with constant probability, after $O(n \log n)$ interactions, one of them will not be a contender

For any two contenders, after $O\left(n \log ^{2} n\right)$ interactions, with constant probability, their values will be c log $n$ apart

## Additional Info

## Bootstrapping protocols

- from with high probability to always correct

Other tasks

- Plurality, Counting, Naming


## Other Settings

- self-stabilization: possibly too hard for this model
- loose Stabilization: allow temporary divergence
- robustness: leaderless protocols, resilience to leaks


## Population Protocol Design Toolkit

\author{

1. Phase Clocks <br> [Angluin,Aspnes,Eisenstat,Ruppert'07]
}

Allows agents to have a common notion of time

- collectively count phases $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ interactions
- original construction used constant states, required a leader

Limited use in algorithm design until lately:

- Leaderless phase clocks with $\mathrm{O}(\log \mathrm{n})$ states [Alistarh,Aspnes,Gelashvili'17]
- Junta-based phase clocks with O(log log n) states [Gasieniec,Stachowiak'17]


## Leaderless Phase Clock: 2-Choice Load Balancing

$n$ empty bins, $m \gg n$ rounds, in each round

- choose two bins at random
- pick the bin with fewer balls, add a new ball

Theorem[Peres,Talwar,Wieder'15]: at any time, the difference between maximum and minimum number of balls in bins is at most $\mathrm{O}(\log \mathrm{n})$, with high probability


## Leaderless Phase Clock



Nodes simulate 2-choice process
$c \log n$

..modulo c $\log n$, with wraparound
..possible with high probability when c is large enough, such that the O (log
n ) gap is smaller than $\mathrm{c} \log \mathrm{n}$

## Phase Clocks

Junta-based clock [GS'17] works in two stages

- elect a junta of $n^{1-\varepsilon}$ nodes (uses $O$ (log log $n$ ) states)
- implement and analyze a phase clock suggested by [AAER'07]

Follow up by [Berenbrink,Elsässer,Friedetzky,Kaaser,Kling,Radzik'18]:

- possible to reuse $O(\log \log n)$ states after the first stage
- elegant and simplified exposition of [GS'17]

Hierarchy of phase clocks [Kosowski,Uznanski'18]

- count in phases of $O\left(n \log ^{k} n\right)$ interactions for parameter $k$
- compute semi-linear predicates fast without a leader extending [Angluin,Aspnes, Eisenstat'08]


## Population Protocol Design Toolkit

## 2. Synthetic coins

[Alistarh,Aspnes,Eisenstat,Gelashvili,Rivest'17]
The state transition function of population protocols is deterministic

- could randomization help in algorithm design?
- yes, e.g. loosely-stabilizing leader election if nodes have access to uniform random bits [Sudo,Ooshita,Kakugawa,Masuzawa'14]

But there is a source of randomness: the scheduler.
Extract synthetic randomness! (slight increase in state complexity)
[Cardelli,Kwiatkowska,Laurenti'16] introduced a similar construction, focusing on computability

## Synthetic Coins

## Simplest Algorithm:

- the state: a flip bit F, initially 0
- initialization: do four interactions, updating $F=1-F$ '
- simulated coin flip: use $F$ of the interaction partner

Analyzed as a random walk on a hypercube

- after constant parallel time, roughly half 0 s and 1s

Major improvements by [Berenbrink,Kaaser,Kling,Otterbach'18]

- generate coins with a specific (non-zero) bias
- get a stronger concentration by extending the initialization stage

Faster construction of a spectrum of coins with different biases

- by [Gasieniec,Stachowiak,Uznanski'18], extending first stage of [Gasieniec,Stachowiak'17]


## Population Protocol Design Toolkit

## 3. Population Splitting

[Ghaffari,Parter'16]
Reduces state complexity when there are mutually exclusive roles

- node's state does not need to encode all roles at once!

Idea used ad-hoc in some algorithms

- Leader-Minion [AG'15], each node either a leader or a minion at any time
- indicator for stage of the protocol and role [AAEGR'17], rest of the state shared
can be thought of as some sort of task allocation [Cornejo,Dornhaus,Lynch,Nagpal'14]


## Population Splitting

## Example explicit application from [Alistarh,Aspnes,Gelashvili'18]

- During first interactions, one node becomes a worker, another a clock


May need to use synthetic coins to break ties


## Other examples:

- [Gasieniec,Stachowiak,Uznanski'18]: most complex explicit splitting
- [Berenbrink,Elsässer,Friedetzky,Kaaser,Kling,Radzik'18]: most delicate explicit splitting


## Applications: Majority

Requires $\Omega(\log n)$ states to stabilize in polylog(n) time*

- Both state-optimal protocols [AAG'18,BEFKKR'18] rely on population splitting
- phases of $O(n \log n)$ interactions, w.h.p.
- use rumor spreading (phase updates, exceptions, etc)
- need backup protocols
- [BEFKKR'18] fuses phases together, splitting gets complicated


[^0]
## Applications: Leader Election

Synthetic coin invented for leader election, still used in best protocols [Gasieniec,Stachowiak'17, Gasieniec,Stachowiak,Uznanski' ${ }^{18]}$ ]. Original ideas:

- use coin outcome to decide to increase seeding or not
- lottery: decide whether to drop out based on random seeding

Powerful combination with phase clocks, e.g. in each phase

- flip an almost fair coin
- rumor spread existence of 1 to eliminate all 0 s from contention


## Conclusions

Population Protocols are a fertile ground for algorithmic research

- ..and lower bounds also based on nice combinatorial arguments

Interesting to explore directions

- Other graphs
- Other tasks
- Convergence vs stabilization vs loose stabilization
- Approximate Protocols
- Remove assumption in the majority lower bound

While staying simultaneously aware of motivations and open-minded
The contents of this talk will appear as a survey in SIGACT News.


[^0]:    *under some combinatorial assumptions that all known protocols satisfy

