
1

Valerie King
University of Victoria,
Vancouver Island, BC
Canada

Sublinear communication
in a message-passing network:
Broadcast and MST

Network with n nodes, m edges
A node wants to send a message to all other nodes.
How many messages are needed?

G

F

C

D E
A

Use flooding from a source node
O(m) messages.

F

C

D E
A

Can we do better than O(m) messages?

G

F

C

D E
A

Given a spanning tree, can send broadcast
in n-1 messages

J

H

G

F

C

D E
A

Given a spanning tree, can send broadcast
in n-1 messages
What if each node has only local info?

J

H

G

F

C

D E
A

Talk Outline

• Models and lower bounds for spanning tree
(and MST) construction.

• Upper bounds
– Synchronous
– Asynchronous

• An even simpler communication problem
• Time-Communication Tradeoffs
• Open problems

Nodes have distinct IDs

Know only LOCAL info re topology
Auerbuch, Goldreich, Peleg, Vainish (AGPV)
(JACM 1990)

--KT0 each node has a port to each neighbor

--KT1 each node knows its neighbors’ IDs

MODELS

communication

• Synchronous: messages sent in a round
received in the same round.

• Asynchronous: algorithm may wake up all or
some nodes to start; later messages are sent
in response to receipt of a message. (”event-
driven”)

A network builds a subgraph G’ when
nodes mark their incident edges which

are in G’

J

H

G

F

C

D E
A

“If each proc knows only its ID and the IDs of
its neighbors, then flooding (O(m)) is the best
that can be done [even in the synchronous
model]”

“Obvious” for KT0 (AGPV1990) ???

Can we do better than flooding?
“No, according to folklore.” (AGPV)

lower bounds for spanning tree: KT0
Kutten, Pandurangan, Peleg, Robinson, Trehan (PODC2013, JACM
2015)

Constructing a tree requires Ω(m)
communication (where range of IDs has size n4)
Even if
• synchronous
• nodes are all initialized at the start
• alg is Monte Carlo
• nodes know n

lower bounds for spanning tree: KT0
Kutten, Pandurangan, Peleg, Robinson, Trehan (PODC2013, JACM
2015)

Constructing a tree requires Ω(m) communication
where range of IDs has size n4

Even if
• synchronous
• nodes are all initialized at the start
• alg is Monte Carlo
• nodes know n
First even for deterministic bound!
But much earlier lower bound for MST: Korach,
Moran, Zaks PODC 1984)

lower bounds for spanning tree in KT1

AGPV 1990

Constructing a tree requires Ω(m)
communication where range of IDs has size 2n

Even if
• synchronous
• nodes are all initialized at the start
• alg is Monte Carlo
• nodes know n
Provided…

lower bounds for spanning tree in KT1

AGPV 1990

Constructing a tree requires Ω(m) communication
where range of IDs has size 2n

Even if
• synchronous
• nodes are all initialized at the start
• alg is Monte Carlo
• nodes know n
Provided each message contains a constant number
of ids and ids can only be compared

More on KT1 : Without proviso

• AGPV requires use of Ramsey Theory,

very large ID space, so that IDs are not O(log n)

bits.

-->The lower bound is wide open in KT1 even for

deterministic algorithms.

An aside: a non-communications
network lower bound

• Where knowledge of an arbitrary graph’s
edges can be partitioned arbitrarily among n
parties in a clique, !(n2) bits of communicaton
are required. Phillps, Verbin, Zhang (SODA 12)

Upper bounds

Main Idea: How to find an edge leaving a
marked tree T (“outgoing edge”) with !"(|T|)
bits
.

J

H

G

F

C

D E
A

cutset

XOR method

Old idea:
The sum of the degrees of nodes in a component is:
• Even if it has no outgoing edges—each edge

counted twice
• Odd if exactly one edge is “leaving”

component—one edge counted once

FindAny: How to find an edge leaving the tree T
if there is exactly one such edge?

