Large Scale Algorithms, Clustering and the MPC model

Silvio Lattanzi Google Zurich

Outline

Models, MapReduce and Simple Examples

Capacitated Metric Clustering at Scale How can we cluster the world map efficiently?

Hierarchical Graph Clustering at Scale Can we obtain a hierarchical clustering efficiently?

Incredible amount of online data

Google searches today

Blog posts written today

Tweets sent today

4,055,053,771

Videos viewed today on YouTube

45,866,158

Photos uploaded today on Instagram

73,178,241

Tumblr posts today

Facebook active users

Google+ active users

Twitter active users

Stats from http://www.internetlivestats.com/.

Moore's Law

Moore's Law

Number of transistors double roughly every two years

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Hard Drive evolution

Hard Drive evolution

80s: 10M \rightarrow 100M

90s: 100M \rightarrow 10G

00s: 10G \rightarrow 1T

 $10s:1T \rightarrow 100T$

Data >> Hard drive

Models, MapReduce and Simple Examples

Classic Parallel programming

Computers coordinate autonomously

Classic Parallel programming

Computers coordinate autonomously

Hard to read and understand

Hard to write

Hard to debug

A simple model for parallel computing

Main properties:

- 1. Synchronous vs. Asynchronous
- Partition Data:Adversarial or Random
- 3. Communication
 - A. Topology (complete or not)
 - B. Amount (bounded or not)
- 4. Size of machines
- 5. Fault-tolerance

A simple model for parallel computing

Main properties:

- 1. **Synchronous** vs. Asynchronous
- Partition Data:Adversarial or Random
- 3. Communication
 - A. Topology (complete or not)
 - B. Amount (**bounded** or not)
- 4. Size of machines ~ largish
- 5. Fault-tolerance: transparent to user

machines

machines

machines

rounds

Values with same key are collected and process by Reducer

MapReduce: simplified data processing on large clusters

J Dean, S Ghemawat Communications of the ACM 51 (1), 107-113

machines

rounds

machines (M)

Input size to machines(S)

Input size N

machines (M)

Input size to machines(S)

Input size N

machines (M)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

Input size to machines(S)

Input size N

machines (M)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

Input size to machines(S)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

Input size N

machines (M)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

Input size to machines(S)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

rounds (R)

O(1) ideal

 $O(\log N)$ happy

O(polylogN) content

MapReduce model

Input size N

machines (M)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

Input size to machines(S)

$$O\left(N^{1-\epsilon}\right)$$

for constant $\epsilon > 0$

rounds (R)

O(1) ideal $O(\log N)$ happy O(polylogN) content

A model of computation for MapReduce

H Karloff, S Suri, S Vassilvitskii

Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms

Other models: parallel

PRAMS

machines (M)

 $O(N^c)$

for constant c > 0

Input size to machines(S)

O(1)

Other models: parallel

PRAMS

machines (M)

 $O(N^c)$

for constant c > 0

Input size to machines(S)

O(1)

Reduction between EREW PRAMs and MapReduce algorithms

EREW PRAM vs. MapReduce

Theorem

Let \mathcal{A} be a EREW PRAM algorithm for problem \mathcal{P} using $O\left(N^{2-2\epsilon}\right)$ memory and R rounds. Then there exists a MapReduce algorithm using the same number of rounds.

Other models: parallel

BSP

Not assume synchronization

Not assume fault-tolerance

Other models: distributed

LOCAL

Restricted topology

CONGEST

Limited bandwidth

Many connections between the two models, both for upper and lower bounds.

Prefix sum problem

Let
$${\bf v}$$
 be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} {\bf v}[i]$

Prefix sum problem

Let
$$\mathbf{v}$$
 be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} \mathbf{v}[i]$

Using EREW PRAM it is not clear how to design an algorithm using $o(\log n)$ rounds.

Using MapReduce it is possible to solve the problem in O(1) rounds

Prefix sum problem

Let
$${\bf v}$$
 be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} {\bf v}[i]$

Using MapReduce:

Prefix sum problem

Let v be a vector. Compute,
$$\forall j, \ PS(j) = \sum_{i \leq j} v[i]$$

Using MapReduce:

Suppose the input is sorted,

$$v[0] - v[s-1]$$

$$v[s] - v[2s - 1]$$

$$v[(m-2)s] - v[(m-1)s - 1]$$

Prefix sum problem

Let v be a vector. Compute,
$$\forall j, \ PS(j) = \sum_{i \leq j} v[i]$$

Using MapReduce:

Suppose the input is sorted,

Prefix sum problem

Let \mathbf{v} be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} \mathbf{v}[i]$

Using MapReduce:

Sorting also takes O(1)

 \sqrt{N} machines, each containing \sqrt{N} elements

Prefix sum problem

Let ${\bf v}$ be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} {\bf v}[i]$

Using MapReduce:

Sorting also takes O(1)

Sort in each machine.

