Expander Decomposition:

Applications and How to use it

Thatchaphol Saranurak

Toyota Technological Institute at Chicago

ADGA 2019

Goal of this talk

1. Motivate dynamic algorithms
2. Expander Decomposition through dynamic graph applications.
3. How it is also used for centralized and distributed algorithms.
4. Quick survey of applications

Part 1

Dynamic Algorithms:

 What and Why?
Analyze dynamic networks

Track communities in social networks

Subroutines in static algorithms

```
                            "inside" Shortest Paths
```


"inside" Linear Programming

A common theme

We solve the same problem repeatedly where input keeps changing

Dynamic Algorithms

Science of how not to compute things from scratch

High-level goal:
"How to Efficiently Prepare for Changes"

Example: Dynamic Problems

Level	Textbook	Research
Change	Insert/delete a number in a set S	Insert/delete an edge in a graph G
Maintain	Minimum number in S	Is G connected?
Recompute	$\boldsymbol{O}(\|S\|)$ time	O(\#edges) time
Can do	$\boldsymbol{O}(\log \|S\|)$ time	Example: $\operatorname{polylog}(\mathbf{n})$ randomized ascu vemane, soce cu, patasacu Thorru, Focs Many open questions...

More Example: Dynamic Graph Problems (in Focs/stoc/Soda)

Dynamic
 Connectivity / MST

Sleator Tarjan STOC'81
Frederickson, STOC'83
Eppstein et al, FOCS'92
Henzinger King, STOC'95
Holm et al, STOC'98
Thorup, STOC'00
Patrascu Demaine, STOC'04
Patrascu Thorup, FOCS'07
Kapron et al, SODA'13
Wulff-Nilsen, SODA'13
Huang et al, SODA'17
Nanongkai S, STOC'17
Wulff-Nilsen, STOC'17
Nanongkai S Wulff-Nilsen, FOCS'17

Dynamic (Directed)

Reachability

Even Shiloach, JACM'81 Henzinger King, FOCS'95 King Sagert, STOC'99 Demetrescu Italiano, FOCS'00 Rodditty Zwick, FOCS'02 Sankowski, FOCS'04

Lacki, SODA'11
Henzinger et al, STOC'14
Chechik et al, FOCS'16
Italiano et al, STOC'17
Bernstein et al, STOC'19

Dynamic
 Maximum Matching

Sankowski, SODA'07
Onak Rubinfeld, STOC'10
Baswana et al, FOCS'11 Gupta Peng, FOCS'13 Neiman Soloman, STOC'13 Bosek et al, FOCS'14 Gupta et al, SODA'14 Bhattacharya et al, SODA'15 Bernstein Stein, SODA'16 Peleg Solomon, SODA'16 Bhattacharya et al, STOC'16 Solomon, FOCS'16 Bhattacharya et al, SODA'17

Dynamic Single-Source Shortest Path

Even Shiloach, JACM'81 Ausiello et al, SODA'90
Rodditty Zwick, FOCS'04
Bernstein Riditty, SODA'11
Bernstein, STOC'13
Henzinger et al, SODA'14 Henzinger et al, STOC'14 Henzinger et al, FOCS'14 Bernstein Chechik, STOC'16 Bernstein Chechik, SODA'17 Chuzhoy Khanna, STOC'19 Probst Wulff-Nilsen, SODA'20 Probst Wulff-Nilsen, SODA'20

Dynamic
 All-Pairs Shortest Path

King, FOCS'99
Demetrescu Italiano, FOCS'00
Fakcharoenphol Rao, FOCS'01
Baswana et al, STOC'02
Baswana et al, SODA'03 Roditty Zwick, FOCS'04

Thorup, STOC'05
Bernstein, SODA'09
Abraham et al, STOC'12 Henzinger et al, FOCS'13
Abraham et al, SODA'17
Chechik, FOCS' 18
Probst Wulff-Nilsen, SODA'20

Dynamic Alg. Inside Static Alg.

Linear Program
[Karmakar'84] [Vaidya'89]
Dynamic Linear
System Solver

Max flow
[Sleator Tarian'82]
Link-cut Tree

Traveling Salesman [Chekuri Quarrud FoCs'17]

Dyn. "Global Min Cut"

Non-adaptive users:

All updates are fixed from the beginning. Usually cannot be used as
subroutines inside static algo.