7

5

1 2

T

EDGE name <a,b>: a (in binary) followed by b(in binary),
if a < b

For each vertex a form vector v(a)
=XOR (edges incident to a)

7

5

1 2

010101

001010

001010 001000

010111

010111

T

XOR of v(1) = 001010
in S +v(2) = 001000

+v(7) = 010111
=010101 = name of edge leaving S when

there is exactly 1 edge in cutset

7

5

1 2

010101

001010

001010 001000

010111

001000

T

Use 2-wise independent hash to sample edges

h: [edge names]à[0, 1,..,n2]
Edge e ∈ Sample i iff h(e)≤ 2i

i=0,1,2,..,2lg n

àw/ constant prob, for i=lg |cutset|,
Sample i contains exactly 1 edge in the cutset.

To reduce cutset to size 1:

Basic communication pattern:
broadcast-and-echo over tree edges

“Leader” of tree broadcasts message down tree,

Basic communication pattern:
broadcast-and-echo over tree edges

“Leader” of tree broadcasts message down tree,
Response composed from leaves back up to leader

FindAny Alg in 3 broadcasts-and-
echoes: First broadcast

“Leader” of tree picks hash h and broadcasts it

FindAny Alg in 3 broadcasts-and-echoes:
first echo

Each node v computes word b(v) where ith bit
bi (v)=parity of {v’s incident edges} in Sample i

Nodes in tree echo up to compute B= XORv in T b(v)

v

Leader computes
min=minimum i s.t.
ith bit Bi =1

FindAny: finds edge leaving tree T in 3
broadcast-and-echoes (cont’d)

STEP 2
Leader broadcasts min
Echo: XOR names of edges e incident to all nodes in T
with

h(e) ≤ 2min (i.e., in Sample min)
All sampled edges which are not outgoing cancel out
with XOR, leaving hopefully one edge

STEP 3. Broadcast-and-echo e: Leader verifies that e is
name of exactly one edge in the cutset

Observe:
1. With constant prob, returns an outgoing edge
2. Edge is a random edge in cutset
3. n2 /min is an estimate of the cutset size

(Observations 2,3 needed for later)

FindAny does a lot!

Sketch of synchronous alg

Boruvka style algorithm to build tree:
Phase: In parallel, w/constant prob each tree
finds an edge leaving and merges (must prevent cycles)

Minimum spanning tree

• Modify FindAny to do binary search on edge
weight ranges to find a minimum weight
outgoing edge

Doesn’t work for asynchronous

• No global clock, except for initial wake-up,
actions are event-driven

• à One tree will grow, one node at a time,
while the others sit, for a cost of

• ∑"#$% & = O(n+)

Doesn’t work for asynchronous

• No global clock, except for initial wake-up,
actions are event-driven

• à One tree will grow, one node at a time,
while the others sit, for a cost of

• ∑"#$% & = O(n+)
Why doesn’t the
Gallagher Humblet Spira (GHS) (1983)
technique work?

Asynchronous alg
Ali Mashreghi, K DISC 2018

All nodes awake:

• Low degree (< " log ") nodes send to all
their neighbors

• With prob 1/ ") nodes choose themselves as
stars

• stars send to all their neighbors

Grow tree T in phases, from root:

After each phase:
A. A high degree node (and a new adjacent star node) is

added to T
OR
B. T is expanded until the number of outgoing edges to low
degree neighbors is reduced by a half.

! stars −> ! type A phases
There are no more than lg n type B phases between each type
A phase
-−> ! lg n total phases

How to grow tree T (Step 1):
1) Expand T recursively:
• Low degree nodes in T bring in their all neighbors
• High degree nodes in T bring in at least one Star

node w.h.p and
• Star nodes bring in all their neighbors.

How to grow T (step 2)
2). Find an outgoing edge to a High degree node
using FindAny OR

Else { FindAnys fails to find a High degree node}
WAIT until T receives messages from Low degree

nodes over half the outgoing edges

How do you WAIT asynchronously ??
Use FindAnys to estimate cutset size K

For each message sent to T, trigger new phase
with prob ~2/K.

K

Progress

The next Expand either finds a high degree node or
the number of outgoing edges to nodes with low
degree is reduced by half

Analysis

• Cost per phase O(n log n) words, each of O(log
n)-bits and there are O(! "#$!) phases

• For a total of O((n log n)3/2) words.

