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The LOCAL Model
[Linial’92]

• A graph G=(V,E)
– Vertex = processor
– Edge = bidirected communication
– Time: synchronized rounds.  In 

each round, each vertex sends a
message to each neighbor.

– Computation is free.
– Message size is unbounded.
– “Time” = number of rounds

• Randomized LOCAL
– Can generate an unbounded number of random bits



• What a vertex v knows:
– Global graph parameters:  n = |V|,   D = maxu deg(u)
– A unique O(log n)-bit  ID(v).
– A port-numbering of its deg(v) incident edges.

The LOCAL Model
[Linial’92]



The LOCAL Time Hierarchy
• Q: Which time complexities are obtainable by 

“natural” problems.
– To reduce the number of problem parameters, assume 
! = #(%).



What is a “natural problem” ?
• Locally Checkable Labeling (LCL) problem: NTIME(O(1))

– Input and Output alphabets Sin, Sout, integer radius r.
|Sin|, |Sout| may depend on D, but are independent of n.

– Set C of acceptable radius-r centered subgraphs.
• Problem: given V➝Sin, compute V➝Sout such that 

every vertex’s radius-r view is in C.

v

radius-1 view from v some acceptable configurations for 3-coloring. an unacceptable
configuration

[Naor-Stockmeyer’95]



Greedy vs. Nongreedy LCL Problems
• The canonical greedy problems:
– Maximal independent set
– Maximal matching
– (D+1)-vertex coloring
– (2D–1)-edge coloring

• Some non-greedy problems
– (approximate) maximum matching
– Sinkless orientation
– D-vertex coloring
– (2D-2)-edge coloring
– Frugal coloring
– Defective coloring
– Versions of List coloring, etc.

every partial solution extends
to a total solution



Time Hierarchies: D=O(1)

all problemsall greedy problems

1. O(D2)-color the graph in log*n time. [Linial’s algorithm ‘92]
2. Apply greedy algorithm to each color class, one at a time.



Time Hierarchies: D=O(1)

Naor, Stockmeyer’95

via hypergraph Ramsey argument…
any O(1) time algorithm can be made
order-invariant w.r.t. vertex IDs.

Chang, Kopelowitz, Pettie’16

In O(log* n) time, we can make all vertices
think they are in an O(1)-size path/cycle/grid/torus.

Brandt, Hirvonen, Korhonen, Lempiäinen, 
Östergård, Purcell, Rybicki, Suomela’17

Chang, Pettie’17

Brandt, Hirvonen, Korhonen, Lempiäinen, 
Östergård, Purcell, Rybicki, Suomela’17



Time Hierarchies: D=O(1)
General graphs, Trees

Chang, Pettie’17
Naor, Stockmeyer’95



Time Hierarchies: D=O(1)
General graphs, Trees

DETERMINISTIC

RANDOMIZED

Exponential Separations:
– D-coloring degree-D trees
– Sinkless Orientation
– (2D-2)-edge coloring trees

Brandt, Fischer, Hirvonen, Keller,
Lempiäinen, Rybicki, Suomela, Uitto’16

Chang, Kopelowitz, Pettie’16

Pettie, Su’15

Ghaffari, Su’17

Chang, He, Li, Pettie, Uitto’18

Chang, Kopelowitz, Pettie’16



Time Hierarchies: D=O(1)
General graphs, Trees

DETERMINISTIC

RANDOMIZED

Lovász Local Lemma is “complete” for sublogarithmic randomized time!

Every o(log n)-time randomized algorithm can be

automatically sped up to run in O(LLL) time.

An infinite number of complexities.

“k-level 2½-coloring” needs Q(n1/k) time



Time Hierarchies: D=O(1)
Trees

DETERMINISTIC

RANDOMIZED
Randomized no(1)-time algorithm

Deterministic O(log n)-time algorithm
Chang, Pettie’17

Randomized ! " -time algorithm

Deterministic #( ")-time algorithm

Balliu, Brandt, Olivetti, 
Suomela’18

Chang (unpublished)Remaining gaps…



Time Hierarchies: D=O(1)
Trees

DETERMINISTIC

RANDOMIZED

The Ramsey Gap The Graph Shattering Gaps

The LLL Gap The Pumping Lemma Gaps



Time Hierarchies: D=O(1)
General Graphs

DETERMINISTIC

RANDOMIZED

Balliu, Hirvonen, Korhonen, Keller,
Lempiäinen, Olivetti, Suomela 2018

Balliu, Brandt, Olivetti, Suomela 2018

dense

Complexities of the form:
log$ %, for any rational & ≥ 1.
2*+,- ., for any rational & ∈ (0,1)
%$, for any rational & ∈ (0,1)
.