Adaptive users:

Updates from users can depend on previous answers

Dynamic Spanning Forest: Definition and Progress

Definition: Spanning Tree/Forest

Spanning tree: a smallest sub-network that connects all nodes together

Spanning forest: set of spanning trees on each connected component

Maintaining a spanning forest under changes

Example: Dynamic Spanning Forest

Input:	
Update in G	
Picture	

Example: Dynamic Spanning Forest

Input: Update in G		Delete $(1,3)$
Picture		
Output: Change in F		

Example: Dynamic Spanning Forest

Input: Update in G		Delete(1,3)
Picture		$(1,3)$ removed $(1,2)$ added
Output: Change in F		(2)

Example: Dynamic Spanning Forest

Input: Update in G		Delete(1,3)	Insert(2,3)
Picture		$(1,3)$ removed $(1,2)$ added	
Output: Change in F		(4)	

Example: Dynamic Spanning Forest

Input: Update in G		Delete(1,3)	Insert(2,3)	Delete(2,4)
Picture		$(1,3)$ removed $(1,2)$ added		(5)
Output: Change in F		(4)		

Example: Dynamic Spanning Forest

Input: Update in G		Delete(1,3)	Insert(2,3)	Delete(2,4)
Picture				
Output: Change in F		$(1,3)$ removed $(1,2)$ added		$(2,4)$ removed $(2,3)$ added

Goal: minimize update time

Worst-case time to output changes of F for each update

Why this problem can be hard?

Why this problem can be hard?

Crossing Edges

Interesting when:
delete a tree-edge
Want: Find a crossing edge

Question:

Must scan all clique-edges?
Scan the whole graph?

Progress

$n=\#$ of nodes, $m=\#$ of edges

Reference	Update time
Naïve	m
Frederickson [STOC'83]	$m^{1 / 2}$
EGIN [FOCS'92]	$n^{1 / 2}$

Progress

$n=\#$ of nodes, $m=\#$ of edges

Important development in amortized update time

Henzinger King [STOC'95] Holm Lichtenberg Thorup [STOC’98]

Thorup [STOC'00]
Patrascu Demaine [STOC'04]
Wulff-Nilsen [SODA'13]
HHKP [SODA'17]

Reference	Update time
Naïve	m
Frederickson [STOC'83]	$m^{1 / 2}$
EGIN [FOCS'92]	$n^{1 / 2}$
20-year gap:	
A lot of successes in closely related settings	
(amortized update time)	

Progress

$n=\#$ of nodes, $m=\#$ of edges

Important development in amortized update time

Henzinger King [STOC'95] Holm Lichtenberg Thorup [STOC’98]

Thorup [STOC'00]
Patrascu Demaine [STOC'04]
Wulff-Nilsen [SODA'13]
HHKP [SODA'17]

Reference	Update time
Naïve	m
Frederickson [STOC'83]	$\mathrm{m}^{1 / 2}$
EGIN [FOCS'92]	$n^{1 / 2}$
20-year gap: A lot of successes in closely related settings (amortized update time) Assume user is not adaptive Kapron King Mountjoy [SODA'13] polylog n	

Non-adaptive users:

All updates are fixed from the beginning. Usually cannot be used as
subroutines inside static algo.

Adaptive users:

Updates from users can depend on previous answers

Progress

$n=\#$ of nodes, $m=\#$ of edges

Important development in amortized update time

Henzinger King [STOC'95] Holm Lichtenberg Thorup [STOC’98]

Thorup [STOC'00]
Patrascu Demaine [STOC'04]
Wulff-Nilsen [SODA'13]
HHKP [SODA'17]

Reference	Update time
Naïve	m
Frederickson [STOC'83]	$\mathrm{m}^{1 / 2}$
EGIN [FOCS'92]	$n^{1 / 2}$
20-year gap: A lot of successes in closely related settings (amortized update time) Assume user is not adaptive Kapron King Mountjoy [SODA'13] polylog n	

Progress

$n=\#$ of nodes, $m=\#$ of edges

Reference	Update time
Naïve	m
Frederickson [STOC'83]	$m^{1 / 2}$
EGIN [FOCS'92]	$n^{1 / 2}$
20-year gap: A lot of successes in closely related settings (amortized update time)	
Assume user is not adaptive	
Kapron King Mountjoy [SODA'13]	polylog n
KKPT [ESA'16]	$n^{1 / 2} \cdot \frac{\log \log n}{(\log n)^{1 / 2}}$

