Automatically Speeding Up
LOCAL Algorithms

Seth Pettie
University of Michigan

Joint work with Yi-dun Chang

Naor, Stockmeyer, SICOMP 1995
Chang, Kopelowitz, Pettie, FOCS 2016
Chang, Pettie, FOCS 2017, SICOMP 2018

The LOCAL Model
 Agraph G=(V,E) e

— Vertex = processor
— Edge = bidirected communication
— Time: synchronized rounds. In

each round, each vertex sends a

message to each neighbor.
— Computation is free.
— Message size is unbounded.

— “Time” = number of rounds

* Randomized LOCAL

— Can generate an unbounded number of random bits

The LOCAL Model

[Linial’92]
 What a vertex v knows:
— Global graph parameters: n=|V|, 4=max,deg(u)
— A unique O(log n)-bit ID(v).
— A port-numbering of its deg(v) incident edges.

The LOCAL Time Hierarchy

* Q: Which time complexities are obtainable by
“natural” problems.

— To reduce the number of problem parameters, assume
4=0(1).

What is a “natural problem” ?

[Naor-Stockmeyer’95]

* Locally Checkable Labeling (LCL) problem: NTIME(O(1))
— Input and Output alphabets 2, 2, integer radius r.
|1Z:..], | Z,u:] may depend on A, but are independent of n.

— Set C of acceptable radius-r centered subgraphs.

* Problem: given V—X. , compute V—X_ . such that

In’

every vertex’s radius-r view is in C.

» POT

radius-1 view from v some acceptable configurations for 3-coloring. an unacceptable
configuration

Greedy vs. Nongreedy LCL Problems

* The canonical greedy problems:

— Maximal independent set

— Maximal matChmg | every partial solution extends

— (A+1)-vertex coloring to a total solution

— (2A-1)-edge coloring |
 Some non-greedy problems

— (approximate) maximum matching

— Sinkless orientation

— A-vertex coloring

— (2A-2)-edge coloring

— Frugal coloring

— Defective coloring

— Versions of List coloring, etc.

Time Hierarchies: A=0(1)

1. O(A?2)-color the graph in log™n time. [Linial’s algorithm ‘92]
2. Apply greedy algorithm to each color class, one at a time.

fall greedy problems all problems%

| |
i !
O(1) log™n Diam

Time Hierarchies: A=0(1)
n-path/cycle, (v/n x v/n)-grid/torus

Naor, Stockmeyer’95

via hypergraph Ramsey argument...
any O(1) time algorithm can be made

order-invariant w.r.t. vertex IDs.

I I
|>|< x . |
O(1) log™n . . Diam
In O(log™* n) time, we can make all vertices
Chang, Pettie’17 think they are in an O(1)-size path/cycle/grid/torus.
I%randt, Hirvonen, Korhonen, Lempidinen, Chang, Kopelowitz, Pettie’16
Ostergdrd, Purcell, Rybicki, Suomela’17)
Brandt, Hirvonen, Korhonen, Lempiainen,

Ostergard, Purcell, Rybicki, Suomela’17

Time Hierarchies: A=0(1)
General graphs, Trees

Naor, Stockmeyer’95

Chang, Pettie’17

loglog™ n
|

1
O(1) log™n

Time Hierarchies: A=0(1)
General graphs, Trees

Chang, Kopelowitz, Pettie’16
2
Detp(n,A) < Randp (2™ ,A)

DETERMINISTIC

loglog™ n e {Iog n
O(1) log™n /I

log logn
RANDOMIZED

Exponential Separations:

— A-coloring degree-A trees Brandt, Fischer, Hirvonen, Keller,
— Sinkless Orientation Lempidinen, Rybicki, Suomela, Uitto’16

— (2A-2)-edge coloring trees Chang, Kopelowitz, Pettie’16
Pettie, Su’15

Ghaffari, Su’17
Chang, He, Li, Pettie, Uitto’18

Time Hierarchies: A=0(1)
General graphs, Trees

An infinite number of complexities.

“k-level 2%5-coloring” needs ®(n'/k) time
DETERMINISTIC

loglog™ n o

{Iog - _ | | |
O(1) log™n I *I

loglogn [I.L

RANDOMIZED

Lovasz Local Lemma is “complete” for sublogarithmic randomized time!

Every o(log n)-time randomized algorithm can be
automatically sped up to run in O(LLL) time.