Prefix sum problem

Let
$$\mathbf{v}$$
 be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} \mathbf{v}[i]$

Using MapReduce:

Sorting also takes O(1)

 \sqrt{N} machines, each containing \sqrt{N} elements

Sort in each machine.

Compute the $N^{1/2-\epsilon}$ -quantiles.

Prefix sum problem

Let \mathbf{v} be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} \mathbf{v}[i]$

Using MapReduce:

Sorting also takes O(1)

 \sqrt{N} machines, each containing \sqrt{N} elements

Sort in each machine.

Compute the $N^{1/2-\epsilon}$ -quantiles.

Sort quantiles, and use them to partition data in N machines and sort again.

Prefix sum problem

Let v be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} v[i]$

Using MapReduce:

Sorting also takes O(1)

 \sqrt{N} machines, each containing \sqrt{N} elements

Sort in each machine.

Compute the $N^{1/2-\epsilon}$ -quantiles.

Sort quantiles, and use them to partition data in N machines and sort again.

Prefix sum problem

Let v be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} v[i]$

Using MapReduce:

Sorting also takes O(1)

 \sqrt{N} machines, each containing \sqrt{N} elements

Sort in each machine.

Compute the $N^{1/2-\epsilon}$ -quantiles.

Sort quantiles, and use them to partition data in N machines and sort again.

Prefix sum problem

Let ${\bf v}$ be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} {\bf v}[i]$

Using MapReduce:

Sorting also takes O(1)

3 rounds

Prefix sum problem

Let ${\bf v}$ be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} {\bf v}[i]$

Using MapReduce:

Sorting also takes O(1)

1st round

 \sqrt{N} machines, each sending $N^{1/2-\epsilon}$ elements

Prefix sum problem

Let \mathbf{v} be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} \mathbf{v}[i]$

Using MapReduce:

Sorting also takes O(1)

2nd round

 \sqrt{N} machines, each sending \sqrt{N} elements to different machines

1 machine sending $N^{1-\epsilon}$ elements to all machines

Prefix sum problem

Let ${\bf v}$ be a vector. Compute $, \forall j, \ PS(j) = \sum_{i \leq j} {\bf v}[i]$

Using MapReduce:

Sorting also takes O(1)

3rd round

 \sqrt{N} machines, each sending at most N^{ϵ} elements to different machines

Prefix sum problem

Let
$$\mathbf{v}$$
 be a vector. Compute, $\forall j, \ PS(j) = \sum_{i \leq j} \mathbf{v}[i]$

Using EREW PRAM it is not clear how to design an algorithm using $o(\log n)$ rounds.

Using MapReduce it is possible to solve the problem in O(1) rounds

MapReduce has been deprecated

So, R.I.P. MapReduce, but long live cloud data analytics!

4:11 PM - 26 Sep 2019

MapReduce has been deprecated

Why is this still interesting?

Beyond MapReduce

Different systems but same theoretical abstraction works.

MPC model

Input size N

machines (M)

 $O\left(N^{1-\epsilon}\right)$ for constant $\epsilon > 0$

Possibly smaller

Input size to machines(S)

 $O\left(N^{1-\epsilon}\right) \ \ \text{for constant} \ \ \epsilon>0$

Possibly smaller

rounds (R)

O(1) ideal

 $O(\log N)$ happy

O(polylogN) content

A model of computation for MapReduce

H Karloff, S Suri, S Vassilvitskii

Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms

Some commonalities with EREW PRAM and distributed but different algorithmic power

Very active area of research

- Connectivity [KSV10], [LMSV11], [ASW18], [ASS+18], [BDE+19]...
- Matching [LMSV11],[ABB+17],[CML+18],[GGK+18],[GU19],...
- Metric clustering [EIM11],[BEL13],[BBLM14],[BW18],...
- Submodular optimization [KMVV13],[MZ15],[BENW16],[BEM18]...

...

Capacitated Metric clustering At Scale

Why is it important?

How can we cluster these graphs?

US graph: N = x0
Millions
distances: geodesic

World graph: N = x00 Millions distances: geodesic

How can we solve such problem?

We use to main ingredients:

Composable Core-set

How can we solve such problem?

We use to main ingredients:

Composable Core-set

How can we solve such problem?

