## Expander Decomposition:

Applications and How to use it

#### **Thatchaphol Saranurak**

Toyota Technological Institute at Chicago

ADGA 2019

## Goal of this talk

- 1. Motivate **dynamic** algorithms
- 2. Expander Decomposition through dynamic graph applications.
- 3. How it is also used for **centralized** and **distributed** algorithms.
- 4. Quick survey of applications

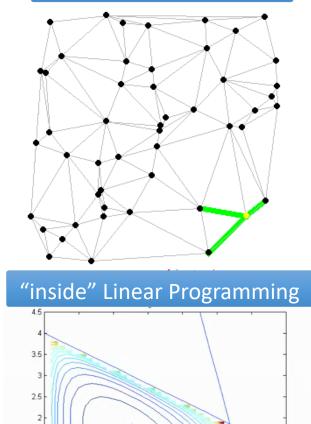
## Part 1 Dynamic Algorithms: What and Why?

\*Also say **Dynamic Data Structures** as well.

# Analyze dynamic networks Road networks NEW YORK Track communities in social networks

#### Subroutines in static algorithms





1.5

2.5

2

3.5 aifs.con

3

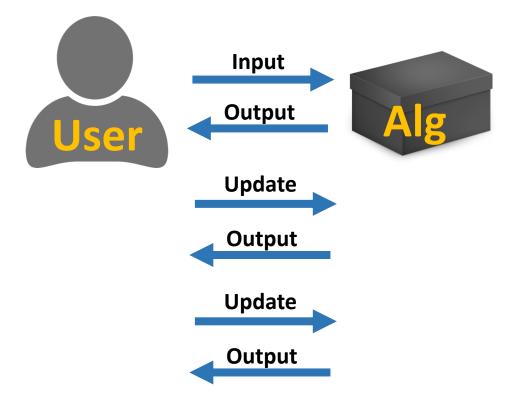
0.5

0

0.5

#### A common theme

#### We solve the **same** problem **repeatedly** where input keeps **changing**



#### **Dynamic Algorithms**

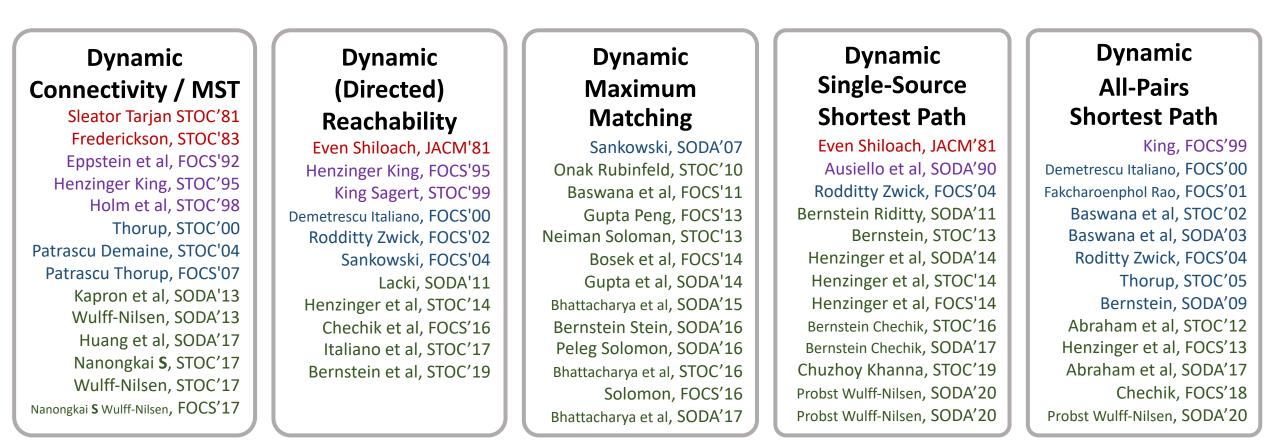
#### Science of how not to compute things from scratch

#### High-level goal: "How to Efficiently Prepare for Changes"

#### **Example: Dynamic Problems**

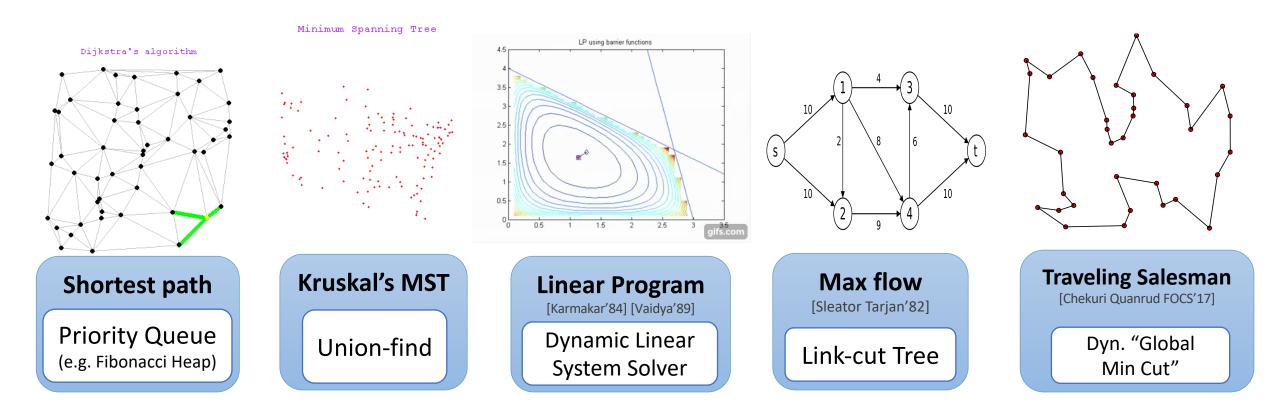
| Level     | Textbook                                                                                                                       | Research                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change    | Insert/delete a number in a set <i>S</i>                                                                                       | Insert/delete an edge in a graph <i>G</i>                                                                                                                                                                                                                                                                                                                                                  |
| Maintain  | Minimum number in S                                                                                                            | Is G connected?                                                                                                                                                                                                                                                                                                                                                                            |
| Recompute | <b>0</b> ( <b> S</b>  ) time                                                                                                   | <b>O(#edges</b> ) time                                                                                                                                                                                                                                                                                                                                                                     |
| Can do    | <b>O</b> ( <b>log</b>   <b>S</b>  ) time                                                                                       | Example: $polylog(n)$ randomized                                                                                                                                                                                                                                                                                                                                                           |
|           | Balanced Binary Search tree<br>e.g. AVL tree, red-black tree, etc.<br>50<br>17<br>72<br>12<br>23<br>54<br>76<br>9<br>14 $1967$ | [Sleator Tarjan STOC'81, Frederickson, STOC'83<br>Eppstein et al, FOCS'92, Henzinger King, STOC'95<br>Holm et al, STOC'98, Thorup, STOC'00<br>Patrascu Demaine, STOC'04, Patrascu Thorup, FOCS'07<br>Kapron et al, SODA'13, Wulff-Nilsen, SODA'13<br>Huang et al, SODA'17, Nanongkai S, STOC'17<br>Wulff-Nilsen, STOC'17, Nanongkai S Wulff-Nilsen, FOCS'17]<br><b>Many open questions</b> |

#### **More Example: Dynamic Graph Problems** (in FOCS/STOC/SODA)



#### More problems...

#### Dynamic Alg. Inside Static Alg.



#### Many more...

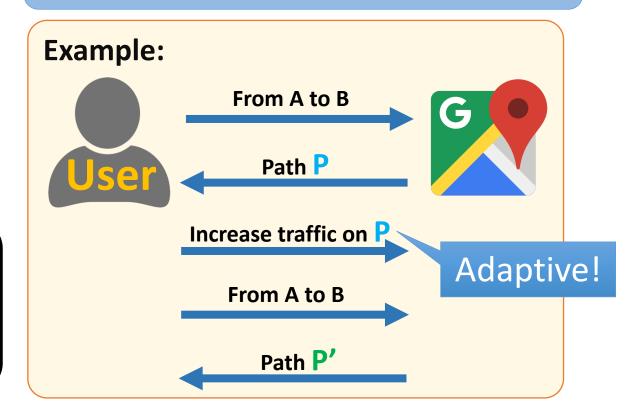
#### Non-adaptive users:

All updates are **fixed from the beginning**.