Asynchronous minimum spanning tree

1. Construct a spanning tree
2. Using it, root can synchronize the merging of
fragments by level number, as in GHS
Can be done with Õ(n log n) messages.

A simpler model for understanding
lower bounds?

• One-way communication, a Coordinator
• Each node sends to Coordinator, X bits
• Coordinator outputs spanning tree or

connected/not connected
• With public randomness, this can be done

with connectivity streaming method with
X= O(log3 n) bits (Monte Carlo) and this is tight
(Nelson, Yu 2018)

Coordinator—Public randomness
=streaming technique

Public randomness is used to specify log n hash
functions.

For each hash function:
Each node sends the XOR of its neighbors’ names which
hash to [1,2^i] range for i=0,.., 2lg n

For i=1,2, , c lg n, Coordinator uses ith hash function
result to find outgoing edges to compute ith tier of
Boruvka tree.

To verify whp that XOR is indeed an edge name, extra
info must be sent by each node.

(Ahn,Guha,McGregor, SODA 2012)

Coordinator—Private randomness

Observe: Given a set of nc elements, we can
deterministically encode each element
using O(k log n) bits so that
the XOR of any subset of k elements is unique.

Sending to Coordinator:

Let k=~ "
• Each node sends the O(log n) bit name

of each incident edge with probability
(log2 n)/k

• Each node v encodes each of its incident
edges {u,v} using k log n bits and sends
the XOR of these encodings, XOR(v)

Coordinator:

1) Uses sampled edges to create
connected components.

Note: remaining components have small
cuts w.h.p.
2) For each component C, uses
XOR of coded strings from nodes in C
to determine all edges between the
components

Optimizing for k

• This gives X= Õ(n1/2) bits.
• (Holm, K, Thorup, Zwick)

Time- communication tradeoffs

In the synchronous model for MST:

• Õ(n) bits, Õ(diameter(MST)) time
(Mashreghi, K, ICDCN 2017)

• Õ(min{n3/2,m}) bits, Õ(diameter(G)+ !) time
Ghaffari, Kuhn DISC 2018

Open problems
1. Lower bound even for det algs for broadcast tree

in general KT1 model

a) Simpler: In the one-way communication
model, anything better than Ω(log3 n)
for private randomness?

b) Lower bounds in KT0 and KT1 for IDs ={1,2,…,n}

Open problems (cont’d)

2. Synch vs asynch: Is there really a separation?

3. Can optimal time Õ(D+sqrt(n)) and Õ(n) bits be
achieved? Or lower bounds on time-bit trade-offs
proved?

4. Building a shortest path tree in o(m) bits?

10-07-25_2941valshore.jpg (JPEG Image, 494 × 360 pixels) https://d3ftabzjnxfdg6.cloudfront.net/wp-content/uploads/2013/...

1 of 1 2017-11-17, 5:31 PM

THANK
YOU. Any
questions?

Why it works

• Let S be a subset of edges
• Imagine 2|S| equal sized intervals.

Exactly one x in I,
in middle third

t lands in some I, in top third or bottom third

Why it works

• Let S be a subset of edges
• Imagine 2|S| equal sized intervals.

x

Succeeds when parity of elements< x is even and t is > x
Or parity of elements < x is odd and t is < x

To summarize:
Spanning tree:

– Build in O(n log n) messages and time
– Use findany to repair an ST in expected O(n)

messages, O(log n) local memory

Minimum spanning tree
Build in O(n log n/log log n) messages and time
Use findmin to repair an MST in expected
O(nlogn/loglog n) messages, Olog (n) local memory

Open problems and discussion

• Is Ω(m) communication required for
building tree in asynchronous model?

• Prove separation of communication cost of
findmin from findany

• Time v. communication tradeoffs
• Deterministic?
• Practical implementation: distances not

exactly symmetric, topology, etc.