*+,- . , for any integer & ≥ 1

dense

Complexities of the form:
log$(log∗ %), for any rational & ≥ 1.
2*+,-(*+,∗ .), for any rational & ∈ (0,1)
(log∗ %)$, for any rational & ∈ (0,1)



Little white lies
• What does “n” refer to in the LOCAL model?

(1) n = |V| = size of the graph.
(2) O(log n) = bits in vertex IDs.
(3) 1/poly(n) = standard error bound for randomized algs.



The Ramsey Gap
[Naor-Stockmeyer’95], [Chang-Pettie’17]

• Step 1: Show that any sufficiently fast algorithm can 

be made “order invariant.”

• Step 2: Show that any order invariant algorithm can 

be tricked into thinking n=O(1).

…

Z = MSB(ID(u) XOR ID(v))

…

…

If (ID(u) < ID(v)) then

…

Else

….

…

General algorithm Order-invariant algorithm 



• ! = !($,&, ') :  any c-coloring of the edges of a 
$-uniform hypergraph with ! vertices has a 
monochromatic &-clique.

$ = 1: ! $,&, ' = ' & − 1 + 1
$ > 1: ! $,&, ' ≤ 2'0 123,4,5 6

• log∗(! $,&, ' ) = $ + log∗(&) + log∗(') + ;(1)



• Some algorithm runs in ! = o log log∗n time and 
solves an LCL problem with radius (.
– ) = Δ+ upper bound on number of IDs we can see.
–, = Δ+-.

• Consider ) IDs /0 < /2 < /3 < ⋯ < /5
• The color of hyper-edge (/0, /2, … , /5) encodes
– For every distinct radius-! subgraph : centered @ ;,
• For every one of )! assignments of IDs to nodes in :,
–The output of ; when the algorithm is run with 

this ID assignment and neighborhood :.



• There exists a monochromatic !-clique.  W.l.o.g., 
suppose " = {1,2,3, … ,!} is monochromatic.

• New algorithm: + = ,-neighborhood of -.  Reassign 
IDs in + to be from " in an order-preserving way.  
Run the old algorithm.
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The “Graph Shattering” Gaps
[Chang, Kopelowitz, Pettie’16]

• No det. complexities in !(log∗ ')—)(log ')
– Theorem. Any )(log ')-time deterministic algorithm can 

be sped up to run in * log∗ ' time.
• No rand. complexities in !(log∗ ')—)(log log ')

• Theorem. If +,-./ solves an LCL in 0 ', Δ time 
with failure probability 1/', then there exists an 
+/56 that solves it in 0(2.8, Δ) time.

Alt. proof: [Fischer, Ghaffari’17]



Derandomization
• !"#$% generates a string of &(() random bits.
• !%*+ will generate “random” bits using a magic

function , ∶ 0,1 1 234 $ → 0,1 "($).
– 6’s string of local random bits will be ,(78 6 ).

• Imagine running !%*+ on 9 with a random ,, but 
telling vertices they’re in a graph with : = 2$=
vertices.

G
n vertices

N-n vertices

Probability of failure < 1/N.



• The probability that a random ! fails to work for 
every graph topology and every ID-assignment is

2
#
$ ⋅ 2& # '() # ⋅ 1

+ < 1

• Hence there is exists a magic ! that always works!
-./ 0, Δ ≤ 4506(2#8, Δ)

Number of
graphs

Number of ID
assignments Failure prob.



A Randomized Complexity Gap
• Theorem. No randomized LCL complexities in !(log∗ ')—
)(log log ').
Proof. Suppose *+,-. solves some LCL in )(log log ') time.
– This implies an *./0 that solves it in )(log ') time.
– Any deterministic )(log ')-time algorithm can be sped up to 

run in 1(log∗ ') time.  [Chang, Kopelowitz, Pettie’16]



The Lovasz Local Lemma Gap
• The distributed (symmetric) LLL problem:
– Network and dependency graph G=(V,E) are identical
– V : “bad events”; u∈V depends on set of discr. r.v.s vbl(u)
– E = {(u,v) : vbl(u) ∩ vbl(v) ≠ ∅}
– d = maximum degree in G,  p = maximum Pr(v).
• Satisfies some LLL Criterion, e.g., ep(d+1) <1,  p(ed)c < 1.