## Usually cannot be used as subroutines inside static algo.

#### **Adaptive users:**

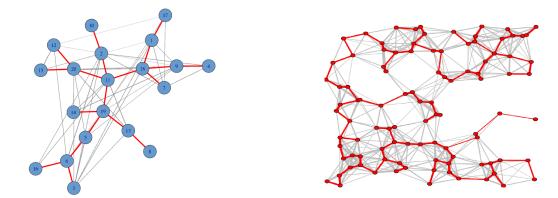
#### Updates from users can **depend on** previous answers



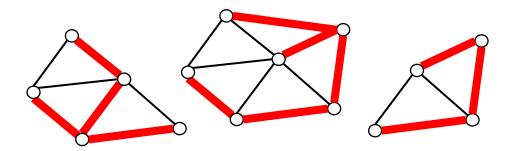
Dynamic Spanning Forest: Definition and Progress

## **Definition:** Spanning Tree/Forest

Spanning tree: a smallest sub-network that connects all nodes together

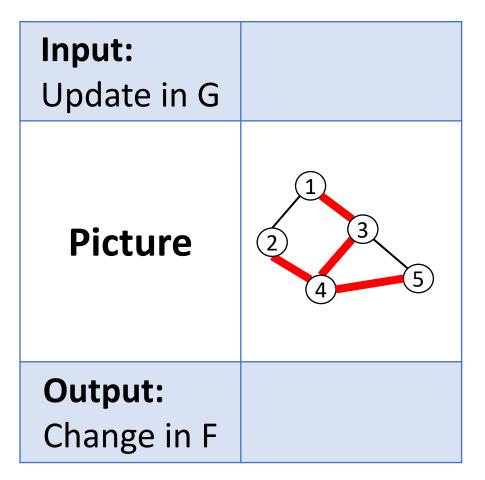


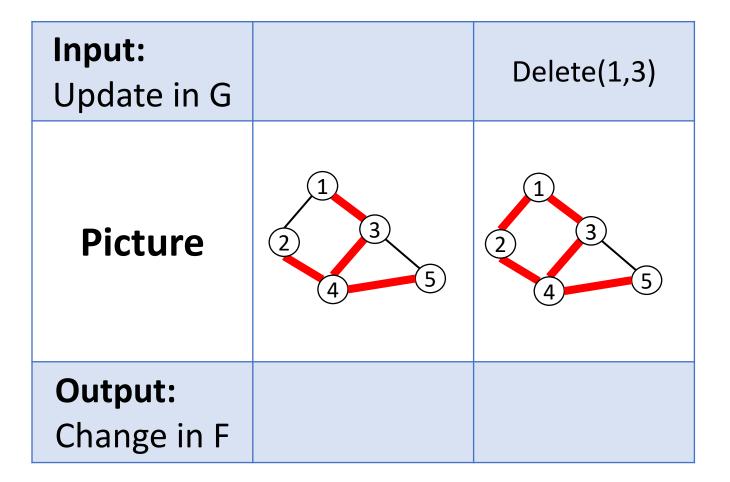
**Spanning forest**: set of **spanning trees** on each connected component

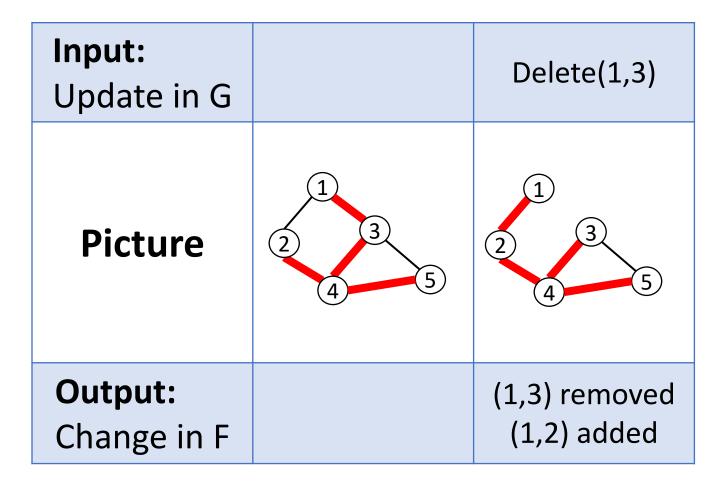


## Maintaining a *spanning forest* under changes

\*Will say spanning tree and spanning forest interchangeably







| <b>Input:</b><br>Update in G  | Delete(1,3)                  | Insert(2,3) |
|-------------------------------|------------------------------|-------------|
| Picture                       | 1<br>2<br>3<br>5             |             |
| <b>Output:</b><br>Change in F | (1,3) removed<br>(1,2) added |             |

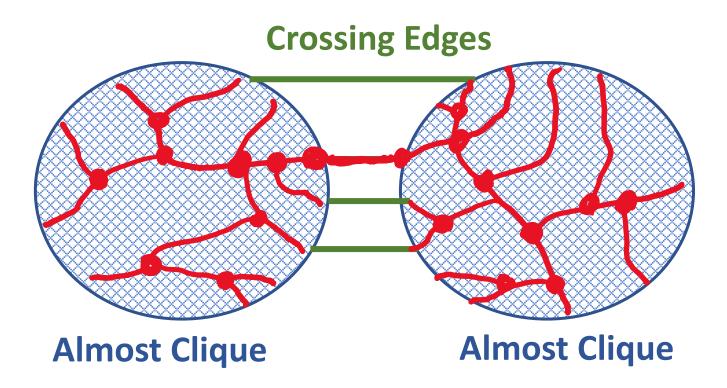
| <b>Input:</b><br>Update in G  | Delete(1,3)                  | Insert(2,3) | Delete(2,4)      |
|-------------------------------|------------------------------|-------------|------------------|
| Picture                       |                              |             | 1<br>2<br>3<br>5 |
| <b>Output:</b><br>Change in F | (1,3) removed<br>(1,2) added |             |                  |

| <b>Input:</b><br>Update in G  | Delete(1,3)                  | Insert(2 <i>,</i> 3) | Delete(2,4)                  |
|-------------------------------|------------------------------|----------------------|------------------------------|
| Picture                       | 1<br>2<br>4<br>5             |                      | 1<br>2 3<br>4 5              |
| <b>Output:</b><br>Change in F | (1,3) removed<br>(1,2) added |                      | (2,4) removed<br>(2,3) added |

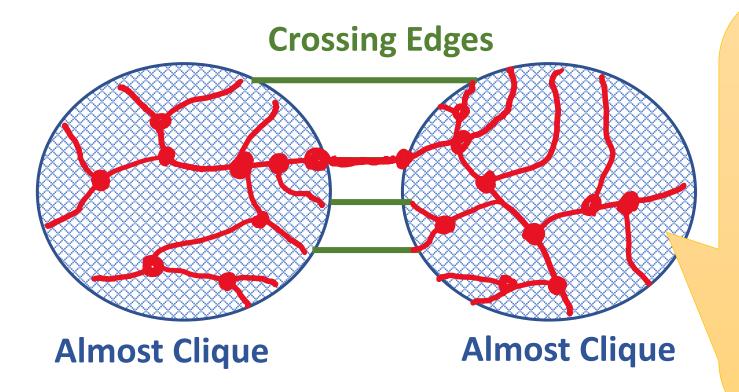
## Goal: minimize update time

Worst-case time to output changes of F for each update

### Why this problem can be hard?



## Why this problem can be hard?



Interesting when: delete a tree-edge

Want: Find a crossing edge

Question: Must scan all clique-edges? Scan the whole graph?

*n* = # of nodes, *m*=# of edges

| Reference              | Update time      |
|------------------------|------------------|
| Naïve                  | m                |
| Frederickson [STOC'83] | $m^{1/2}$        |
| EGIN [FOCS'92]         | n <sup>1/2</sup> |

Hide log factors from now

*n* = # of nodes, *m*=# of edges

#### Important development in amortized update time

Henzinger King [STOC'95] Holm Lichtenberg Thorup [STOC'98] Thorup [STOC'00] Patrascu Demaine [STOC'04] Wulff-Nilsen [SODA'13] HHKP [SODA'17]

| Reference                                                                 | Update time      |  |
|---------------------------------------------------------------------------|------------------|--|
| Naïve                                                                     | m                |  |
| Frederickson [STOC'83]                                                    | $m^{1/2}$        |  |
| EGIN [FOCS'92]                                                            | n <sup>1/2</sup> |  |
| 20-year gap:                                                              |                  |  |
| A lot of successes in closely related settings<br>(amortized update time) |                  |  |

*n* = # of nodes, *m*=# of edges

#### Important development in amortized update time

Henzinger King [STOC'95] Holm Lichtenberg Thorup [STOC'98] Thorup [STOC'00] Patrascu Demaine [STOC'04] Wulff-Nilsen [SODA'13] HHKP [SODA'17]

| Reference                                                                                 | Update time |  |
|-------------------------------------------------------------------------------------------|-------------|--|
| Naïve                                                                                     | m           |  |
| Frederickson [STOC'83]                                                                    | $m^{1/2}$   |  |
| EGIN [FOCS'92]                                                                            | $n^{1/2}$   |  |
| 20-year gap:<br>A lot of successes in closely related settings<br>(amortized update time) |             |  |
| Assume user is not adaptive                                                               |             |  |
| Kapron King Mountjoy [SODA'13]                                                            | polylog n   |  |

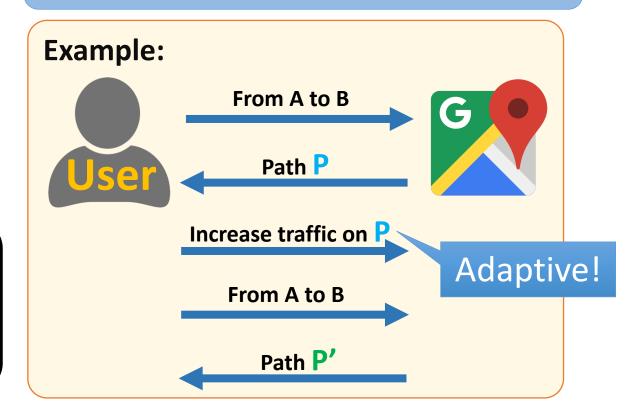
#### Non-adaptive users:

All updates are **fixed from the beginning**.