Findmin weight edge leaving

Two Tests to see if there is an edge leaving a comp:

1. Constant prob. Test out: 1 broadcast, 1 1-bit echo
2. High prob. HP-Test out: 1 broadcast, 1 log n-bit

echo

Findmin weight edge leaving

1. In parallel, with 1 Broadcast-and-echo
do log n-wise search on weights with

TestOut ‘s to find smallest wt interval

2. Verify its minimality with HP TestOut

3. Repeat if wrong or recurse on that interval

Testout

randomly choose a function
F: edgesà{0,1}

s.t. for a nonempty set S,
w. constant prob. >0,
an ODD number of S’s elements map to 1.

Simple F (Thorup)

F has two parts,
• a 2-wise indep.hash function

h: U à U
• t, a random element of U

F(s)=1 iff h(s) < t

F can be described in O(log |U|) bits.

Why it works

• h hashes UàU, S subset of U
• Imagine 2|S| equal sized intervals.

Exactly one x in I,
in middle third

t lands in some I, in top third or bottom third

HP TestOut

• Repeat Testout in parallel O(log n) times
to get prob error 1/nc ?

• Would need to send clog n hash functions
Or use deterministic amplification
Or…

Test 2: Set equality method to get
HP-TestOut

A tree T is maximal iff
the set Out(T) of edges leaving all nodes

in T
= the set In(T) of edges entering all nodes
in T

Test equality of two sets using
polynomial ID-testing

O(log n) bits of communication
f(x)=Πa in Out (x-a)
g(x)=Πb in In (x-b)
Does f(x)=g(x)?

(Schwartz-Zippel):
Set x=random α in Zp, p be a prime, p > nc+2

compute over Zp:
Pr(f(α)-g(α))=0 if In ≠ Out

= Pr [α= root]
= #roots/p< n2 / p = 1/nc

Implementation (1 broadcast-and-echo)

• Leader broadcasts α
• Each node v computes fv(α) and gv(α) for its

incident edges
• Starting at the leaves, pass to parent

fv(α) * πc fc(α), c child of v
g is computed similarly

• Leader (root) computes f-g.
– If 0, Testout is true, else false.

Open problem and discussion

• Is Ω(m) communication required for
building MST in asynchronous model?

• Lower bound for findmin
• Time v. communication tradeoffs
• Applications to map reduce etc.

• Thank you

Algorithms for MST
Gallager, Humblet and Spira (JACM 1983)
• asynchronous
• works if starting with any number of nodes wake
• time O(n2), or O(n log n) if all nodes wake at start

Õ(√n+diameter) time in a synchronous model is
possible with Õ(m) communication. (Pandurangan,
Robinson, Scquizzato, STOC 2017)

Classic Result for MST:
1983: O(m + nlogn) bits
Gallager, Humblet and Spira (JACM)
• asynchronous
• works if starting with any number of nodes wake
• time O(n2), or O(n log n) if all nodes wake at start

Õ(√n+diameter) time in a synchronous model is
possible with Õ(m) communication. (Pandurangan,
Robinson, Scquizzato, STOC 2017)

Coordinator—Public randomness
Public randomness is used to specify log n pairwise
independent hash functions.

For each hash function:
Each node sends the XOR of its neighbors’ names which
hash to [1,2^i] range for i=0,.., 2lg n

For i=1,2, , lg n, Coordinator uses ith hash function result
to find outgoing edges to compute ith tier of Boruvka
tree.

To verify whp that XOR is indeed an edge name, extra
info must be sent by each node.

Coordinator—Private randomness

Observe: Given a set of nc elements, we can
encode each element using !"(k) bits so that the
XOR of any subset of k elements is unique.

Coordinator—private randomness
k= !
• Each node sends the name of each incident edge with

probability (log n)/k

• Each node v encodes each of its edges {u,v} as a
O(k log n) bit string and sends the XOR of these

encodings.

• Coordinator uses sampled edges to merge components
then takes the XORv(XOR(v)) to determine the edges in
the (small) cuts between them.

Why it works

• Let S be a subset of edges
• Imagine 2|S| equal sized intervals.

