
Automatically Speeding Up
LOCAL Algorithms

Seth Pettie
University of Michigan

Naor, Stockmeyer, SICOMP 1995
Chang, Kopelowitz, Pettie, FOCS 2016
Chang, Pettie, FOCS 2017, SICOMP 2018

Joint work with Yi-Jun Chang

The LOCAL Model
[Linial’92]

• A graph G=(V,E)
– Vertex = processor
– Edge = bidirected communication
– Time: synchronized rounds. In

each round, each vertex sends a
message to each neighbor.

– Computation is free.
– Message size is unbounded.
– “Time” = number of rounds

• Randomized LOCAL
– Can generate an unbounded number of random bits

• What a vertex v knows:
– Global graph parameters: n = |V|, D = maxu deg(u)
– A unique O(log n)-bit ID(v).
– A port-numbering of its deg(v) incident edges.

The LOCAL Model
[Linial’92]

The LOCAL Time Hierarchy
• Q: Which time complexities are obtainable by

“natural” problems.
– To reduce the number of problem parameters, assume
! = #(%).

What is a “natural problem” ?
• Locally Checkable Labeling (LCL) problem: NTIME(O(1))

– Input and Output alphabets Sin, Sout, integer radius r.
|Sin|, |Sout| may depend on D, but are independent of n.

– Set C of acceptable radius-r centered subgraphs.
• Problem: given V➝Sin, compute V➝Sout such that

every vertex’s radius-r view is in C.

v

radius-1 view from v some acceptable configurations for 3-coloring. an unacceptable
configuration

[Naor-Stockmeyer’95]

Greedy vs. Nongreedy LCL Problems
• The canonical greedy problems:
– Maximal independent set
– Maximal matching
– (D+1)-vertex coloring
– (2D–1)-edge coloring

• Some non-greedy problems
– (approximate) maximum matching
– Sinkless orientation
– D-vertex coloring
– (2D-2)-edge coloring
– Frugal coloring
– Defective coloring
– Versions of List coloring, etc.

every partial solution extends
to a total solution

Time Hierarchies: D=O(1)

all problemsall greedy problems

1. O(D2)-color the graph in log*n time. [Linial’s algorithm ‘92]
2. Apply greedy algorithm to each color class, one at a time.

Time Hierarchies: D=O(1)

Naor, Stockmeyer’95

via hypergraph Ramsey argument…
any O(1) time algorithm can be made
order-invariant w.r.t. vertex IDs.

Chang, Kopelowitz, Pettie’16

In O(log* n) time, we can make all vertices
think they are in an O(1)-size path/cycle/grid/torus.

Brandt, Hirvonen, Korhonen, Lempiäinen,
Östergård, Purcell, Rybicki, Suomela’17

Chang, Pettie’17

Brandt, Hirvonen, Korhonen, Lempiäinen,
Östergård, Purcell, Rybicki, Suomela’17

Time Hierarchies: D=O(1)
General graphs, Trees

Chang, Pettie’17
Naor, Stockmeyer’95

Time Hierarchies: D=O(1)
General graphs, Trees

DETERMINISTIC

RANDOMIZED

Exponential Separations:
– D-coloring degree-D trees
– Sinkless Orientation
– (2D-2)-edge coloring trees

Brandt, Fischer, Hirvonen, Keller,
Lempiäinen, Rybicki, Suomela, Uitto’16

Chang, Kopelowitz, Pettie’16

Pettie, Su’15

Ghaffari, Su’17

Chang, He, Li, Pettie, Uitto’18

Chang, Kopelowitz, Pettie’16

Time Hierarchies: D=O(1)
General graphs, Trees

DETERMINISTIC

RANDOMIZED

Lovász Local Lemma is “complete” for sublogarithmic randomized time!

Every o(log n)-time randomized algorithm can be

automatically sped up to run in O(LLL) time.

An infinite number of complexities.

“k-level 2½-coloring” needs Q(n1/k) time

Time Hierarchies: D=O(1)
Trees

DETERMINISTIC

RANDOMIZED
Randomized no(1)-time algorithm

Deterministic O(log n)-time algorithm
Chang, Pettie’17

Randomized ! " -time algorithm

Deterministic #(")-time algorithm

Balliu, Brandt, Olivetti,
Suomela’18

Chang (unpublished)Remaining gaps…

Time Hierarchies: D=O(1)
Trees

DETERMINISTIC

RANDOMIZED

The Ramsey Gap The Graph Shattering Gaps

The LLL Gap The Pumping Lemma Gaps

Time Hierarchies: D=O(1)
General Graphs

DETERMINISTIC

RANDOMIZED

Balliu, Hirvonen, Korhonen, Keller,
Lempiäinen, Olivetti, Suomela 2018

Balliu, Brandt, Olivetti, Suomela 2018

dense

Complexities of the form:
log$ %, for any rational & ≥ 1.
2*+,- ., for any rational & ∈ (0,1)
%$, for any rational & ∈ (0,1)
.

