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Outline

o Models, MapReduce and Simple Examples

o Capacitated Metric Clustering at Scale
How can we cluster the world map efficiently?

o Hierarchical Graph Clustering at Scale
Can we obtain a hierarchical clustering efficiently?
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Incredible amount of online data

C N ¥

3,557,052,467 3,331,015 445,065,893

Google searches today Blog posts written today Tweets sent today

e © t

4,055,053,771 45,866,158 73,178,241
Videos viewed today Photos uploaded today Tumblr posts today
on YouTube on Instagram

Ei 3
1,952,375,064 532,058,388 308,862,767

Facebook active users Google+ active users Twitter active users

Stats from http://www.internetlivestats.com/.
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http://www.internetlivestats.com/

Moore’s Law
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Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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Hard Drive evolution
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Hard Drive evolution

80s:10M — 100M

90s : 100M — 10G
00s:10G — 1T

10s: 1T — 100T
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Models, MapReduce and
Simple Examples
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Classic Parallel programming

Computers coordinate
autonomously

CPU || CPU || CPU || CPU |

Memory‘ Memory‘ Memory‘ I\/Iemory‘

‘ High Speed Interconnect Network
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Classic Parallel programming

Computers coordinate
autonomously

CPU || CPU || CPU || CPU |

Memory‘ Memory‘ Memory‘ I\/Iemory‘

Hard to read and understand

Hard to write

‘ High Speed Interconnect Network

Hard to debug
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A simple model for parallel computing

Main properties:
1. Synchronous vs. Asynchronous

2. Partition Data:
Adversarial or Random

3. Communication
A. Topology (complete or not)
B. Amount (bounded or not)

4. Size of machines

5. Fault-tolerance
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A simple model for parallel computing

Main properties:
1. Synchronous vs. Asynchronous

2. Partition Data:
Adversarial or Random

3. Communication
A. Topology (complete or not)
B. Amount (bounded or not)

4. Size of machines ~ largish

5. Fault-tolerance: transparent to user
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MapReduce
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MapReduce

iRound of
‘MapReduce

Round 2
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MapReduce

# machines

iRound of
‘MapReduce

Round 2
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MapReduce

# machines

\Amount of iRound of
communication:MapReduce

Round 2
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MapReduce

# machines

- S -

Round 1

mount of iRound of
communication:MapReduce

\4

- - -

# rounds
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MapReduce

\/

i Each mapper processes its input
—

e e s

‘Round of
:MapReduce
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MapReduce

\/

ﬁ Each mapper processes its input T
Outputs <key, value> pairs 5
iRound of
‘MapReduce
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MapReduce

\/

% Each mapper processes its input T
Outputs <key, value> pairs 5
iRound of
‘MapReduce
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MapReduce

\/

ﬁ Each mapper processes its input T
Outputs <key, value> pairs
= P )2 P
Outputs iRound of
distributed :MapReduce
using keys !
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MapReduce

\/

ﬁ Each mapper processes its input T
Outputs <key, value> pairs
= P )2 P
Outputs iRound of
distributed :MapReduce
using keys !

\ 4

Large Scale Algorithms, Clustering and the MPC model, ADGA 2019



MapReduce

\/

ﬁ Each mapper processes its input T
Outputs <key, value> pairs
= P )2 P
Outputs iRound of
distributed :MapReduce
using keys :

\ 4
— .
Values with same key -

are collected and process
by Reducer
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MapReduce

\/

ﬁ Each mapper processes its input T
Outputs <key, value> pairs E
= P )2 P 5
Outputs iRound of
distributed :MapReduce
using keys

\/
\
Values with same key

are collected and process R .
MapReduce: simplified data processing on large clusters
by Reducer J Dean, S Ghemawat

Communications of the ACM 51 (1), 107-113
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https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

Simple example: WordCount

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Deer Bear River
CarCarRiver —»
Deer Car Bear

Diagram from http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png.
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http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png

Simple example: WordCount

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Deer Bear River —»

Deer Bear River
Car Car River —» CarCarRiver —m»
Deer Car Bear

Deer CarBear —»

Diagram from http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png.
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http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png

Simple example: WordCount

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Deer, 1 >
Deer Bear River ——»{ Bear, 1
River, 1

Deer Bear River Car, 1
Car Car River ——» CarCarRiver ———» Car, 1
Deer Car Bear River, 1

Deer, 1
Deer CarBear ——»{ Car, 1
Bear, 1

Diagram from http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png.
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Simple example: WordCount