We use to main ingredients:

Composable Core-set

Transform an unbalanced solution in a capacitated one

Composable core-set

Let f be a function defined for a subset of Δ . A function $c(\Delta)$ is an approximate composable core set if

$$f(c(S_1) \cup \cdots \cup c(S_L)) \approx f(S_1 \cup \cdots \cup S_L)$$

Composable core-set

Let f be a function defined for a subset of Δ . A function $c(\Delta)$ is an approximate composable core set if

$$f(c(S_1) \cup \cdots \cup c(S_L)) \approx f(S_1 \cup \cdots \cup S_L)$$

Composable core-set

Let f be a function defined for a subset of Δ . A function $c(\Delta)$ is an approximate composable core set if

$$f(c(S_1) \cup \cdots \cup c(S_L)) \approx f(S_1 \cup \cdots \cup S_L)$$

Composable core-set

Let f be a function defined for a subset of Δ . A function $c(\Delta)$ is an approximate composable core set if

$$f(c(S_1) \cup \cdots \cup c(S_L)) \approx f(S_1 \cup \cdots \cup S_L)$$

Composable core-set for k-clustering

Many ϵ -coresets for clustering problems are composable coresets.

k - center

k- center

$$\phi(X,C) = \max_{x \in X} \min_{c \in C} d(x,c)$$

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Cost of each X_i instance is smaller than twice global cost

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Cost of each X_i instance is smaller than twice global cost

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Cost of each X_i instance is smaller than twice global cost

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Cost of each X_i instance is smaller than twice global cost

Map points to center at cost $2\phi(X)$

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Cost of each X_i instance is smaller than twice global cost

Map points to center at cost $2\phi(X)$

Cost of k-center on center is at most $2 \phi(X)$

Lemma

$$\phi(c(X_1) \cup \cdots \cup c(X_L)) \le 4\phi(X)$$

Proof

Solve k-center independently

Cost of each X_i instance is smaller than twice global cost

Map points to center at cost $2\phi(X)$

Cost of k-center on center is at most $2\phi(X)$

The algorithm has to run using space proportional to the compressed instance.

The algorithm has to run using space proportional to the compressed instance.

Use sequential algorithm in unconstrained setting to get a ${\cal O}(1)$ -approximation

The algorithm has to run using space proportional to the compressed instance.

Use sequential algorithm in unconstrained setting to get a ${\cal O}(1)$ -approximation

If a cluster is too large use as additional centers the closest nodes to the center

The algorithm has to run using space proportional to the compressed instance.

Use sequential algorithm in unconstrained setting to get a ${\cal O}(1)$ -approximation

If a cluster is too large use as additional centers the closest nodes to the center

Cost of the clustering at most doubles

The algorithm has to run using space proportional to the compressed instance.

Use sequential algorithm in unconstrained setting to get a ${\cal O}(1)$ -approximation

If a cluster is too large use as additional centers the closest nodes to the center

Cost of the clustering at most doubles

Number of additional clusters:
$$\sum_{C} \frac{n_C}{L} = \frac{n}{L} = k$$

The algorithm has to run using space proportional to the compressed instance.

Use sequential algorithm in unconstrained setting to get a ${\cal O}(1)$ -approximation

If a cluster is too large use as additional centers the closest nodes to the center

Cost of the clustering at most doubles

Number of additional clusters:
$$\sum_{C} \frac{n_{C}}{L} = \frac{n}{L} = k$$

Bicriteria (O(1),2) algorithm

Experiments

US graph: N = x0 Millions

	size of seq. inst.	increase in OPT
US	1/300	1.52
World	1/1000	1.58

<u>Distributed Balanced Clustering via Mapping Coresets.</u>

MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, Vahab S. Mirrokni NIPS 2014: 2591-2599

World graph: N = x00 Millions

Hierarchical Graph clustering at scale

Density based clustering

Detecting dense structure in the graph is a well-studied problem with many practical applications

Community detection

Density based clustering

Detecting dense structure in the graph is a well-studied problem with many practical applications

Community detection

Spam detection

Density based clustering

Detecting dense structure in the graph is a well-studied problem with many practical applications

Community detection

Spam detection

Computational biology

. .

Minimum versus average degree

What should we look for?

Minimum versus average degree

What should we look for?

A subgraph with high average degree

$$\frac{|E|}{|N|}$$

Minimum versus average degree

What should we look for?