*+,- . , for any integer & ≥ 1

dense

Complexities of the form:
log$(log∗ %), for any rational & ≥ 1.
2*+,-(*+,∗ .), for any rational & ∈ (0,1)
(log∗ %)$, for any rational & ∈ (0,1)

Little white lies
• What does “n” refer to in the LOCAL model?

(1) n = |V| = size of the graph.
(2) O(log n) = bits in vertex IDs.
(3) 1/poly(n) = standard error bound for randomized algs.

The Ramsey Gap
[Naor-Stockmeyer’95], [Chang-Pettie’17]

• Step 1: Show that any sufficiently fast algorithm can

be made “order invariant.”

• Step 2: Show that any order invariant algorithm can

be tricked into thinking n=O(1).

…

Z = MSB(ID(u) XOR ID(v))

…

…

If (ID(u) < ID(v)) then

…

Else

….

…

General algorithm Order-invariant algorithm

• ! = !($,&, ') : any c-coloring of the edges of a
$-uniform hypergraph with ! vertices has a
monochromatic &-clique.

$ = 1: ! $,&, ' = ' & − 1 + 1
$ > 1: ! $,&, ' ≤ 2'0 123,4,5 6

• log∗(! $,&, ') = $ + log∗(&) + log∗(') + ;(1)

• Some algorithm runs in ! = o log log∗n time and
solves an LCL problem with radius (.
–) = Δ+ upper bound on number of IDs we can see.
–, = Δ+-.

• Consider) IDs /0 < /2 < /3 < ⋯ < /5
• The color of hyper-edge (/0, /2, … , /5) encodes
– For every distinct radius-! subgraph : centered @ ;,
• For every one of)! assignments of IDs to nodes in :,
–The output of ; when the algorithm is run with

this ID assignment and neighborhood :.

• There exists a monochromatic !-clique. W.l.o.g.,
suppose " = {1,2,3, … ,!} is monochromatic.

• New algorithm: + = ,-neighborhood of -. Reassign
IDs in + to be from " in an order-preserving way.
Run the old algorithm.

102

106

109113

115 107

110

108
101

105

, = 2, . = 1

3

7

1014

16 8

11

9
2

6

Map IDs to {2,3,6,7,8,9,10,11,14}

• There exists a monochromatic !-clique. W.l.o.g.,
suppose " = {1,2,3, … ,!} is monochromatic.

• New algorithm: + = ,-neighborhood of -. Reassign
IDs in + to be from " in an order-preserving way.
Run the old algorithm.

, = 2, . = 1

102

106

109113

115 107

110

108
101

105

100

103104

111

112

114116
117

118

119 120121

3

7

1014

16 8

11

9
2

6

1

45

12

13

1517
18

19

20 2122

The “Graph Shattering” Gaps
[Chang, Kopelowitz, Pettie’16]

• No det. complexities in !(log∗ ')—)(log ')
– Theorem. Any)(log ')-time deterministic algorithm can

be sped up to run in * log∗ ' time.
• No rand. complexities in !(log∗ ')—)(log log ')

• Theorem. If +,-./ solves an LCL in 0 ', Δ time
with failure probability 1/', then there exists an
+/56 that solves it in 0(2.8, Δ) time.

Alt. proof: [Fischer, Ghaffari’17]

Derandomization
• !"#$% generates a string of &(() random bits.
• !%*+ will generate “random” bits using a magic

function , ∶ 0,1 1 234 $ → 0,1 "($).
– 6’s string of local random bits will be ,(78 6).

• Imagine running !%*+ on 9 with a random ,, but
telling vertices they’re in a graph with : = 2$=
vertices.

G
n vertices

N-n vertices

Probability of failure < 1/N.

• The probability that a random ! fails to work for
every graph topology and every ID-assignment is

2
#
$ ⋅ 2& # '() # ⋅ 1

+ < 1

• Hence there is exists a magic ! that always works!
-./ 0, Δ ≤ 4506(2#8, Δ)

Number of
graphs

Number of ID
assignments Failure prob.