Input

The overall MapReduce word count process
Shuffling

Splitting

Mapping

Reducing

Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Deer, 1
Bear, 1
River, 1

Car Car River

Car, 1
Car, 1
River, 1

Deer Car Bear

Deer, 1
Car, 1
Bear, 1

River, 1
River, 1

Final result

Diagram from http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png.
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http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png

Simple example: WordCount

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear,1 ——» Bear, 2
Deer, 1 » Bear, 1
Deer Bear River —»{ Bear, 1
River, 1
Car, 1
Car,1 ——»f{ Car, 3 -
Deer Bear River Car, 1 Car, 1
Car Car River ——»{ CarCarRiver ———» Car, 1
Deer Car Bear River, 1
Deer,1 —»{ Deer, 2 >
Deer, 1
Deer, 1
Deer Car Bear ——»| Car, 1 /
Bear, 1 River, 1 ——» River, 2
River, 1

Diagram from http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png.
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Simple example: WordCount

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear,1 ——» Bear, 2
Deer, 1 Bear, 1
Deer Bear River —»{ Bear, 1
River, 1
Car, 1
Car,1 ——»f{ Car, 3 » Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——»{ CarCarRiver ———» Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 —»{ Deer, 2 >
Deer, 1
Deer, 1
Deer CarBear —»{ Car, 1 /
Bear, 1 River, 1 ——» River, 2
River, 1

Diagram from

http://blog.jteam.nl/wp%E2%80%90content/uploads/2009/08/MapReduceWordCountOverview1.png.
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MapReduce

# machines

- S -

Round 1

mount of iRound of
communication:MapReduce

\4

- - -

# rounds
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MapReduce model

# machines (M)

Input size to machines(S)

# rounds (R)
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MapReduce model

Input size N

# machines (M)

Input size to machines(S)

# rounds (R)
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MapReduce model

Input size N

# machines (M)
O (Nl—e)
for constant € > 0

Input size to machines(S)

# rounds (R)
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MapReduce model

Input size N

# machines (M)
O (Nl—e)
for constant € > 0
Input size to machines(S)
O (Nl—e)
for constant € > 0

# rounds (R)
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MapReduce model

Input size N

# machines (M)
O (Nl—e)
for constant € > 0
Input size to machines(S)
O (Nl—e)
for constant € > 0

# rounds (R)
O(1) ideal
O(log N)  happy
O(polylogN') content
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MapReduce model

Input size N

# machines (M)
O (Nl—e)

for constant € > 0 o

Input size to machines(S)

O (N*'7) v M
for constant € > 0 ? ? ?
- - -

# rounds (R)

O(1) ideal

O(lOg N) happy A model of computation for MapReduce

H Karloff, S Suri, S Vassilvitskii
O(polylogN') content

Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms
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http://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Other models: parallel

PRAMS
# machines (M) R AM —
O(N°)
for constantc > 0
P1 P2 P3 l::l—i P
Input size to machines(S)
O ( 1) shared memory
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https://en.wikipedia.org/wiki/Parallel_random-access_machine

Other models: parallel

PRAMS
# machines (M) R AM —
O(N°)
for constantc > 0
P1 P2 P3 l::l—'l Pn
Input size to machines(S)
O ( 1) shared memory

Reduction between EREW PRAMs and MapReduce algorithms
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https://en.wikipedia.org/wiki/Parallel_random-access_machine

EREW PRAM vs. MapReduce

Theorem

Let A be a EREW PRAM algorithm for problem P using O (N?~2¢)
memory and R rounds. Then there exists a MapReduce algorithm

using the same number of rounds.

PRAM

program

shared memory
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Other models: parallel

Processors

Not assume synchronization

Local
Computation

Not assume fault-tolerance ; ;\ Q <

o I

Synchronisation
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https://en.wikipedia.org/wiki/Bulk_synchronous_parallel

Other models: distributed

LOCAL

Restricted topology

CONGEST

Limited bandwidth

Many connections between the two models, both for upper and lower bounds.
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Is it just PRAM?

Large Scale Algorithms, Clustering and the MPC model, ADGA 2019



Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using EREW PRAM it is not clear how to design an algorithm using
o(logn) rounds.

Using MapReduce it is possible to solve the problem in O(1) rounds
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using MapReduce:
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1<J
Using MapReduce:
Suppose the input is sorted,
‘ v[0] --- v[s — 1]‘ ‘V[S] --- v[2s — 1]‘ -------------- ‘V[(m —2)s]---v[(m — 1)s — 1] ‘
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1<J
Using MapReduce:
Suppose the input is sorted,
| Vo) -+ vs — 1\ [ Vis] - vias — 1] =rereeemeneees [v(m —2)s]-- vi(m — 1)s — 1] |

x -
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

i<j

Using MapReduce:

Sorting also takes O(1) I || | -~ I ||

v'N machines, each containing VN elements
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Is it just PRAM?