Time Hierarchies: A=0(1)
Trees

DETERMINISTIC
loglog™ n s

O(1) log™n

logn 0(1) 1/3 nl/2
N | |
’{ >C— | >< >< >< ><—|

loglogn LLL Randomized n°-time algorithm
RANDOMIZED

Chang, Pettie’17

Deterministic O(log n)-time algorithm

Randomized o(n)-time algorithm Balliu, Brandt, Olivetti,
Suomela’l8

Deterministic O (\/n)-time algorithm

Remaining gaps... Chang (unpublished)

Time Hierarchies: A=0(1)
Trees

The Ramsey Gap The Graph Shattering Gaps

/ The LLL Gap The Pumping Lemma Gaps
DETERMMISEIC / / \7\
loglog™ n v 5¢ log n no(l)- Lonl/d 1/2

N o 3¢5 15>¢+>¢]
Vs n
L

O(1) log™n

I

|

loglogn [,],
RANDOMIZED

Time Hierarchies: A=0(1)
General Graphs

DETERMINISTIC

><

O(1) log™n I
loglogn LLL Complexities of the form:
RANDOMIZED log™ n, for any rational r > 1.
plog” ", for any rational r € (0,1)
n”, for any rational r € (0,1)
,foranyintegerr > 1

log n

Complexities of the form:
log” (log™ n), for any rational r > 1. K
plog” (log” ™) for any rational r € (0,1) log" n
(log*n)", for any rational r € (0,1)

Balliu, Hirvonen, Korhonen, Keller,
Lempidinen, Olivetti, Suomela 2018

Balliu, Brandt, Olivetti, Suomela 2018

Little white lies

* What does “n” refer to in the LOCAL model?
(1) n = |V| = size of the graph.
(2) O(log n) = bits in vertex IDs.
(3) 1/poly(n) = standard error bound for randomized algs.

The Ramsey Gap

[Naor-Stockmeyer’95], [Chang-Pettie’17]

e Step 1: Show that any sufficiently fast algorithm can
be made “order invariant.”

e Step 2: Show that any order invariant algorithm can
be tricked into thinking n=0(1).

General algorithm Order-invariant algorithm

Z = MSB(ID(u) XOR ID(v)) If (ID(u) < ID(v)) then

Else

* R = R(p,m,c) : any c-coloring of the edges of a
p-uniform hypergraph with R vertices has a
monochromatic m-clique.

p=1. R(pmc)=cim—1)+1
p>1: R(p,m,c) < 2cRP-1mo)

* log"(R(p,m,c)) =p +log*(m) +log*(c) + 0(1)

* Some algorithm runsint = o(log(log*n)) time and
solves an LCL problem with radius r.
—p = A upper bound on number of IDs we can see.
—m = At+r

* Considerp IDsx; < x; <x3 <+ <Xy

* The color of hyper-edge (x4, x5, ..., X;,) encodes

— For every distinct radius-t subgraph H centered @ v,
* For every one of p! assignments of IDs to nodes in H,

—The output of v when the algorithm is run with
this ID assighment and neighborhood H.

* There exists a monochromatic m-clique. W.l.o.g.,
suppose S = {1,2,3,..., m} is monochromatic.

* New algorithm: H = t-neighborhood of v. Reassign

IDs in H to be from S in an order-preserving way.
Run the old algorithm.

Map IDs to {2,3,6,7,8,9,10,11,14}

* There exists a monochromatic m-clique. W.l.o.g.,
suppose S = {1,2,3,..., m} is monochromatic.

* New algorithm: H = t-neighborhood of v. Reassign

IDs in H to be from S in an order-preserving way.
Run the old algorithm.

13

22 20

The “Graph Shattering” Gaps

[Chang, Kopelowitz, Pettie’16]
* No det. complexities in w(log*n)—o(logn)
— Theorem. Any o(log n)-time deterministic algorithm can
be sped up to run in O(log™ n) time.

* No rand. complexities in w(log™ n)—o(loglogn)
Alt. proof: [Fischer, Ghaffari’17]

* Theorem. If A, 4 solves an LCLin T(n,A) time
with failure probability 1/7n, then there exists an
A0t that solvesitin T(Z”Z, A) time.

Derandomization

* A,,ngq €enerates a string of r(n) random bits.

* A4+ Will generate “random” bits using a magic
function ¢ : {0,1}0U0g™) £ 1}7(W),
— v’s string of local random bits will be ¢ (ID (v)).

* Imagine running A, .+ on G with a random ¢, but
telling vertices they’re in a graph with N = on’
vertices.

G

n vertices Probability of failure < 1/N.

* The probability that a random ¢ fails to work for
every graph topology and every ID-assignment is

5(5) . yonlogn) . (l) <1

Number of Number of ID
graphs assignments Failure prob.

* Hence there is exists a magic ¢ that always works!
Det(n,A) < Rand (2™, A)

A Randomized Complexity Gap

Theorem. No randomized LCL complexities in w(log* n)—
o(loglogn).
Proof. Suppose A, ,,,4 solves some LCLin o(loglogn) time.

— This implies an A ,; that solves it in o(logn) time.

— Any deterministic o(log n)-time algorithm can be sped up to
run in O(IOg* Tl) time. [Chang, Kopelowitz, Pettie’16]

The Lovasz Local Lemma Gap
* The distributed (symmetric) LLL problem:

— Network and dependency graph G=(V,E) are identical
—V : “bad events”; ueV depends on set of discr. r.v.s vbl(u)
— E ={(u,v) : vbl(u) N vbl(v) # @}

— d = maximum degree in G, p = maximum Pr(v).