• Compute a variable assignment such that no bad 
event occurs.



• Suppose ! solves some LCL problem in sublogarithmic time 
with failure probability 1/$.
– For any e>0,  can write time as % $, Δ ≤ ) Δ + + log/ $

• $∗ = min. value such that: % $, Δ = 2∗ ≤ 3
45 log/ $∗ − O(1)

– Follows that 2∗ = : ) Δ .

every vertex sees a subgraph that is
consistent with an n*-vertex graph.



• Build the dependency graph:
– Xv = the random bits generated locally at v.

– vbl(v) = {Xu | u ∈ Nt*+O(1)(v)}
– Ev = the event that v’s neighborhood is incorrectly

labeled, when running alg. A with “n”  = n*.

– H = ({Ev},  {(Eu,Ev)  |  dist(u,v) ≤ 2t*+O(1) })
– LLL parameters:  p = 1/n*,  d = D2t*+O(1)

• Run a distributed LLL algorithm on “H.”
– 1 step in H simulated with O(C(D)) steps in G.
– Alg. A can be automatically sped up to O(C(D)·TLLL) time.



Pumping Lemma Speedups
• Theorem: any randomized !" # -time LCL algorithm on trees can be 

converted into a deterministic $(log !)-time algorithm. 



Rake and Compress
[Miller and Reif 1989]



Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves



Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.
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• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.



Rake and Compress
[Miller and Reif 1989]

• Rake: remove all leaves
• Compress: remove chains of degree-2 vertices.
• O(log n) rakes & compresses suffice.



Rake and Compress
[Miller and Reif 1989]

• Case 1: O(log n) rakes suffice to decompose the tree
– Diam. = O(log n); any LCL can be solved in O(log n) time.

• Case 2: compress occasionally removes w(1)-length 
paths.



Removing Long Paths
[Miller and Reif 1989]

• A sufficiently long path of nodes removed in ith iteration
• Subtrees removed in iterations < i.
• Bookended by nodes removed in iteration > i.

i i i i i i i i i i i i i i>i

<i <i <i <i <i <i <i <i <i <i <i <i <i <i

>i



Removing Long Paths
[Miller and Reif 1989]

• A sufficiently long path of nodes removed in ith iteration
• Subtrees removed in iterations < i.
• Bookended by nodes removed in iteration > i.
• Can assume w.l.o.g. that the path has length O(1) by 

“promoting” a well-spaced set of nodes to level-(i+1).

i i i i ii+1 i i i i i i i>i

<i <i <i <i <i <i <i <i <i <i <i <i <i <i

>ii+1



Class

• Class(v) : the set of all labelings of !" # (%) that 
can be extended to the whole subtree rooted at v.

• # Classes = O(1).   (Δ and Σ)*+ constants.)

v

O(r)



Type

• ci = Class(vi)
• Relevant information (c1, c2, c3, …)

v1 v2 v3 v4 v5 v6 v7 v8s t



Type

• ci = Class(vi)
• Relevant information (c1, c2, c3, …)
• Type(s,t) : set of all labelings of !" # ∪ !"(&) that 

can be extended to subtrees of v1, v2, …
• Type(s,t) computable by a finite automaton that 

scans class vector (c1, c2, c3, …).

v1 v2 v3 v4 v5 v6 v7 v8
r r

s t



Pumping Trees
• If the path is sufficiently long, the automaton will 

enter some state twice.

• Can create a “pumped” tree; Type(s,t) is unchanged.

s t

s t



Pumped Trees

• Pump the path to be very long.
• Any !" # -time algorithm run on the “middle” of 

the path does not depend on s nor t.
• Pre-commit to the output labeling of an O(r) 

neighborhood around the middle.

O(r)
s t



O(r)
s t

s tDuplicate the path.  s and t can color their sections 
independently and combine their solutions.



• Apply pumping, precommit, and duplication to 
every Compress operation.

• Any subtree can be freely replaced by a (smaller) 
subtree of the same Class.

• The !"($)-neighborhood of any vertex in the final 
“imaginary” tree is a function of the &(log !)-
neighborhood in the actual tree.

• Any correct labeling in the imaginary tree can be 
converted to one in the actual tree.



Open Question

What is the LOCAL complexity of the LLL ?
– Probably need to solve rand. and det. complexities 

simultaneously.  Q(loglog n) rand. and Q(log n) det.?

– Conceivable that the “original” LLL with criterion  
!"($ + 1) < 1 is a harder problem.  



Thank you!