## Usually cannot be used as subroutines inside static algo.

#### **Adaptive users:**

#### Updates from users can **depend on** previous answers



*n* = # of nodes, *m*=# of edges

#### Important development in amortized update time

Henzinger King [STOC'95] Holm Lichtenberg Thorup [STOC'98] Thorup [STOC'00] Patrascu Demaine [STOC'04] Wulff-Nilsen [SODA'13] HHKP [SODA'17]

| Reference                                                                                 | Update time |  |
|-------------------------------------------------------------------------------------------|-------------|--|
| Naïve                                                                                     | m           |  |
| Frederickson [STOC'83]                                                                    | $m^{1/2}$   |  |
| EGIN [FOCS'92]                                                                            | $n^{1/2}$   |  |
| 20-year gap:<br>A lot of successes in closely related settings<br>(amortized update time) |             |  |
| Assume user is not adaptive                                                               |             |  |
| Kapron King Mountjoy [SODA'13]                                                            | polylog n   |  |

*n* = # of nodes, *m*=# of edges

| Reference                                                                                 | Update time                                      |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Naïve                                                                                     | m                                                |  |
| Frederickson [STOC'83]                                                                    | $m^{1/2}$                                        |  |
| EGIN [FOCS'92]                                                                            | $n^{1/2}$                                        |  |
| 20-year gap:<br>A lot of successes in closely related settings<br>(amortized update time) |                                                  |  |
| Assume user is not adaptive                                                               |                                                  |  |
| Kapron King Mountjoy [SODA'13]                                                            | polylog n                                        |  |
| <b>KKPT</b> [ESA'16]                                                                      | $n^{1/2} \cdot rac{\log\log n}{(\log n)^{1/2}}$ |  |

*n* = # of nodes, *m*=# of edges

Independent works

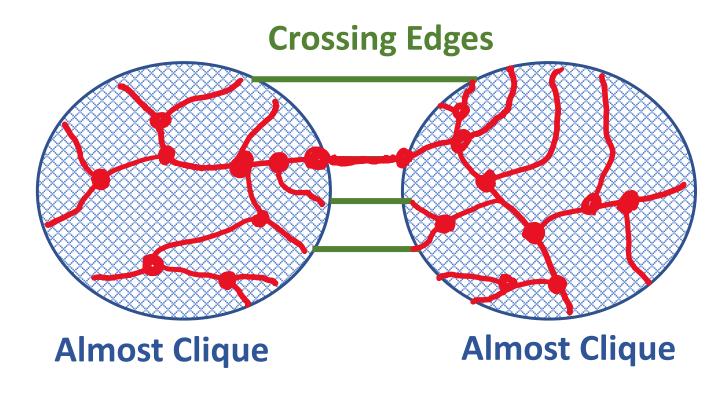
| Reference                                                                                                                | Update time                                        |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Naïve                                                                                                                    | m                                                  |
| Frederickson [STOC'83]                                                                                                   | $m^{1/2}$                                          |
| EGIN [FOCS'92]                                                                                                           | n <sup>1/2</sup>                                   |
| 20-year gap:<br>A lot of successes in closely related settings<br>(amortized update time)<br>Assume user is not adaptive |                                                    |
| Kapron King Mountjoy [SODA'13]                                                                                           | polylog n                                          |
| <b>KKPT</b> [ESA'16]                                                                                                     | $n^{1/2} \cdot \frac{\log \log n}{(\log n)^{1/2}}$ |
| Wulff-Nilsen [STOC'17]                                                                                                   | n <sup>0.499</sup>                                 |
| Nanongkai <mark>S</mark> [STOC'17]                                                                                       | $n^{0.401}$                                        |

*n* = # of nodes, *m*=# of edges

| Reference                                                                              | Update time                                        |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Naïve                                                                                  | m                                                  |  |
| Frederickson [STOC'83]                                                                 | m <sup>1/2</sup>                                   |  |
| EGIN [FOCS'92]                                                                         | n <sup>1/2</sup>                                   |  |
| 20-year ga                                                                             | ap:                                                |  |
| A lot of successes in closel<br>(amortized update                                      |                                                    |  |
| Assume user is not adaptive                                                            |                                                    |  |
| Kapron King Mountjoy [SODA'13]                                                         | polylog n                                          |  |
| <b>KKPT</b> [ESA'16]                                                                   | $n^{1/2} \cdot \frac{\log \log n}{(\log n)^{1/2}}$ |  |
| Wulff-Nilsen [STOC'17]                                                                 | $n^{0.499}$                                        |  |
| Nanongkai S [STOC'17]                                                                  | $n^{0.401}$                                        |  |
| <b>NSW</b> [FOCS'17]                                                                   | <i>n</i> <sup>0(1)</sup>                           |  |
| Will explain how to use<br>Expander decomposition<br>via (simplification of) this work |                                                    |  |

## Part 1.2 Dynamic Spanning Forest: How to use Expander Decomposition

## **Recall**: Why this problem can be hard?

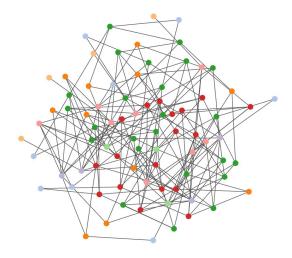


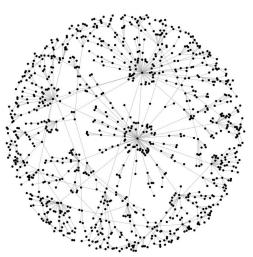
Let's solve the problem on graphs that this situation cannot happen...

## Expanders

#### Intuition

- Well-connected
- Hard to separate into two equal sides

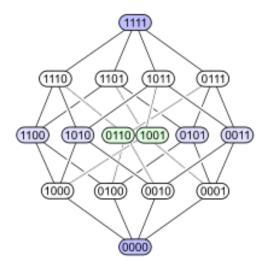


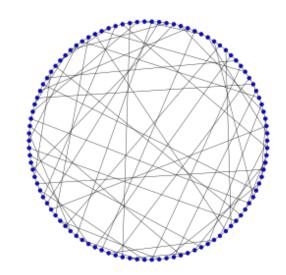


Random Graphs (Erdös-Rényi)

## Power-law Graphs (preferential attachment)

[Gkantsidis, Mihail, Saberi SIGMETRICS'03] [Mihail, Papadimitriou, Saberi FOCS'03]





#### Hypercubes

 $\mathbb{F}_p$ -cycles with inverse chords

## **Definition:** Expanders

G = (V, E) is an **expander** if G=(V,E) $\frac{|E(S,\overline{S})|}{\min\{vol(S),vol(\overline{S})\}} \ge \frac{1}{\operatorname{polylog}(n)}$  $\forall S \subset V$ relatively Many Sum of degree:  $vol(S) = \sum_{u \in S} \deg_G u$ In general,  $\frac{|E(S,\overline{S})|}{\min\{vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol(S),vol($  $\phi$ -expander:

### **Expander Paradigm**

#### 1. Solve it on **expanders**.

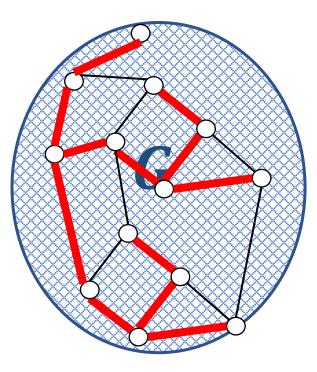
#### 2. Combine the solutions.

#### **Expander Paradigm**

#### 1. Solve it on **expanders**.

#### Warm-up: One update to Expander

Suppose that *G* is an expander, and there is **one** update. **Goal**: maintain a **spanning tree** *T* of *G*.



#### Warm-up: One update to Expander

Suppose that *G* is an expander, and there is **one** update. **Goal**: maintain a **spanning tree** *T* of *G* 



Interesting only when: delete a tree-edge Want: edge crossing *S* to reconnect Alg: sample an edge with an endpoint in *S* (can do fast) By expansion: get edge crossing *S* w.p.  $\frac{1}{\text{polylog}(n)}$ Repeat:  $\tilde{O}(1)$  times. Done w.h.p.

after many edge deletions, **not expander** anymore!