A Randomized Complexity Gap
• Theorem. No randomized LCL complexities in !(log∗ ')—
)(log log ').
Proof. Suppose *+,-. solves some LCL in)(log log ') time.
– This implies an *./0 that solves it in)(log ') time.
– Any deterministic)(log ')-time algorithm can be sped up to

run in 1(log∗ ') time. [Chang, Kopelowitz, Pettie’16]

The Lovasz Local Lemma Gap
• The distributed (symmetric) LLL problem:
– Network and dependency graph G=(V,E) are identical
– V : “bad events”; u∈V depends on set of discr. r.v.s vbl(u)
– E = {(u,v) : vbl(u) ∩ vbl(v) ≠ ∅}
– d = maximum degree in G, p = maximum Pr(v).
• Satisfies some LLL Criterion, e.g., ep(d+1) <1, p(ed)c < 1.

• Compute a variable assignment such that no bad
event occurs.

• Suppose ! solves some LCL problem in sublogarithmic time
with failure probability 1/$.
– For any e>0, can write time as % $, Δ ≤) Δ + + log/ $

• $∗ = min. value such that: % $, Δ = 2∗ ≤ 3
45 log/ $∗ − O(1)

– Follows that 2∗ = :) Δ .

every vertex sees a subgraph that is
consistent with an n*-vertex graph.

• Build the dependency graph:
– Xv = the random bits generated locally at v.

– vbl(v) = {Xu | u ∈ Nt*+O(1)(v)}
– Ev = the event that v’s neighborhood is incorrectly

labeled, when running alg. A with “n” = n*.

– H = ({Ev}, {(Eu,Ev) | dist(u,v) ≤ 2t*+O(1) })
– LLL parameters: p = 1/n*, d = D2t*+O(1)

• Run a distributed LLL algorithm on “H.”
– 1 step in H simulated with O(C(D)) steps in G.
– Alg. A can be automatically sped up to O(C(D)·TLLL) time.

Pumping Lemma Speedups
• Theorem: any randomized !" # -time LCL algorithm on trees can be

converted into a deterministic $(log !)-time algorithm.

Rake and Compress
[Miller and Reif 1989]

Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves

Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.

Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.

Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.

Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.
• O(log n) rakes & compresses suffice.

Rake and Compress
[Miller and Reif 1989]

• Case 1: O(log n) rakes suffice to decompose the tree
– Diam. = O(log n); any LCL can be solved in O(log n) time.

• Case 2: compress occasionally removes w(1)-length
paths.

Removing Long Paths
[Miller and Reif 1989]

• A sufficiently long path of nodes removed in ith iteration
• Subtrees removed in iterations < i.
• Bookended by nodes removed in iteration > i.

i i i i i i i i i i i i i i>i

<i <i <i <i <i <i <i <i <i <i <i <i <i <i

>i

Removing Long Paths
[Miller and Reif 1989]

• A sufficiently long path of nodes removed in ith iteration
• Subtrees removed in iterations < i.
• Bookended by nodes removed in iteration > i.
• Can assume w.l.o.g. that the path has length O(1) by

“promoting” a well-spaced set of nodes to level-(i+1).

i i i i ii+1 i i i i i i i>i

<i <i <i <i <i <i <i <i <i <i <i <i <i <i

>ii+1

Class

• Class(v) : the set of all labelings of !" # (%) that
can be extended to the whole subtree rooted at v.

• # Classes = O(1). (Δ and Σ)*+ constants.)

v

O(r)

Type

• ci = Class(vi)
• Relevant information (c1, c2, c3, …)

v1 v2 v3 v4 v5 v6 v7 v8s t

Type

• ci = Class(vi)
• Relevant information (c1, c2, c3, …)
• Type(s,t) : set of all labelings of !" # ∪ !"(&) that

can be extended to subtrees of v1, v2, …
• Type(s,t) computable by a finite automaton that

scans class vector (c1, c2, c3, …).

v1 v2 v3 v4 v5 v6 v7 v8
r r

s t

Pumping Trees
• If the path is sufficiently long, the automaton will

enter some state twice.

• Can create a “pumped” tree; Type(s,t) is unchanged.

s t

s t

Pumped Trees

• Pump the path to be very long.
• Any !" # -time algorithm run on the “middle” of

the path does not depend on s nor t.
• Pre-commit to the output labeling of an O(r)

neighborhood around the middle.

O(r)
s t

O(r)
s t

s tDuplicate the path. s and t can color their sections
independently and combine their solutions.

• Apply pumping, precommit, and duplication to
every Compress operation.

• Any subtree can be freely replaced by a (smaller)
subtree of the same Class.

• The !"($)-neighborhood of any vertex in the final
“imaginary” tree is a function of the &(log !)-
neighborhood in the actual tree.

• Any correct labeling in the imaginary tree can be
converted to one in the actual tree.

Open Question

What is the LOCAL complexity of the LLL ?
– Probably need to solve rand. and det. complexities

simultaneously. Q(loglog n) rand. and Q(log n) det.?

– Conceivable that the “original” LLL with criterion
!"($ + 1) < 1 is a harder problem.

Thank you!