Prefix sum problem

Let v be a vector. Compute, Vj, PS(j) =) vl[i]

i<j

Using MapReduce:

Sorting also takes O(1) I || | -~ I ||

v'N machines, each containing VN elements

Sort in each machine.
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Is it just PRAM?

Prefix sum problem

Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using MapReduce:

Sorting also takes O(1) I || | -~ I ||

v'N machines, each containing VN elements

Sort in each machine.

Compute the N'/2~“quantiles.
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1<

Using MapReduce:

Sorting also takes O(1) MTTTTTTT] -

v'N machines, each containing V' N elements \A\A 4/

Sort in each machine.

Compute the N'/2~“quantiles.

Sort quantiles, and use them to partition data
iIn N machines and sort again.
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using MapReduce:

Sorting also takes O(1) I || | -~ I ||

v'N machines, each containing VN elements

Sort in each machine. VoA N— Y

Compute the N'/2~¢quantiles. LLITON LT - [TTTT]]1

Sort quantiles, and use them to partition data
iIn N machines and sort again.
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using MapReduce:

Sorting also takes O(1) I || | -~ I || I
v'N machines, each containing VN elements

Sort in each machine.
Compute the N'/2~¢-quantiles. [LTTT [T -~ I I |

Sort quantiles, and use them to partition data \4 /
in N machines and sort again. [ 1 - I l
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Is it just PRAM?

Prefix sum problem

Let v be a vector. Compute, Vj, PS(j) =) vl[i]

Using MapReduce:
Sorting also takes O(1)

3 rounds

1]
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

i<j

Using MapReduce:

Sorting also takes O(1) I || | -~ I || I

SN

v'N machines, each sending N'/?>~“elements
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Is it just PRAM?

Prefix sum problem

Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using MapReduce:

Sorting also takes O(1) I || | -~ I ||

2nd round

\/Nmachines, each sending VN elements V Ve NV v

to different machines [ | | ------ | | I

1 machine sending N'~¢elements to all

machines - )
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Is it just PRAM?

Prefix sum problem

Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1<J
Using MapReduce:
Sorting also takes O(1) I || | -~ I || I
3rd round
I I
v'N machines, each sending at most
N elements to different machines [ | | ------ | | |
| |
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Is it just PRAM?

Prefix sum problem
Let v be a vector. Compute, Vj, PS(j) =) vl[i]

1]

Using EREW PRAM it is not clear how to design an algorithm using
o(logn) rounds.

Using MapReduce it is possible to solve the problem in O(1) rounds
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MapReduce has been deprecated

Urs Holzle < >
Follow v
@uhoelzle

So, R.I.P. MapReduce, but long live
cloud data analytics!

4:11 PM - 26 Sep 2019

24 Retweets 122Likes T 5 S O EVE & €)1

QO 2 T 24 ) 122
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MapReduce has been deprecated

Urs Holzle < >
Follow v
@uhoelzle

So, R.I.P. MapReduce, but long live
cloud data analytics!

4:11 PM - 26 Sep 2019

24 Retweets 122Likes T 5 S O EVE & €)1

QO 2 T 24 ) 122

Why is this still interesting?
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Beyond MapReduce

<3
Grapn Cab'

Different systems but same theoretical abstraction works.
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MPC model

Input size N
# machines (M)

O (Nl_e) for constant € >0

Possibly smaller

Input size to machines(S)

O (Nl_e) for constant € > 0

Possibly smaller
# rounds (R)
O(1) ideal
O(log N) happv A model of computation for MapReduce
H Karloff, S Suri, S Vassilvitskii
O (pOlleqN) Content Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms

Some commonalities with EREW PRAM and distributed but different
algorithmic power
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http://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Very active area of research

o Connectivity  [KSV10], [LMSV11], [ASW18], [ASS+18], [BDE+19]...
o Matching  [LMSV11],JABB+17],[CML+18],[GGK+18],[GU19]....
o Metric clustering  [EIM11],[BEL13],[BBLM14],[BW18], ...

> Submodular optimization  [KMVV13],[MZ15],[BENW16],[BEM18]...

Large Scale Algorithms, Clustering and the MPC model, ADGA 2019



Capacitated Metric clustering
At Scale
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Why is it important?