#### Let's "repair" the expander

### **Expander Paradigm**

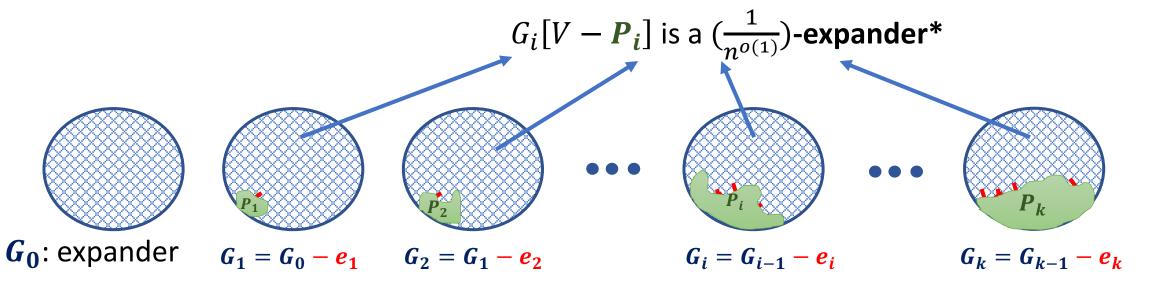
#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

> General tool: Expander Pruning

#### 2. Combine the solutions.

#### **Expander Pruning** [NSW'17]



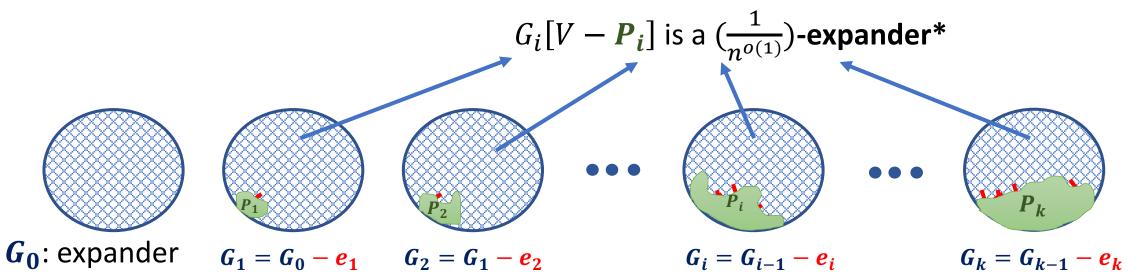
where  $k \leq m/n^{o(1)}$ 

#### **Guarantee:**

- 1. Time to update  $P_{i-1}$  to  $P_i$  is  $n^{o(1)}$
- 2. So  $vol(P_i) = \mathbf{i} \cdot \mathbf{n}^{o(1)}$

3. 
$$G_i[V - P_i]$$
 is a  $\frac{1}{n^{o(1)}}$ -expander

#### **Expander Pruning** [NSW'17]



#### Expanders can be quickly "repaired" under edge updates.

#### **Expander Paradigm**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

> General tool: Expander Pruning

#### **Expander Paradigm**

#### 1. Solve it on expanders.

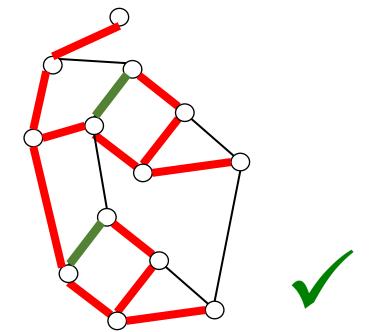
Problem specific: e.g. Random Sampling

> General tool: Expander Pruning

In this talk, will only show how to solve a **relaxed problem** (contains all conceptual ideas)

#### Relaxed Problem: Dynamic Spanning Subgraphs

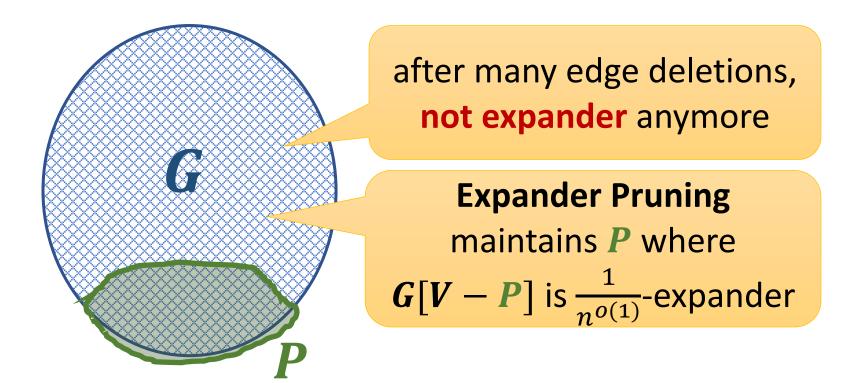
- 1. Maintain Any Spanning Subgraph with  $\tilde{O}(n)$  edges (Easier than Spanning Forest.)
- 2. There are only  $n^{1-o(1)}$  updates (can assume w.l.o.g. by standard techniques.)



**Expander Pruning:** 

- 1. Time to update  $P_i$  is  $n^{o(1)}$
- 2. So  $vol(\boldsymbol{P}_i) = \boldsymbol{i} \cdot \boldsymbol{n}^{o(1)}$
- 3.  $G_i[V P_i]$  is a  $\frac{1}{n^{o(1)}}$ -expander

Suppose that **G** is an expander, but there are **many** updates.

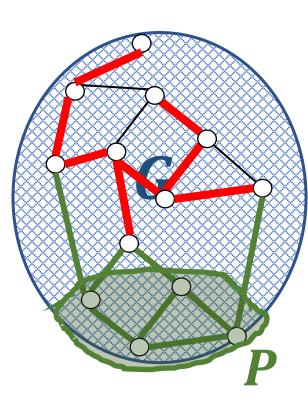


1. Time to update  $P_i$  is  $n^{o(1)}$ 

2. So 
$$vol(\boldsymbol{P}_i) = \boldsymbol{i} \cdot \boldsymbol{n}^{o(1)}$$

3. 
$$G_i[V - P_i]$$
 is a  $\frac{1}{n^{o(1)}}$ -expander

Suppose that **G** is an expander, but there are **many** updates. **Algo**: maintain **spanning tree T** of G[V - P] union with E(P, V)



#### Update time: $n^{o(1)}$

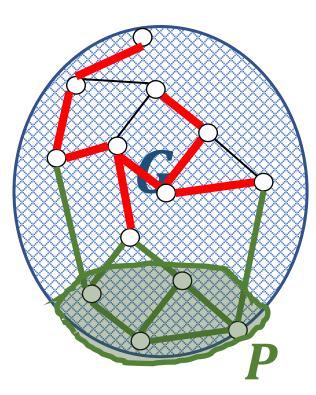
- Updating E(P, V):  $n^{o(1)}$  by Expander Pruning.
- Updating **T**:  $n^{o(1)}$  by **Random Sampling** 
  - G[V P] is  $\frac{1}{n^{o(1)}}$ -expander at any time.

Work with adaptive users!

- 1. Time to update  $P_i$  is  $n^{o(1)}$
- 2. So  $vol(\boldsymbol{P}_i) = \boldsymbol{i} \cdot \boldsymbol{n}^{o(1)}$

B. 
$$G_i[V - P_i]$$
 is a  $\frac{1}{n^{o(1)}}$ -expander

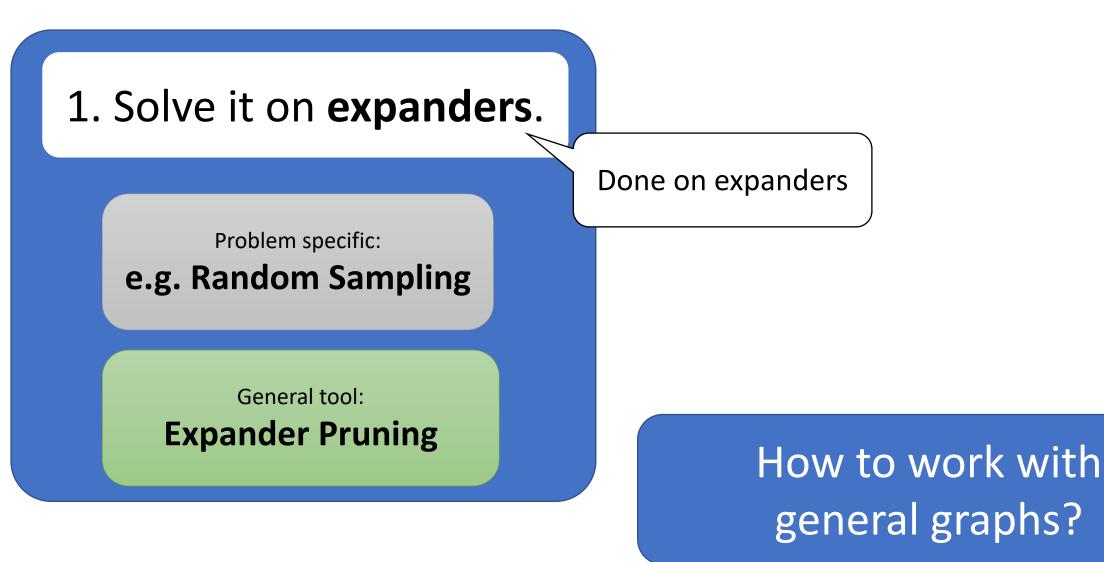
Suppose that **G** is an expander, but there are **many** updates. Algo: maintain spanning tree **T** of G[V - P] union with E(P, V)