Progress

$n=\#$ of nodes, $m=\#$ of edges

Reference	pdate time
Naïve	m
Frederickson [STOC'83]	$m^{1 / 2}$
EGIN [FOCS'92]	$n^{1 / 2}$
20-year gap: A lot of successes in closely related settings (amortized update time)	
Assume user is not adaptive	
Kapron King Mountjoy [SODA'13]	polylog n
KKPT [ESA'16]	$n^{1 / 2} \cdot \frac{\log \log n}{(\log n)^{1 / 2}}$
Wulff-Nilsen [STOC'17]	$n^{0.499}$
Nanongkai S [STOC'17]	$n^{0.401}$

Progress

$n=\#$ of nodes, $m=\#$ of edges

Reference	Update time
Naïve	m
Frederickson [STOC'83]	$m^{1 / 2}$
20-year gap:	
A lot of successes in closely related settings	
(amortized update time)	

Will explain how to use
Expander decomposition via (simplification of) this work

Part 1.2
 Dynamic Spanning Forest: How to use Expander Decomposition

Recall: Why this problem can be hard?

Let's solve the problem on graphs that this situation cannot happen...

Expanders

Random Graphs
(Erdös-Rényi)

Power-law Graphs
(preferential attachment)
[Gkantsidis, Mihail, Saberi SIGMETRICS'03]

Hypercubes

\mathbb{F}_{p}-cycles
with inverse chords

Definition: Expanders

$G=(V, E)$ is an expander if
$\forall S \subset V \frac{|E(S, \bar{S})|}{\min \{\operatorname{vol}(S), \operatorname{vol}(\bar{S})\}} \geq \frac{1}{\operatorname{polylog}(n)}$

$$
\operatorname{vol}(S)=\sum_{u \in S} \operatorname{deg}_{G} u
$$

> In general,
> ϕ-expander: $\frac{|E(s, \bar{S})|}{\min \{\operatorname{vol}(S), \operatorname{vol}(\bar{S})\}} \geq \phi$

Expander Paradigm

1. Solve it on expanders.

2. Combine the solutions.

Expander Paradigm

1. Solve it on expanders.

Warm-up: One update to Expander

Suppose that \boldsymbol{G} is an expander, and there is one update.
Goal: maintain a spanning tree T of G.

Warm-up: One update to Expander

Suppose that G is an expander, and there is one update.
Goal: maintain a spanning tree \boldsymbol{T} of \boldsymbol{G}

Interesting only when: delete a tree-edge Want: edge crossing S to reconnect
Alg: sample an edge with an endpoint in S
(can do fast)
By expansion: get edge crossing S w.p. $\frac{1}{\operatorname{polylog}(n)}$
Repeat: $\tilde{O}(1)$ times. Done w.h.p.

What if there are more updates?

after many edge deletions, not expander anymore!

Let's "repair" the expander

Expander Paradigm

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
e.g. Random Sampling

General tool:
Expander Pruning

Expander Pruning [Nsw'17]

where $\boldsymbol{k} \leq \boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{o}(\mathbf{1})}$

Guarantee:

1. Time to update \boldsymbol{P}_{i-1} to \boldsymbol{P}_{i} is $\boldsymbol{n}^{\boldsymbol{o}(\mathbf{1})}$
2. So $\operatorname{vol}\left(\boldsymbol{P}_{i}\right)=\boldsymbol{i} \cdot \boldsymbol{n}^{\boldsymbol{o}(\mathbf{1})}$
3. $G_{i}\left[V-P_{i}\right]$ is a $\frac{1}{n^{o(1)}}$ expander

Expander Pruning [Nsw'17]

Expanders can be quickly "repaired" under edge updates.

Expander Paradigm

1. Solve it on expanders.

Problem specific:
e.g. Random Sampling

General tool:
Expander Pruning

Expander Paradigm

1. Solve it on expanders.

Problem specific:
In this talk, will only show
how to solve a relaxed problem
(contains all conceptual ideas)

Relaxed Problem: Dynamic Spanning Subgraphs

1. Maintain Any Spanning Subgraph with $\widetilde{\boldsymbol{O}}(\boldsymbol{n})$ edges
(Easier than Spanning Forest.)
2. There are only $n^{1-o(1)}$ updates (can assume w.l.o.g. by standard techniques.)

What if there are more updates?