How can we cluster these graphs?
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How can we solve such problem?

We use to main ingredients:

o Composable Core-set

© ©
i ™ © ©
©
© @
© © ©
o © © . i
©
* o ©
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How can we solve such problem?

We use to main ingredients:

o Composable Core-set
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How can we solve such problem?

We use to main ingredients:

o Composable Core-set
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Composable core-set

Let f be a function defined for a subset of A . A function c(A) is an
approximate composable core set if

fle(S1)U---Ue(SL)) = f(51U---USL)
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Composable core-set

Let f be a function defined for a subset of A . A function ¢(A) is an
approximate composable core set if

fle(S1)U---Ue(SL)) = f(51U---USL)

>

)Vi

>
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Composable core-set

Let f be a function defined for a subset of A . A function ¢(A) is an
approximate composable core set if

fle(S1)U---Ue(SL)) = f(51U---USL)

o s
’V!'

<,
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Composable core-set

Let f be a function defined for a subset of A . A function ¢(A) is an
approximate composable core set if

fle(S1)U---Ue(SL)) = f(S1U---USL)

.?Q\
- g’!./
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Composable core-set for k-clustering

Many e-coresets for clustering problems are composable coresets.
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k - center

«
.
.«
. «
k- center ¢(X,C) = maxmind(x, c) @ ’ 4
xeX ceC
. ‘
.
° ., @
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k-center

/‘;‘\

/

ple(X1)U-- UC(XL) < 4p(X




k-center

Ue(X1)) < 46(X) e ¢
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Capacitated k - Clustering

The algorithm has to run using space
proportional to the compressed instance. et
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Capacitated k - Clustering

The algorithm has to run using space
proportional to the compressed instance. USRS

Use sequential algorithm in unconstrained setting .,2‘ °°°°°

to get a O(1)-approximation ‘%9 o @
If a cluster is too large use as additional centers - < : :
the closest nodes to the center ' @ -

Cost of the clustering at most doubles

" ngc
Number of additional clusters: — =

/A’
L Z_k
C

Bicriteria ((O(1), 2) algorithm
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https://drive.google.com/file/d/0BwYFHS0roc_KaFFsYXlvcUt6ams/view
https://dblp.uni-trier.de/db/conf/nips/nips2014.html#BateniBLM14

Hierarchical Graph
clustering at scale

Large Scale Algorithms, Clustering and the MPC model, ADGA 2019



Density based clustering

Detecting dense structure in the graph is a well-studied problem with
many practical applications

Community detection
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many practical applications
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Density based clustering

Detecting dense structure in the graph is a well-studied problem with
many practical applications

Community detection

Spam detection

Computational biology
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Minimum versus average degree

What should we look for?
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Minimum versus average degree

What should we look for?

A subgraph with high average degree

=
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Minimum versus average degree

What should we look for?

A subgraph with high average degree

w @

A subgraph with high minimum degree

wind, .% éé.
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K-core definition

A K-core is a maximal subgraph of minimum degree K

The coreness number of vertex v is maximum K for which v is part of the K-core
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Hierarchical clustering via K-core

0\./.
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Hierarchical clustering via K-core

.\./0

1-core
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Hierarchical clustering via K-core

0\‘/0

1-core

2-core
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Hierarchical clustering via K-core

0\./0

3-core

1-core

2-core
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Hierarchical clustering via K-core
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Sequential algorithm

There is a simple algorithm to compute the coreness number of every node

Q\'/.
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Sequential algorithm

There is a simple algorithm to compute the coreness number of every node

0\'/.

Remove all nodes of minimum
degree from the graph and assign
their current degree as their
coreness number
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There is a simple algorithm to compute the coreness number of every node
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Approximating K-core

A (1 — ¢)-approximate K-core is a subgraph where:
- every node has degree at least (1 — ¢)K
- contains the K-core
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Approximating K-core

A (1 — ¢)-approximate K-core is a subgraph where:
- every node has degree at least (1 — ¢)K
- contains the K-core

The (1 — ¢)-approximate coreness number of vertex v is maximum K for which v
is part of a (1 — ¢)-approximate K-core
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Approximating K-core

A (1 — ¢)-approximate K-core is a subgraph where:
- every node has degree at least (1 — ¢)K
- contains the K-core

The (1 — ¢)-approximate coreness number of vertex v is maximum K for which v
is part of a (1 — ¢)-approximate K-core

- -
- LS

L d
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An approximate sequential algorithm

Find a small summary that can be used to approximate the instance
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An approximate sequential algorithm