#### **Correctness:**

- $T \cup E(P, V)$  spans G
- $|\mathbf{T} \cup E(P, V)| = O(n)$ 
  - $|T| \leq n$
  - |E(P,V)| = vol(P) = O(n)
    - **Recall**: #updates is  $n^{1-o(1)}$

### **Expander Paradigm**



#### **Expander Paradigm**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

> General tool: Expander Pruning

#### 2. Combine the solutions.

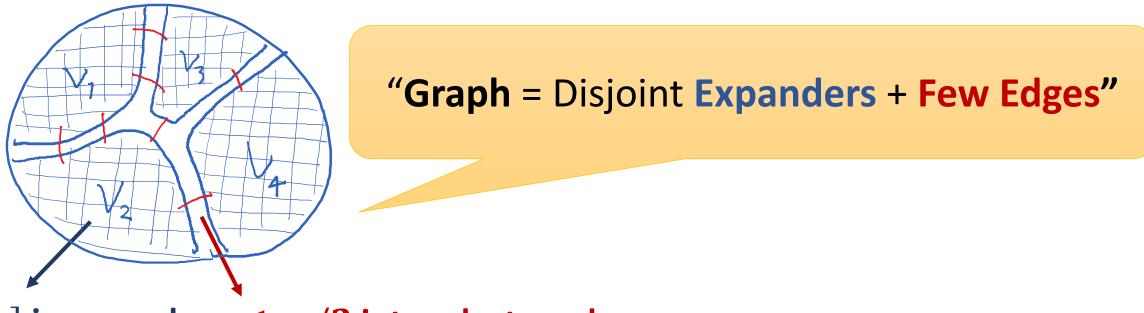
#### General tool: Expander Decomposition

### **Expander Decomposition**

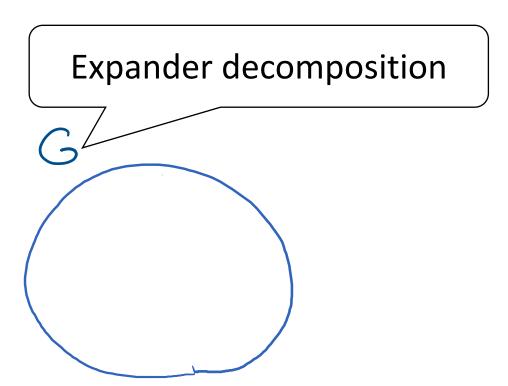
[S Wang SODA'19]:  $\tilde{O}(m)$ -time w.h.p.

Input: G = (V, E)

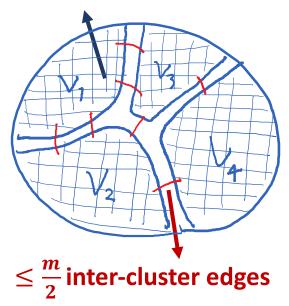
**Output:** A partition  $(V_1, \dots, V_k)$  of V

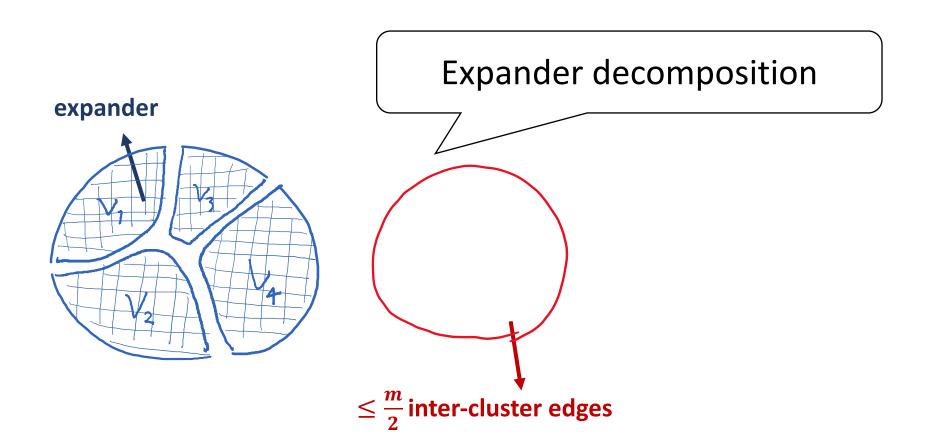


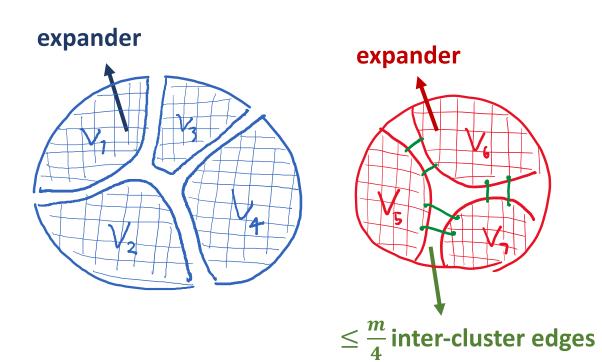
 $G[V_i]$  is expander  $\leq m/2$  inter-cluster edges

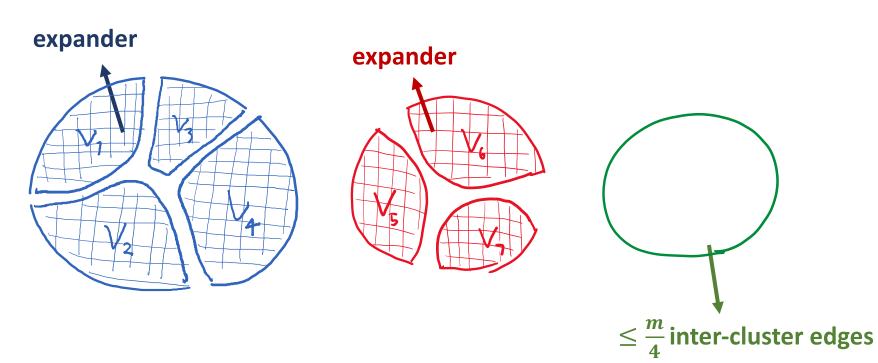


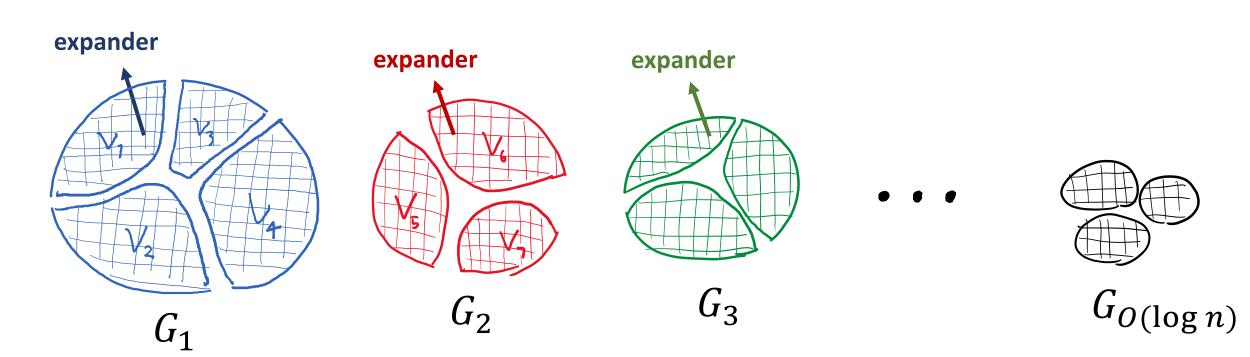












Input: G = (V, E)

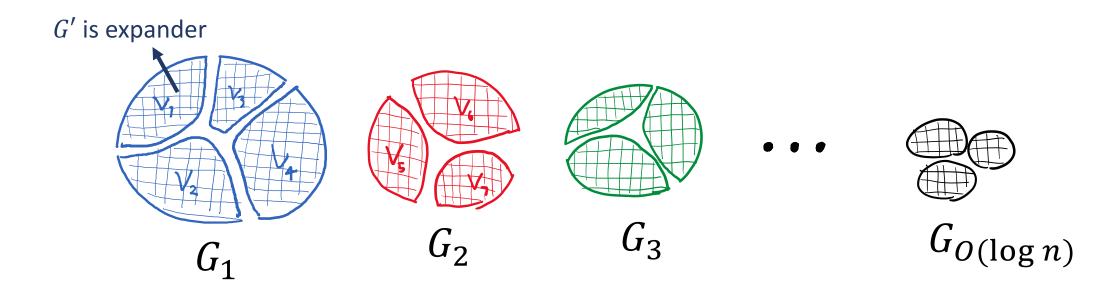
**Output:**  $(G_1, \ldots, G_{O(\log n)})$  such that