Expander Pruning:

1. Time to update $\boldsymbol{P}_{\boldsymbol{i}}$ is $\boldsymbol{n}^{\boldsymbol{o}(\mathbf{1})}$
2. So $\operatorname{vol}\left(P_{i}\right)=i \cdot n^{o(1)}$
3. $G_{i}\left[V-P_{i}\right]$ is a $\frac{1}{n^{o(1)}}$-expander

Suppose that \boldsymbol{G} is an expander, but there are many updates.

after many edge deletions, not expander anymore

Expander Pruning

 maintains P where$\boldsymbol{G}[\boldsymbol{V}-P]$ is $\frac{1}{n^{o(1)}}$-expander

Expander Pruning:

1. Time to update P_{i} is $\boldsymbol{n}^{\boldsymbol{o}(\mathbf{1})}$
2. So $\operatorname{vol}\left(P_{i}\right)=i \cdot n^{o(1)}$
3. $G_{i}\left[V-P_{i}\right]$ is a $\frac{1}{n^{o(1)}}$-expander

Suppose that G is an expander, but there are many updates.
Algo: maintain spanning tree T of $G[V-P]$ union with $E(P, V)$

Update time: $n^{o(1)}$

- Updating $E(P, V): n^{o(1)}$ by Expander Pruning.
- Updating $T: n^{o(1)}$ by Random Sampling
- $G[V-P]$ is $\frac{1}{n^{o(1)}}$-expander at any time.

What if there are more updates?

Expander Pruning:

1. Time to update $\boldsymbol{P}_{\boldsymbol{i}}$ is $\boldsymbol{n}^{\boldsymbol{o}(\mathbf{1})}$
2. So $\operatorname{vol}\left(P_{i}\right)=i \cdot n^{o(1)}$
3. $G_{i}\left[V-P_{i}\right]$ is a $\frac{1}{n^{o(1)}}$-expander

Suppose that G is an expander, but there are many updates.
Algo: maintain spanning tree T of $G[V-P]$ union with $E(P, V)$

Correctness:

- $T \cup E(P, V)$ spans G
- $|T \cup E(P, V)|=O(n)$
- $|T| \leq n$
- $|E(P, V)|=\operatorname{vol}(P)=O(n)$
- Recall: \#updates is $n^{1-o(1)}$

Expander Paradigm

1. Solve it on expanders.

Problem specific:
e.g. Random Sampling

General tool:
Expander Pruning
How to work with general graphs?

Expander Paradigm

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
e.g. Random Sampling

General tool:
Expander Pruning

General tool:
Expander Decomposition

Expander Decomposition

[S Wang SODA'19]:
$\widetilde{\boldsymbol{O}}(\boldsymbol{m})$-time w.h.p.
Input: $G=(V, E)$
Output: A partition $\left(V_{1}, \ldots V_{k}\right)$ of V

"Graph = Disjoint Expanders + Few Edges"
$G\left[V_{i}\right]$ is expander $\leq \boldsymbol{m} / \mathbf{2}$ inter-cluster edges

Repeated Expander Decomposition

Expander decomposition

Repeated Expander Decomposition

expander

$\leq \frac{m}{2}$ inter-cluster edges

Repeated Expander Decomposition

Repeated Expander Decomposition

Repeated Expander Decomposition

Repeated Expander Decomposition

Repeated Expander Decomposition

Input: $G=(V, E)$
Output: $\left(G_{1}, \ldots, G_{O(\log n)}\right)$ such that

- $G_{i}=$ disjoint union of expanders
- $E=E\left(G_{1}\right) \dot{\cup} \ldots \dot{\cup} E\left(G_{O(\log n)}\right)$

Time: $\tilde{O}(m)$

Dynamic Spanning Subgraph: General Graphs

1. Preprocess: Compute repeated expander decomposition $\left(G_{1}, \ldots, G_{O(\log n)}\right)$
2. Algo: Each expander G^{\prime}, maintain spanning subgraph H^{\prime} of G^{\prime}

- H^{\prime} has $O\left(\left|V\left(G^{\prime}\right)\right|\right)$ edges
- Update time $n^{o(1)}$ (if the update is on G^{\prime})

$G_{O(\log n)}$

Dynamic Spanning Subgraph: General Graphs

1. Preprocess: Compute repeated expander decomposition $\left(G_{1}, \ldots, G_{O(\log n)}\right)$
2. Algo: Each expander G^{\prime}, maintain spanning subgraph H^{\prime} of G^{\prime}