* Satisfies some LLL Criterion, e.g., ep(d+1) <1,| p(ed)° < 1.

 Compute a variable assignment such that no bad
event occurs.

e Suppose A solves some LCL problem in sublogarithmic time
with failure probability 1/n.

— For any €>0, can writetimeas T(n,A) < C(A) + elogan

° * _ : . — 4%k 1 *
n* = min. value such that: T(n,A) = t* < —logan* — 0(1)
— Follows that t* = 0(C(4)).

every vertex sees a subgraph that is
consistent with an n*-vertex graph.

* Build the dependency graph:

— X, = the random bits generated locally at v.

—vbl(v) = {X, | u € Nt*+0()(v)}
— E, = the event that v’s neighborhood is incorrectly

labeled, when running alg. A with “n” =n".
—H=({E}, {(E,E) | dist(u,v)<2t'+0(1)})
— LLL parameters: p=1/n", d = A2t+0(1)
pd® = p - ACEHOM) (1 /¥) — 1
* Run a distributed LLL algorithm on “H.”

— 1 step in H simulated with O(C(A)) steps in G.
— Alg. A can be automatically sped up to O(C(A)-T,,,) time.

Pumping Lemma Speedups

 Theorem: any randomized n°@_time LCL algorithm on trees can be
converted into a deterministic O (log n)-time algorithm.

Rake and Compress

[Miller and Reif 1989]

Rake and Compress

[Miller and Reif 1989]

e Rake: remove all leaves

Rake and Compress

[Miller and Reif 1989]

* Rake: remove all leaves
e Compress: remove chains of degree-2 vertices.

Rake and Compress

[Miller and Reif 1989]

* Rake: remove all leaves
e Compress: remove chains of degree-2 vertices.

Rake and Compress

[Miller and Reif 1989]

* Rake: remove all leaves
e Compress: remove chains of degree-2 vertices.

Rake and Compress

[Miller and Reif 1989]
o

* Rake: remove all leaves
e Compress: remove chains of degree-2 vertices.
* O(log n) rakes & compresses suffice.

Rake and Compress

[Miller and Reif 1989]

e Case 1: O(log n) rakes suffice to decompose the tree
— Diam. = O(log n); any LCL can be solved in O(log n) time.

e Case 2: compress occasionally removes ®(1)-length
paths.

Removing Long Paths

[Miller and Reif 1989]

"RALARARARARAART

A sufficiently long path of nodes removed in ith iteration

e Subtrees removed in iterations < i.
 Bookended by nodes removed in iteration > i.

Removing Long Paths

[Miller and Reif 1989]

ﬁAAAAﬁAAAAKAAAA

A sufficiently long path of nodes removed in ith iteration

e Subtrees removed in iterations < i.
 Bookended by nodes removed in iteration > i.

e Can assume w.l.o0.g. that the path has length O(1) by
“promoting” a well-spaced set of nodes to level-(i+1).

Class

O(r)

* Class(v) : the set of all labelings of N°() (v) that
can be extended to the whole subtree rooted at v.

* #Classes=0(1). (AandZX,,; constants.)

Type
bR AR AR

* ¢ = Class(v;)

* Relevant information (c,, ¢,, C3, ...)

Type

Vs V6

i VAVAY VA

c; = Class(vy)

Relevant information (c,, c,, 3, ...)

Type(s,t) : set of all labelings of N"(s) U N” (t) that
can be extended to subtrees of v, v,, ...

Type(s,t) computable by a finite automaton that
scans class vector (c,, C,, C3, ...).

Pumping Trees

* |f the path is sufficiently long, the automaton will
enter some state twice.

LALAANAL

e Can create a “pumped” tree; Type(s,t) is unchanged.

AR AN AR AL

Pumped Trees

LARAARAALARTAARAAT AL

 Pump the path to be very long.

o Any n°W_time algorithm run on the “middle” of
the path does not depend on s nor t.

* Pre-commit to the output labeling of an O(r)
neighborhood around the middle.

LARAARAALARTAARAAT AL

Duplicate the path. s and t can color their sections
independently and combine their solutions.

Apply pumping, precommit, and duplication to
every Compress operation.

Any subtree can be freely replaced by a (smaller)
subtree of the same Class.

The n°M-neighborhood of any vertex in the final
“imaginary” tree is a function of the O(logn)-
neighborhood in the actual tree.

Any correct labeling in the imaginary tree can be
converted to one in the actual tree.

Open Question

What is the LOCAL complexity of the LLL ?

— Probably need to solve rand. and det. complexities
simultaneously. ®(loglog n) rand. and ®(log n) det.?

— Conceivable that the “original” LLL with criterion
ep(d + 1) < 1is a harder problem.

Thank you!