- $G_i$  = disjoint union of expanders
- $E = E(G_1) \dot{\cup} \dots \dot{\cup} E(G_{O(\log n)})$

Time:  $\tilde{O}(m)$ 

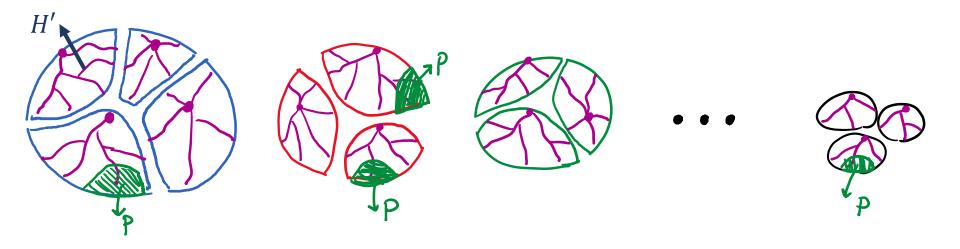
### Dynamic Spanning Subgraph: General Graphs

- **1. Preprocess**: Compute repeated expander decomposition  $(G_1, ..., G_{O(\log n)})$
- **2.** Algo: Each expander G', maintain spanning subgraph H' of G'
  - H' has O(|V(G')|) edges
  - Update time  $n^{o(1)}$  (if the update is on G')



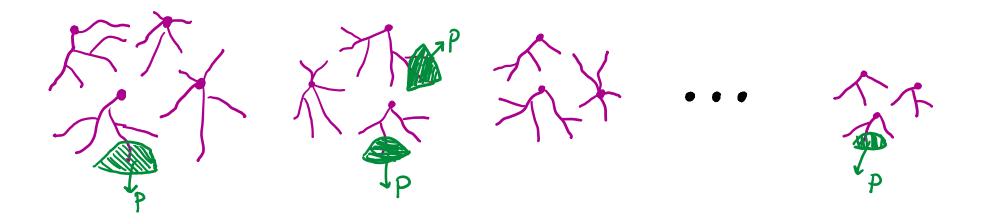
# Dynamic Spanning Subgraph: General Graphs

- **1. Preprocess**: Compute repeated expander decomposition  $(G_1, ..., G_{O(\log n)})$
- **2.** Algo: Each expander G', maintain spanning subgraph H' of G'
  - H' has O(|V(G')|) edges
  - Update time  $n^{o(1)}$  (if the update is on G')
- **3.** Claim: Union of all H' is a spanning subgraph of G with  $O(n \log n)$  edges.



## Dynamic Spanning Subgraph: General Graphs

- **1. Preprocess**: Compute repeated expander decomposition  $(G_1, ..., G_{O(\log n)})$
- **2.** Algo: Each expander G', maintain spanning subgraph H' of G'
  - H' has O(|V(G')|) edges
  - Update time  $n^{o(1)}$  (if the update is on G')
- **3.** Claim: Union of all H' is a spanning subgraph of G with  $O(n \log n)$  edges.



### Dynamic Spanning Subgraphs

# Conclusion:

Given G undergoing edge updates,

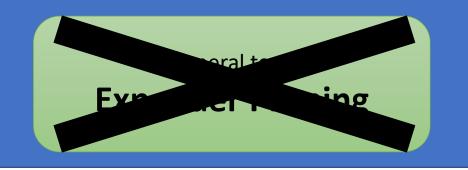
- maintain spanning subgraph
- with  $O(n \log n)$  edges
- in  $n^{o(1)}$  update time

# Part 2 Centralized Algorithms

#### **Expander Paradigm**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling



#### 2. Combine the solutions.

#### General tool: Expander Decomposition

#### **Definition**: Spanner

#### **Informal**: Subgraph that preserves all distances.

#### **Definition**: Spanner

Let G = (V, E). H = (V, E') is a **k**-spanner of G if

1.  $E' \subset E$ 

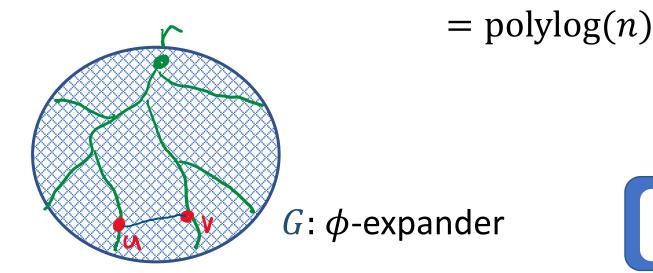
2.  $\forall (u, v) \in E, \operatorname{dist}_{H}(u, v) \leq k$ 

## Spanners of Expanders

G: expander

T: a shortest path tree in G (rooted at an arbitrary node r).

<u>**Observe</u></u>:** *T* **is a polylog(***n***)-spanner of** *G* **<u><b>Proof**</u>:  $\forall (u, v) \in E$ , dist<sub>*T*</sub>(*u*, *v*)  $\leq$  dist<sub>*T*</sub>(*u*, *r*) + dist<sub>*T*</sub>(*r*, *v*)</u>

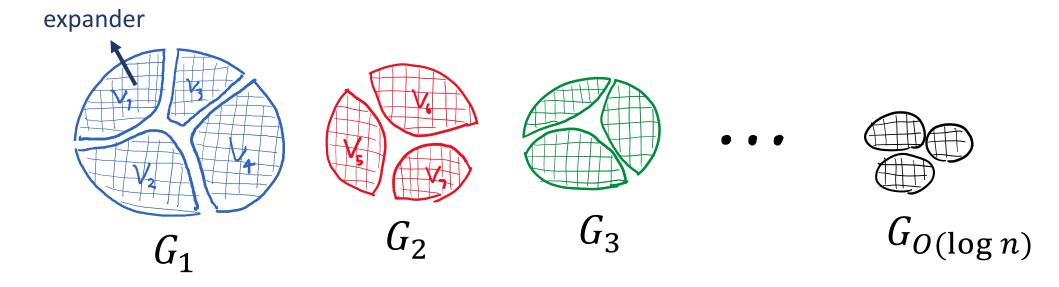


**Fact**: Diameter of expanders is polylog(n).

# Spanners of General Graphs

Spanner(G):

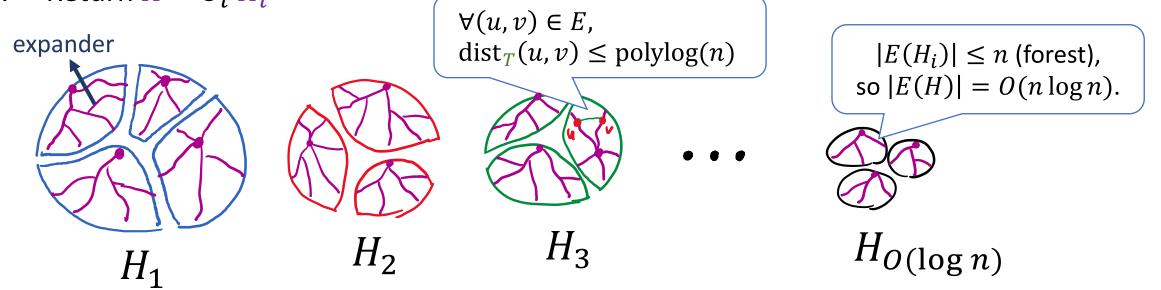
- 1. Compute repeated expander decomposition:  $(G_1, ..., G_{O(\log n)})$
- 2.  $H_i$  = Shortest path tree on each expander of  $G_i$



# Spanners of General Graphs

#### Spanner(G):

- 1. Compute repeated expander decomposition:  $(G_1, ..., G_{O(\log n)})$
- 2.  $H_i$  = Shortest path tree on each expander of  $G_i$
- 3. Return  $H = \bigcup_i H_i$



Total time:  $\tilde{O}(m)$ 

### Spanners of General Graphs

# Conclusion:

Given G,

- a polylog(n)-spanner
- with  $O(n \log n)$  edges
- in  $\tilde{O}(m)$  time

### **Expander Paradigm**

#### 1. Solve it on **expanders**.

Problem specific: Shortest path tree 2. Combine the solutions.