A subgraph with high average degree

$$\frac{|E|}{|N|}$$

A subgraph with high minimum degree

$$\min d_v$$

K-core definition

A K-core is a maximal subgraph of minimum degree K

The coreness number of vertex v is maximum K for which v is part of the K-core

K-core definition

A K-core is a maximal subgraph of minimum degree K

The coreness number of vertex v is maximum K for which v is part of the K-core

Sequential algorithm

There is a simple algorithm to compute the coreness number of every node

Sequential algorithm

There is a simple algorithm to compute the coreness number of every node

Remove all nodes of minimum degree from the graph and assign their current degree as their coreness number

There is a simple algorithm to compute the coreness number of every node

There is a simple algorithm to compute the coreness number of every node

There is a simple algorithm to compute the coreness number of every node

There is a simple algorithm to compute the coreness number of every node

Approximating K-core

A $(1 - \epsilon)$ -approximate K-core is a subgraph where:

- every node has degree at least $(1-\epsilon){\rm K}$
- contains the K-core

Approximating K-core

A $(1 - \epsilon)$ -approximate K-core is a subgraph where:

- every node has degree at least $(1-\epsilon){\rm K}$
- contains the K-core

The $(1-\epsilon)$ -approximate coreness number of vertex v is maximum K for which v is part of a $(1-\epsilon)$ -approximate K-core

Approximating K-core

A $(1 - \epsilon)$ -approximate K-core is a subgraph where:

- every node has degree at least $(1-\epsilon){\rm K}$
- contains the K-core

The $(1-\epsilon)$ -approximate coreness number of vertex v is maximum K for which v is part of a $(1-\epsilon)$ -approximate K-core

Find a small summary that can be used to approximate the instance

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to sparsity the graph and then use sequential algorithm

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to sparsity the graph and then use sequential algorithm

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to sparsity the graph and then use sequential algorithm

Issue:

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to sparsity the graph and then use sequential algorithm

Issue:

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to sparsity the graph and then use sequential algorithm

Issue:

Find a small summary that can be used to approximate the instance

First idea:

Use uniform sampling to

We want to estimate the coreness of every node

Issue:

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high degree in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

than 2 compute its coreness number

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample edge with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Multiply p by 2 and restart

To estimate the coreness number, we run the sequential algorithm but we never remove nodes in S

Main properties

Quality of the solution

If a node has expected logarithmic coreness after sampling, its coreness number can be estimated precisely

Size of the sample

After each sample the number of edges left in the graph is almost linear in the number of nodes

Main properties

Parallel and streaming algorithms for K-core decomposition
Hossein Esfandiari, Silvio Lattanzi, Vahab S. Mirrokni
ICML 2018

Quality of the solution

If a node has expected logarithmic coreness after sampling, its coreness number can be estimated precisely

Size of the sample

After each sample the number of edges left in the graph is almost linear in the number of nodes

In $O(\log n)$ rounds we get a good approximation using memory $O(\tilde{n})$

Can we do better?

Sample vertices instead of edges

Sample vertices and consider the induce subgraph

Sample vertices instead of edges

Sample vertices and consider the induce subgraph

Sample vertices instead of edges

Sample vertices and consider the induce subgraph

Sample vertices instead of edges

Sample vertices and consider the induce subgraph

Main advantage

Every edge is present with probability p^2 For every sampled node a neighbour is sampled with probability p

Sample vertices instead of edges

Sample vertices and consider the induce subgraph

Main advantage

Every edge is present with probability p^2 For every sampled node a neighbour is sampled with probability p

Reduction in a parallel round

Every round we can reduce the maximum corners number exponentially

Find a small summary that can be used to approximate the instance

Our algorithm:

- Sample nodes with probability p
- For nodes with high coreness number in the sample estimate the coreness number and add them to S
- Remove edges with both endpoints in S
- Let $p = p^{0.9}$

To estimate the coreness number, we run the sequential algorithm but we never remove nodes in S

Main properties

Improved Parallel Algorithms for Density-Based Network Clustering
Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrovic
ICML 2019

Quality of the solution

If a node has expected logarithmic coreness after sampling, its coreness number can be estimated precisely

Size of the sample

After each sample the number of edges left in the graph is almost linear in the number of nodes

In $O(\log \log n)$ rounds we get a good approximation using memory $O(\tilde{n})$

Experiments

Improved Parallel Algorithms for Density-Based Network Clustering
Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrovic
ICML 2019

Graph	# Nodes	# Edges
Amazon	334,863	925,872
Youtube	1,134,890	2,987,624
LiveJournal	3,997,962	34,681,189
Orkut	3,072,441	117,185,083

Conclusions and Future Work

Conclusions and Future Work

Nice model that captures many real world scenarios

Very active area of research with many interesting results

Many open problems with practical applications

Thanks