- H^{\prime} has $O\left(\left|V\left(G^{\prime}\right)\right|\right)$ edges
- Update time $n^{o(1)}$ (if the update is on G^{\prime})

3. Claim: Union of all H^{\prime} is a spanning subgraph of G with $O(n \log n)$ edges.

Dynamic Spanning Subgraph: General Graphs

1. Preprocess: Compute repeated expander decomposition $\left(G_{1}, \ldots, G_{O(\log n)}\right)$
2. Algo: Each expander G^{\prime}, maintain spanning subgraph H^{\prime} of G^{\prime}

- H^{\prime} has $O\left(\left|V\left(G^{\prime}\right)\right|\right)$ edges
- Update time $n^{o(1)}$ (if the update is on G^{\prime})

3. Claim: Union of all H^{\prime} is a spanning subgraph of G with $O(n \log n)$ edges.

- -

Dynamic Spanning Subgraphs

Conclusion:

Given G undergoing edge updates,

- maintain spanning subgraph
- with $O(n \log n)$ edges
- in $n^{o(1)}$ update time

Part 2
 Centralized Algorithms

Expander Paradigm

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:

e.g. Random Sampling

General tool:
Expander Decomposition

Definition: Spanner

Informal: Subgraph that preserves all distances.

Definition: Spanner

Let $G=(V, E)$.
$H=\left(V, E^{\prime}\right)$ is a \boldsymbol{k}-spanner of G if

1. $E^{\prime} \subset E$
2. $\forall(u, v) \in E, \operatorname{dist}_{H}(\mathrm{u}, \mathrm{v}) \leq k$

Spanners of Expanders

G : expander
T : a shortest path tree in G (rooted at an arbitrary node r).
Observe: T is a polylog (n)-spanner of G
Proof: $\forall(u, v) \in E, \operatorname{dist}_{T}(u, v) \leq \operatorname{dist}_{T}(u, r)+\operatorname{dist}_{T}(r, v)$

Spanners of General Graphs

Spanner(G):

1. Compute repeated expander decomposition: $\left(G_{1}, \ldots, G_{O(\log n)}\right)$
2. $H_{i}=$ Shortest path tree on each expander of G_{i}
expander

$G_{O(\log n)}$

Spanners of General Graphs

Spanner(G):

1. Compute repeated expander decomposition: $\left(G_{1}, \ldots, G_{O(\log n)}\right)$ Total time: $\widetilde{O}(m)$
2. $H_{i}=$ Shortest path tree on each expander of G_{i}
3. Return $H=U_{i} H_{i}$

Spanners of General Graphs

Conclusion:

Given G,

- a polylog(n)-spanner
- with $O(n \log n)$ edges
- in $\tilde{O}(m)$ time

Expander Paradigm

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
Shortest path tree

General tool:
Expander Decomposition

Problem specific:
Random sampling

More applications:

- Cut sparsifiers: preserve cut sizes
- Spectral sparsifiers: preserve eigenvalues

Part 3
 Distributed Algorithms

Definition: CONGEST model

Definition: CONGEST model

- Local knowledge: A node know only its neighbors

- Local communication:

A node can send messages to only its neighbors in each round

- Bounded Bandwidth:

Each message has size $O(\log n)$-bit

Goal:

- Compute something about the underlying network
- Minimize the number of rounds

Expander Paradigm (Distributed)

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
e.g. Random Sampling

General tool:
Expander Decomposition

General tool:
Expander Routing

Expander Routing (Informal)

[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

A node u can exchange $\operatorname{deg}_{G}(u)$ messages with any set of nodes in $n^{o(1)}$ rounds in an expander

Expanders allow global communication with small overhead

Local communication In any graph, can exchange with only neighbors in 1 round

Expander Routing

[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]
Input: underlying graph $G=(V, E)$ and demand graph $D=\left(V, E^{\prime}\right)$

- G : expander
- $\operatorname{deg}_{D}(u) \leq \operatorname{deg}_{G}(u) \forall u \in V$

Output:

- for all $(u, v) \in E^{\prime}$ simultaenously,
- u and v can exchange a message in $n^{o(1)}$ rounds (in G)

Expanders allow global communication

Expander Paradigm (Distributed)

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:

e.g. Random Sampling

General tool:
Expander Routing

Can import ideas from algorithms in CONGESTED-CLIQUE model

General tool:

Expander Decomposition

Round complexity:

- $n^{1-\epsilon}$ [Chang Pettie Zhang SODA'19] (with caveat)
- n^{ϵ} [Chang S PODC'19]
- polylog (n) [Chang \mathbf{S}]

Conclusion: Survey and Open Problems

Centralized Setting

Expander Paradigm (Centralized)

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
e.g. Random Sampling

General tool:
Expander Decomposition

Expander Decomposition

[S Wang SODA'19]:
$\widetilde{\boldsymbol{O}}(\boldsymbol{m})$-time w.h.p.
Input: $G=(V, E)$
Output: A partition $\left(V_{1}, \ldots V_{k}\right)$ of V

"Graph = Disjoint Expanders + Few Edges"
$G\left[V_{i}\right]$ is expander $\leq \boldsymbol{m} / \mathbf{2}$ inter-cluster edges

Fast Centralized Algorithms

New! [Chuzhoy Gao Li Nanongkai Peng S]: Expander decomposition in $m^{1+o(1)}$ deterministic time

	Time (Randomized)
Laplacian system solvers [Spielman Teng sToc'04]	$\tilde{O}(m)$
Spectral sparsifiers [Spielman Teng sToc'04]	$\tilde{O}(m)$
Approx. max flow [Kelner Lee Orecchia Sidford SODA'14]	$\tilde{O}(m)$
Approx. vertex max flow [Chuzhoy Khanna STOC'19]	$\tilde{O}\left(n^{2}\right)$
Bipartite Matching, Shortest Path, Max flow [Cohen Madry Sankowski Vladu SODA'17]	$\tilde{O}\left(m^{10 / 7}\right)$

Expander Paradigm is the key to all these results

Fast Centralized Algorithms

Open: Expander decomposition in $\tilde{O}(m)$ deterministic time (would remove all $m^{o(1)}$ below)

	Time (Randomized)	$\begin{gathered} \text { Time (Deterministic) } \\ \text { [CGLNPS] } \end{gathered}$
Laplacian system solvers [Spielman Teng STOC'04]	$\tilde{O}(m)$	$m^{1+o(1)}$
Spectral sparsifiers [Spielman Teng STOC'04]	$\tilde{O}(m)$	$m^{1+o(1)}$
Approx. max flow [Kelner Lee Orecchia Sidford SODA'14]	$\tilde{O}(m)$	$m^{1+o(1)}$
Approx. vertex max flow [Chuzhoy Khanna STOC'19]	$\tilde{O}\left(n^{2}\right)$	$n^{2+o(1)}$
Bipartite Matching, Shortest Path, Max flow [Cohen Madry Sankowski Vladu SODA'17]	$\tilde{O}\left(m^{10 / 7}\right)$	$m^{10 / 7+o(1)}$

Expander Paradigm is the key to all these results

Dynamic Setting

Non-adaptive users:

All updates are fixed from the beginning. Usually cannot be used as
subroutines inside static algo.

Adaptive users:

Updates from users can depend on previous answers

Frontier of Dynamic Graph Algorithms

We DON'T know how to serve adaptive users!

Problems	Non-adaptive users	Adaptive users	
Spanning Forests (worst case)	polylog n [Kapron King Mountioy SODA'13]	\sqrt{n} [EGIN FOCs'92]	

Frontier of Dynamic Graph Algorithms

We DON'T know how to serve adaptive users!

Problems	Non-adaptive users	Adaptive users	
Spanning Forests (worst case)	polylog n [Kapron King Mountioy SODA'13]	\sqrt{n} [EGIN FOCS'92]	
Spanners (amortized)	polylog n [BKS ESAO6, SODA'08]	[trivial]	
Single Source Shortest Paths (decremental approximate amortized)	$m^{1+o(1)}$ [HKN FOCS'14]	[Even Shiloah'81]	
Single Source Reachability (decremental amortized)	m [BPW STOC'19]	mn [Even Shiloah'81]	
Cut Sparsifiers (worst-case)	polylog n [ADKKP FOCS'16]	m [trivial]	
Maximal Matching	O(1) [Solomon FOCs'16]	\sqrt{m} [Neiman Solomon STOC'13]	

Frontier of Dynamic Graph Algorithms

Expander Paradigm can help in many cases!