General tool: Expander Decomposition

Problem specific:

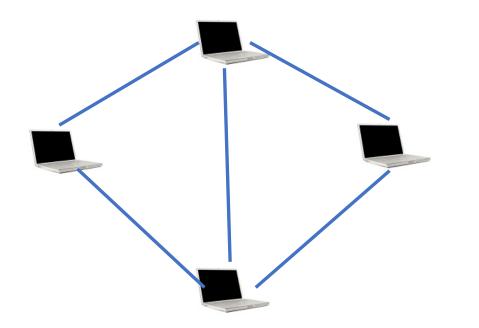
**Random sampling** 

#### More applications:

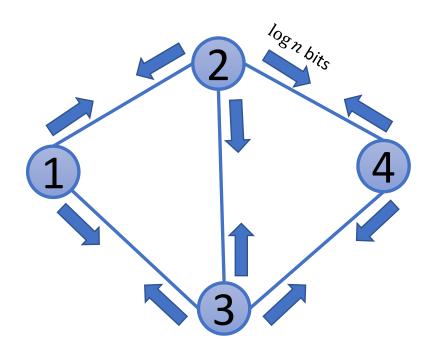
- **Cut sparsifiers**: preserve cut sizes
- **Spectral sparsifiers**: preserve eigenvalues

# Part 3 Distributed Algorithms

## **Definition**: CONGEST model



## **Definition**: CONGEST model



• Local knowledge:

A node know only its neighbors

• Local communication:

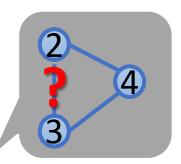
A node can send messages <u>to only its neighbors</u> in each *round* 

• Bounded Bandwidth:

Each message has size  $O(\log n)$ -bit

#### Goal:

- Compute something about the underlying network
- Minimize the number of rounds



## **Expander Paradigm (Distributed)**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

> General tool: Expander Routing

## 2. **Combine** the solutions.

#### General tool: Expander Decomposition

## **Expander Routing (Informal)** [Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

## A node u can exchange $\deg_G(u)$ messages with **any set of nodes** in $n^{o(1)}$ rounds in an **expander**

## Expanders allow global communication

with small overhead

**Local** communication

In **any** graph, can exchange with **only neighbors** in 1 round

## Expander Routing

[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

**Input:** *underlying* graph G = (V, E) and *demand* graph D = (V, E')

- G: expander
- $\deg_D(u) \leq \deg_G(u) \forall u \in V$

#### Output:

- for all  $(u, v) \in E'$  simultaenously,
- u and v can exchange a message in  $n^{o(1)}$  rounds (in G)

# Expanders allow global communication with small overhead

## **Expander Paradigm (Distributed)**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

> General tool: Expander Routing

Can import ideas from algorithms in **CONGESTED-CLIQUE** model

## 2. Combine the solutions.

#### General tool: Expander Decomposition

#### Round complexity:

- $n^{1-\epsilon}$  [Chang Pettie Zhang SODA'19] (with caveat)
- $n^{\epsilon}$  [Chang **S** PODC'19]
- polylog(n) [Chang S]

# Part 4 Conclusion: Survey and Open Problems

**Centralized Setting** 

## **Expander Paradigm (Centralized)**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

## 2. Combine the solutions.

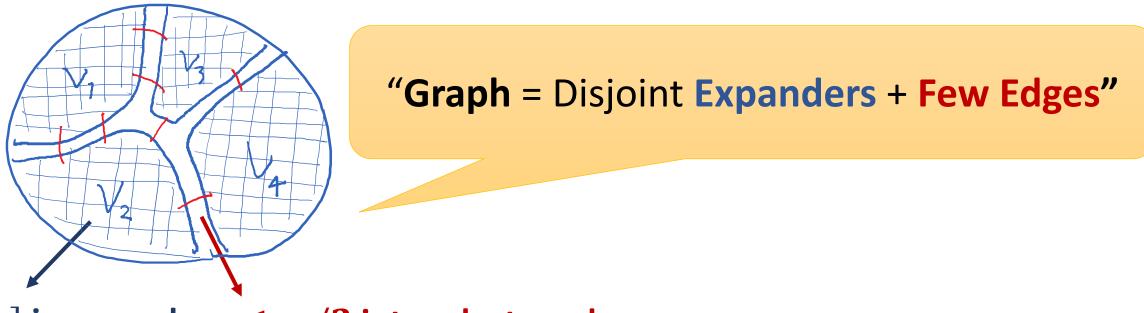
#### General tool: Expander Decomposition

## **Expander Decomposition**

[S Wang SODA'19]:  $\tilde{O}(m)$ -time w.h.p.

Input: G = (V, E)

**Output:** A partition  $(V_1, \dots, V_k)$  of V



 $G[V_i]$  is expander  $\leq m/2$  inter-cluster edges

## Fast Centralized Algorithms

**New!** [Chuzhoy Gao Li Nanongkai Peng S]: Expander decomposition in  $m^{1+o(1)}$  deterministic time

|                                                                                      | Time (Randomized)     |
|--------------------------------------------------------------------------------------|-----------------------|
| Laplacian system solvers<br>[Spielman Teng STOC'04]                                  | $	ilde{O}(m)$         |
| Spectral sparsifiers<br>[Spielman Teng STOC'04]                                      | $\tilde{O}(m)$        |
| Approx. max flow<br>[Kelner Lee Orecchia Sidford SODA'14]                            | $\tilde{O}(m)$        |
| Approx. vertex max flow<br>[Chuzhoy Khanna STOC'19]                                  | $\tilde{O}(n^2)$      |
| Bipartite Matching, Shortest Path, Max flow<br>[Cohen Madry Sankowski Vladu SODA'17] | $\tilde{O}(m^{10/7})$ |

#### **Expander Paradigm is the key to all these results**

## Fast Centralized Algorithms

**Open:** Expander decomposition in  $\tilde{O}(m)$  **deterministic** time (would remove all  $m^{o(1)}$  below)

|                                                                                      | Time (Randomized)     | Time (Deterministic)<br>[CGLNP <b>S</b> ] |
|--------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|
| Laplacian system solvers<br>[Spielman Teng STOC'04]                                  | $	ilde{O}(m)$         | $m^{1+o(1)}$                              |
| Spectral sparsifiers<br>[Spielman Teng STOC'04]                                      | $	ilde{O}(m)$         | $m^{1+o(1)}$                              |
| Approx. max flow<br>[Kelner Lee Orecchia Sidford SODA'14]                            | $	ilde{O}(m)$         | $m^{1+o(1)}$                              |
| Approx. vertex max flow<br>[Chuzhoy Khanna STOC'19]                                  | $\tilde{O}(n^2)$      | $n^{2+o(1)}$                              |
| Bipartite Matching, Shortest Path, Max flow<br>[Cohen Madry Sankowski Vladu SODA'17] | $\tilde{O}(m^{10/7})$ | $m^{10/7+o(1)}$                           |

#### **Expander Paradigm is the key to all these results**

# **Dynamic Setting**

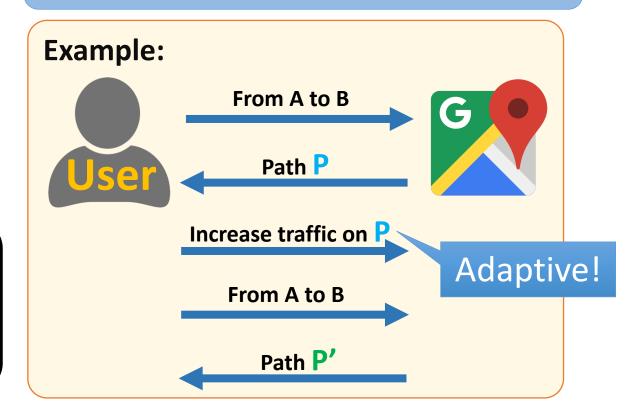
#### Non-adaptive users:

All updates are **fixed from the beginning**.

# Usually cannot be used as subroutines inside static algo.

#### **Adaptive users:**

#### Updates from users can **depend on** previous answers



#### **Frontier of Dynamic Graph Algorithms**

## We DON'T know how to serve adaptive users!

| Problems                         | Non-adaptive users                          | Adaptive users               |
|----------------------------------|---------------------------------------------|------------------------------|
| Spanning Forests<br>(worst case) | polylog n<br>[Kapron King Mountjoy SODA'13] | $\sqrt{n}$<br>[EGIN FOCS'92] |
|                                  |                                             | 0                            |
|                                  |                                             |                              |
|                                  |                                             |                              |
|                                  |                                             |                              |
|                                  |                                             |                              |

#### **Frontier of Dynamic Graph Algorithms**

## We DON'T know how to serve adaptive users!

| Problems                            | Non-adaptive users             | Adaptive users                         |  |
|-------------------------------------|--------------------------------|----------------------------------------|--|
| Spanning Forests                    | polylog n                      | $\sqrt{n}$                             |  |
| (worst case)                        | [Kapron King Mountjoy SODA'13] | [EGIN FOCS'92]                         |  |
| Spanners                            | <b>polylog</b> <i>n</i>        | <b>m</b>                               |  |
| (amortized)                         | [BKS ESA06, SODA'08]           | [trivial]                              |  |
| Single Source Shortest Paths        | т <sup>1+о(1)</sup>            | <b>mn</b>                              |  |
| (decremental approximate amortized) | [НКN FOCS'14]                  | [Even Shiloah'81]                      |  |
| Single Source Reachability          | <b>m</b>                       | <b>mn</b>                              |  |
| (decremental amortized)             | [BPW STOC'19]                  | [Even Shiloah'81]                      |  |
| Cut Sparsifiers                     | polylog n                      | <b>m</b>                               |  |
| (worst-case)                        | [Adkkp focs'16]                | [trivial]                              |  |
| Maximal Matching                    | O(1)<br>[Solomon FOCS'16]      | $\sqrt{m}$<br>[Neiman Solomon STOC'13] |  |