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to
sparsity the graph and
then use sequential algorithm

Large Scale Algorithms, Clustering and the MPC model, ADGA 2019



An approximate sequential algorithm

Find a small summary that can be used to approximate the instance

-
First idea:
. . -
Use uniform sampling to
sparsity the graph and
then use sequential algorithm
-
Sample every edge with
probability p
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An approximate sequential algorithm

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to
sparsity the graph and
then use sequential algorithm

Issue:

We can estimate coreness -
for high degree nodes only Sample every edge with
probability p
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An approximate sequential algorithm

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to
sparsity the graph and
then use sequential algorithm

Issue:

We can estimate coreness O
for high degree nodes only Sample every edge with
probability p
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An approximate sequential algorithm

Find a small summary that can be used to approximate the instance

We want to estimate the
coreness of every node
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An approximate algorithm

Find a small summary that can be used to approximate the instance

Our algorithm:

Sample edge with probability p

For nodes with high degree in

the sample estimate the coreness
number and add them to S
Remove edges with both endpoints
In S

Multiply p by 2 and restart
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An approximate algorithm

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample edge with probability p

- For nodes with high coreness number
In the sample estimate the coreness -
number and add them to S

- Remove edges with both endpoints
In S

- Multiply p by 2 and restart

If a node has coreness bigger
than 2 compute its coreness number
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An approximate algorithm

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample edge with probability p

- For nodes with high coreness number
In the sample estimate the coreness O
number and add them to S
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An approximate algorithm

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample edge with probability p

- For nodes with high coreness number
In the sample estimate the coreness O
number and add them to S

- Remove edges with both endpoints
In S

- Multiply p by 2 and restart

To estimate the coreness number, we
run the sequential algorithm but we never
remove nodes in S
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Main properties

Quality of the solution

If a node has expected logarithmic coreness after
sampling, its coreness number can be estimated -
precisely

Size of the sample
After each sample the number of edges left in
the graph is almost linear in the number of
nodes
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Main properties

Parallel and streaming algorithms for K-core decomposition
Hossein Esfandiari, Silvio Lattanzi, Vahab S. Mirrokni
ICML 2018

Quality of the solution

If a node has expected logarithmic coreness after
sampling, its coreness number can be estimated -
precisely

Size of the sample
After each sample the number of edges left in
the graph is almost linear in the number of
nodes

In O(log n)rounds we get a good approximation using memory O(n)
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https://drive.google.com/file/d/17LErz-KUEROROoN1EKiF73_Js_bhOR-U/view?usp=sharing

Can we do better?

Sample vertices instead of edges
Sample vertices and consider the induce subgraph -
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Sampling vertices

Sample vertices instead of edges
Sample vertices and consider the induce subgraph -

Main advantage
Every edge is present with probability p2 -
For every sampled node a neighbour is sampled
with probability p
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Sampling vertices

Sample vertices instead of edges
Sample vertices and consider the induce subgraph -

Main advantage
Every edge is present with probability p2 -
For every sampled node a neighbour is sampled
with probability p

- -
Reduction in a parallel round - -

Every round we can reduce the maximum -
corners number exponentially
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An approximate algorithm

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample nodes with probability p

- For nodes with high coreness number
In the sample estimate the coreness O
number and add them to S

- Remove edges with both endpoints
In S

- Let p = p0.9

To estimate the coreness number, we
run the sequential algorithm but we never
remove nodes in S
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Main properties

Improved Parallel Algorithms for Density-Based Network Clustering
Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrovic
ICML 2019

Quality of the solution

If a node has expected logarithmic coreness after
sampling, its coreness number can be estimated -
precisely

Size of the sample
After each sample the number of edges left in
the graph is almost linear in the number of
nodes

In O(log log n)rounds we get a good approximation using memory O(ﬁ)
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https://drive.google.com/file/d/1Kn5KlqCExfiPivzKsxBlzHqSODXjCvuK/view?usp=sharing

Experiments

Improved Parallel Algorithms for Density-Based Network Clustering
Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrovic
ICML 2019

Graph # Nodes # Edges
Amazon 334,863 925,872
Youtube 1,134,890 2,987,624

LiveJournal | 3,997,962 34,681,189

Orkut 3,072,441 117,185,083

Relative Running Time

Orkut -

Amazon -
YouTube -
LiveJournal
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Conclusions and
Future Work
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Conclusions and Future Work

o Nice model that captures many real world scenarios

o Very active area of research with many interesting results

o Many open problems with practical applications
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Thanks
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