Problems	Non-adaptive users	Adaptive users	Adaptive users (by Expander Decomposition)
Spanning Forests (worst case)	polylog n [Kapron King Mountjoy SODA'13]	\sqrt{n} [EGIN FOCS'92]	$n^{O(1)}$ [NSW FOCS'17]
Spanners (amortized)	polylog n [BKS ESA06, SODA'08]	m [trivial]	$n^{o(1)}$ [BNSSS FOCS'17]
Single Source Shortest Paths (decremental approximate amortized)	$m^{1+o(1)}$ [HKN FOCS'14]	$m n$ [Even Shiloah'81]	$n^{2+o(1)}$ [Bernstein Chechik STOC'16] [CS]
Single Source Reachability (decremental amortized)	m [BPW STOC'19]	$m n$ [Even Shiloah'81]	-
Cut Sparsifiers (worst-case)	polylog n [ADKKP FOCS'16]	m [trivial]	-
Maximal Matching	$\begin{aligned} & O(1) \\ & \text { [Solomon FOCS'16] } \end{aligned}$	\sqrt{m} [Neiman Solomon STOC'13]	-

Expander Paradigm (Dynamic)

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
e.g. Random Sampling

General tool:
Expander Decomposition

General tool:
Expander Pruning

Expander Pruning [Nsw'17]

Expanders can be quickly "repaired" under edge updates.

Expander Pruning [Nsw'17]

Guarantee:

1. Time to update \boldsymbol{P}_{i-1} to \boldsymbol{P}_{i} is $\boldsymbol{n}^{\boldsymbol{o (1)}}$
2. So $\operatorname{vol}\left(\boldsymbol{P}_{i}\right)=\boldsymbol{i} \cdot \boldsymbol{n}^{o(1)}$
3. $G_{i}\left[V-P_{i}\right]$ is a $\frac{1}{n^{o(1)}}$-expander

Open:

Improve $n^{o(1)}$ to polylog (n)
imply polylog(n) worst-case update time for many problems (e.g. spanning subgraphs, spectral sparsifiers)

Distributed Setting

Expander Paradigm (Distributed)

1. Solve it on expanders.

2. Combine the solutions.

Problem specific:
e.g. Random Sampling

General tool:
Expander Decomposition

General tool:
Expander Routing

Expander Routing

[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

A node u can exchange $\operatorname{deg}_{G}(u)$ messages with any set of nodes in $n^{o(1)}$ rounds in an expander

Expanders allow global communication with small overhead

Open:

Improve $n^{o(1)}$ to polylog(n)
(Many applications even in centralized setting (chat offline))

Distributed CONGEST algorithm

	Upper bound	Lower bound
Triangle (3-clique) listing		$\widetilde{\Omega}\left(n^{1 / 3}\right)$
4-clique listing		$\xrightarrow[{\substack{\text { (Fischer Gonen Kuhn oshman } \\ \text { SPAA } 18]}}]{\widetilde{1}\left(n^{1 / 2}\right)}$
5-clique listing	$\tilde{o}\left(n^{21 / 22}\right)$	$\widetilde{\Omega}\left(n^{3 / 5}\right)$
k-vertex subgraph detection	$n^{2-\Omega(1 / k)}$ [Eden etal. DISC'19]	$n^{2-O(1 / k)}$ [Fischer et al. SPAÁ18]

Expander Paradigm used in all upper bounds

Distributed CONGEST algorithm

	Upper bound	Lower bound
Triangle (3-clique) listing		
4-clique listing		$\underset{\substack{\text { (Fischer Gonene Kuhn oshman } \\ \text { SPAA } 18]}}{\widetilde{1 / 2}\left(n^{1 / 2}\right)}$
5-clique listing	$\tilde{o}\left(n^{21 / 22}\right)$	$\widetilde{\Omega}\left(n^{3 / 5}\right)$
k-vertex subgraph detection	$n^{2-\Omega(1 / k)}$ [Eden et al. DISC'19	$\begin{gathered} n^{2-O(1 / k)} \\ \text { [Fischer et al. SPAA'18] } \end{gathered}$
k-clique enumeration	?	$\widetilde{\Omega}\left(n^{1-2 / k}\right)$

Open:

Application which is not subgraph detection/listing

History: Distributed Expander Decomposition

Reference	Rounds	Note
[Chang Pettie Zhang SODA'19]	$n^{1-\delta}$	Output an extra part: a subgraph with arboricity n^{δ}
[Chang S PODC'19]	n^{ϵ}	
[Chang S in progress]	polylog(n)	
[Chang S in progress]	n^{ϵ}	Deterministic
Open:	polylog(n)	Deterministic