#### **Frontier** of Dynamic Graph Algorithms

## **Expander Paradigm can help in many cases!**

| Problems                                                            | Non-adaptive users                              | Adaptive users                      | Adaptive users<br>(by Expander<br>Decomposition) |                   |
|---------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|--------------------------------------------------|-------------------|
| Spanning Forests<br>(worst case)                                    | polylog n<br>[Kapron King Mountjoy SODA'13]     | $\sqrt{n}$<br>[EGIN FOCS'92]        | n <sup>o(1)</sup><br>[NSW FOCS'17] We saw        | this (simplified) |
| Spanners<br>(amortized)                                             | <b>polylog</b> <i>n</i><br>[BKS ESA06, SODA'08] | <b>m</b><br>[trivial]               | n <sup>0(1)</sup><br>[BN <b>S</b> SS FOCS'17]    |                   |
| Single Source Shortest Paths<br>(decremental approximate amortized) | т <sup>1+о(1)</sup><br>[НКN FOCS'14]            | <b>mn</b><br>[Even Shiloah'81]      | $n^{2+o(1)}$ [Bernstein Chechik STOC'16] [CS]    |                   |
| Single Source Reachability<br>(decremental amortized)               | <b>m</b><br>[BPW STOC'19]                       | <b>mn</b><br>[Even Shiloah'81]      | -                                                |                   |
| Cut Sparsifiers<br>(worst-case)                                     | polylog <i>n</i><br>[ADKKP FOCS'16]             | <b>m</b><br>[trivial]               | _                                                |                   |
| Maximal Matching                                                    | O(1)<br>[Solomon FOCS'16]                       | $\sqrt{m}$ [Neiman Solomon STOC'13] | -                                                |                   |

## **Expander Paradigm (Dynamic)**

#### 1. Solve it on **expanders**.

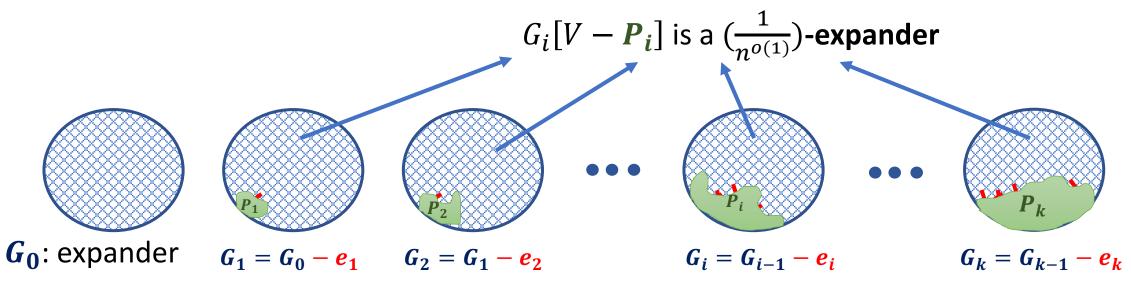
Problem specific: e.g. Random Sampling

> General tool: Expander Pruning

## 2. **Combine** the solutions.

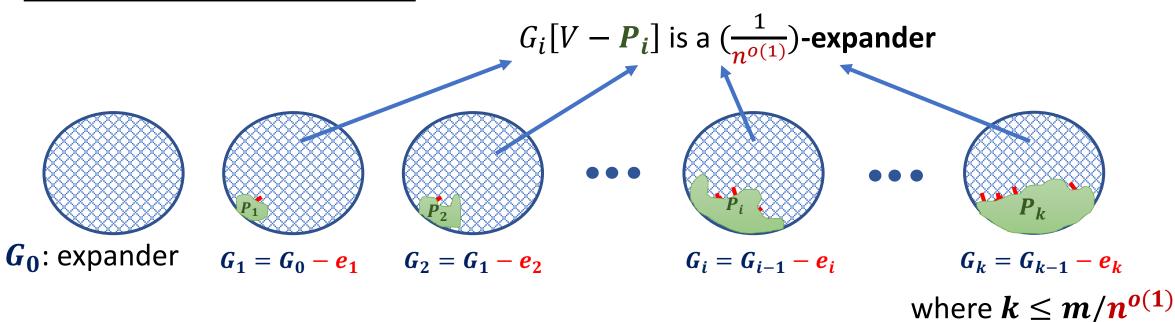
#### General tool: Expander Decomposition

## **Expander Pruning** [NSW'17]



## Expanders can be quickly "repaired" under edge updates.

## **Expander Pruning** [NSW'17]



#### **Guarantee:**

- 1. Time to update  $P_{i-1}$  to  $P_i$  is  $n^{o(1)}$
- 2. So  $vol(P_i) = i \cdot n^{o(1)}$
- 3.  $G_i[V P_i]$  is a  $\frac{1}{n^{o(1)}}$ -expander

**Open: Improve**  $n^{o(1)}$  **to polylog**(n) imply polylog(n) worst-case update time for many problems (e.g. spanning subgraphs, spectral sparsifiers)

**Distributed Setting** 

## **Expander Paradigm (Distributed)**

#### 1. Solve it on **expanders**.

Problem specific: e.g. Random Sampling

> General tool: Expander Routing

## 2. **Combine** the solutions.

#### General tool: Expander Decomposition

## **Expander Routing** [Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

## A node u can exchange $\deg_G(u)$ messages with **any set of nodes** in $n^{o(1)}$ rounds in an **expander**

#### Expanders allow global communication with small overhead

Open:

Improve  $n^{o(1)}$  to polylog(n) (Many applications even in

centralized setting (chat offline))

## Distributed CONGEST algorithm

|                             | Upper bound                                                                           | Lower bound                                                             |
|-----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Triangle (3-clique) listing | $	ilde{O}(n^{1/3})$<br>[Chang Pettie Zhang SODA'18]<br>[Chang <mark>S</mark> PODC'19] | $\widetilde{\Omega}(n^{1/3})$ [Izumi LeGall PODC'17]                    |
| 4-clique listing            | $	ilde{O}(n^{5/6})$<br>[Eden Fiat Fischer Kuhn<br>Oshman DISC'19]                     | $\widetilde{\Omega}(n^{1/2})$<br>[Fischer Gonen Kuhn Oshman<br>SPAA'18] |
| 5-clique listing            | $	ilde{O}(n^{21/22})$ [Eden et al. DISC'19]                                           | $\widetilde{\Omega}(n^{3/5})$ [Fischer et al. SPAA'18]                  |
| k-vertex subgraph detection | $n^{2-\Omega(1/k)}$ [Eden et al. DISC'19]                                             | $n^{2-O(1/k)}$ [Fischer et al. SPAA'18]                                 |

#### Expander Paradigm used in all upper bounds

## Distributed CONGEST algorithm

|                             | Upper bound                                                                           | Lower bound                                                             |
|-----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Triangle (3-clique) listing | $	ilde{O}(n^{1/3})$<br>[Chang Pettie Zhang SODA'18]<br>[Chang <mark>S</mark> PODC'19] | $\widetilde{\Omega}(n^{1/3})$ [Izumi LeGall PODC'17]                    |
| 4-clique listing            | $	ilde{O}(n^{5/6})$<br>[Eden Fiat Fischer Kuhn<br>Oshman DISC'19]                     | $\widetilde{\Omega}(n^{1/2})$<br>[Fischer Gonen Kuhn Oshman<br>SPAA'18] |
| 5-clique listing            | $	ilde{O}(n^{21/22})$ [Eden et al. DISC'19]                                           | $\widetilde{\Omega}(n^{3/5})$ [Fischer et al. SPAA'18]                  |
| k-vertex subgraph detection | $n^{2-\Omega(1/k)}$ [Eden et al. DISC'19]                                             | $n^{2-O(1/k)}$ [Fischer et al. SPAA'18]                                 |
| k-clique enumeration        | ?                                                                                     | $\widetilde{\Omega}(n^{1-2/k})$ [Fischer et al. SPAA'18]                |

**Open:** Application which is not *subgraph detection/listing* 

## History: Distributed Expander Decomposition

| Reference                      | Rounds         | Note                                                          |
|--------------------------------|----------------|---------------------------------------------------------------|
| [Chang Pettie Zhang SODA'19]   | $n^{1-\delta}$ | Output an extra part: a subgraph with arboricity $n^{\delta}$ |
| [Chang <mark>S</mark> PODC'19] | $n^\epsilon$   |                                                               |
| [Chang S in progress]          | polylog(n)     |                                                               |
| [Chang S in progress]          | $n^\epsilon$   | Deterministic                                                 |
| Open:                          | polylog(n)     | Deterministic                                                 |