Exactly one x in I,
in middle third

t lands in some I, in top third or bottom third

Why it works

• Let S be a subset of edges
• Imagine 2|S| equal sized intervals.

x

Succeeds when parity of elements< x is even and t is > x
Or parity of elements < x is odd and t is < x

To summarize:
Spanning tree:

– Build in O(n log n) messages and time
– Use findany to repair an ST in expected O(n)

messages, O(log n) local memory

Minimum spanning tree
Build in O(n log n/log log n) messages and time
Use findmin to repair an MST in expected
O(nlogn/loglog n) messages, Olog (n) local memory

Open problems and discussion

• Is Ω(m) communication required for
building tree in asynchronous model?

• Prove separation of communication cost of
findmin from findany

• Time v. communication tradeoffs
• Deterministic?
• Practical implementation: distances not

exactly symmetric, topology, etc.

Findmin weight edge leaving

Two Tests to see if there is an edge leaving a comp:

1. Constant prob. Test out: 1 broadcast, 1 1-bit echo
2. High prob. HP-Test out: 1 broadcast, 1 log n-bit

echo

Findmin weight edge leaving

1. In parallel, with 1 Broadcast-and-echo
do log n-wise search on weights with

TestOut ‘s to find smallest wt interval

2. Verify its minimality with HP TestOut

3. Repeat if wrong or recurse on that interval

Testout

randomly choose a function
F: edgesà{0,1}

s.t. for a nonempty set S,
w. constant prob. >0,
an ODD number of S’s elements map to 1.

Simple F (Thorup)

F has two parts,
• a 2-wise indep.hash function

h: U à U
• t, a random element of U

F(s)=1 iff h(s) < t

F can be described in O(log |U|) bits.

Why it works

• h hashes UàU, S subset of U
• Imagine 2|S| equal sized intervals.

Exactly one x in I,
in middle third

t lands in some I, in top third or bottom third

HP TestOut

• Repeat Testout in parallel O(log n) times
to get prob error 1/nc ?

• Would need to send clog n hash functions
Or use deterministic amplification
Or…

Test 2: Set equality method to get
HP-TestOut

A tree T is maximal iff
the set Out(T) of edges leaving all nodes

in T
= the set In(T) of edges entering all nodes
in T

Test equality of two sets using
polynomial ID-testing

O(log n) bits of communication
f(x)=Πa in Out (x-a)
g(x)=Πb in In (x-b)
Does f(x)=g(x)?

(Schwartz-Zippel):
Set x=random α in Zp, p be a prime, p > nc+2

compute over Zp:
Pr(f(α)-g(α))=0 if In ≠ Out

= Pr [α= root]
= #roots/p< n2 / p = 1/nc

Implementation (1 broadcast-and-echo)

• Leader broadcasts α
• Each node v computes fv(α) and gv(α) for its

incident edges
• Starting at the leaves, pass to parent

fv(α) * πc fc(α), c child of v
g is computed similarly

• Leader (root) computes f-g.
– If 0, Testout is true, else false.

Open problem and discussion

• Is Ω(m) communication required for
building MST in asynchronous model?

• Lower bound for findmin
• Time v. communication tradeoffs
• Applications to map reduce etc.

• Thank you

Algorithms for MST
Gallager, Humblet and Spira (JACM 1983)
• asynchronous
• works if starting with any number of nodes wake
• time O(n2), or O(n log n) if all nodes wake at start

Õ(√n+diameter) time in a synchronous model is
possible with Õ(m) communication. (Pandurangan,
Robinson, Scquizzato, STOC 2017)

Classic Result for MST:
1983: O(m + nlogn) bits
Gallager, Humblet and Spira (JACM)
• asynchronous
• works if starting with any number of nodes wake
• time O(n2), or O(n log n) if all nodes wake at start

Õ(√n+diameter) time in a synchronous model is
possible with Õ(m) communication. (Pandurangan,
Robinson, Scquizzato, STOC 2017)

10-07-25_2941valshore.jpg (JPEG Image, 494 × 360 pixels) https://d3ftabzjnxfdg6.cloudfront.net/wp-content/uploads/2013/...

1 of 1 2017-11-17, 5:31 PM

Thanks!

