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Goal of this talk

1. Motivate dynamic algorithms
2. Expander Decomposition through dynamic graph applications.
3. How it is also used for centralized and distributed algorithms.
4. Quick survey of applications



Part 1
Dynamic Algorithms:

What and Why?

*Also say Dynamic Data Structures as well.



Subroutines in static algorithms

“inside” Shortest Paths

Analyze dynamic networks

“inside” Linear Programming

Road networks

Track communities in social networks



A common theme

We solve the same problem repeatedly
where input keeps changing

User Alg
Input

Output

Update

Output

Update

Output



Dynamic Algorithms

Science of how not to compute things from scratch

High-level goal: 
“How to Efficiently Prepare for Changes”



Level Textbook Research

Change Insert/delete a number 
in a set 𝑆

Insert/delete an edge
in a graph 𝐺

Maintain Minimum number in 𝑆 Is 𝐺 connected?

Recompute 𝑶( 𝑺 ) time 𝑶(#𝒆𝒅𝒈𝒆𝒔) time

Can do 𝑶(𝐥𝐨𝐠 𝑺 ) time
Example: 𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝐧) randomized

[Sleator Tarjan STOC’81, Frederickson, STOC'83
Eppstein et al, FOCS’92, Henzinger King, STOC’95

Holm et al, STOC’98, Thorup, STOC’00
Patrascu Demaine, STOC’04, Patrascu Thorup, FOCS'07

Kapron et al, SODA’13, Wulff-Nilsen, SODA’13
Huang et al, SODA’17, Nanongkai S, STOC’17

Wulff-Nilsen, STOC’17, Nanongkai S Wulff-Nilsen, FOCS’17]

Many open questions…

Balanced Binary Search tree 
e.g. AVL tree, red-black tree, etc.

Example: Dynamic Problems



Dynamic 
Connectivity / MST

Sleator Tarjan STOC’81
Frederickson, STOC'83

Eppstein et al, FOCS'92
Henzinger King, STOC’95

Holm et al, STOC’98
Thorup, STOC’00

Patrascu Demaine, STOC'04
Patrascu Thorup, FOCS'07

Kapron et al, SODA'13
Wulff-Nilsen, SODA’13
Huang et al, SODA’17

Nanongkai S, STOC’17
Wulff-Nilsen, STOC’17

Nanongkai S Wulff-Nilsen, FOCS’17

Dynamic 
Single-Source 
Shortest Path
Even Shiloach, JACM’81
Ausiello et al, SODA’90

Rodditty Zwick, FOCS’04
Bernstein Riditty, SODA’11

Bernstein, STOC’13
Henzinger et al, SODA’14
Henzinger et al, STOC'14
Henzinger et al, FOCS'14

Bernstein Chechik, STOC’16 
Bernstein Chechik, SODA’17

Chuzhoy Khanna, STOC’19
Probst Wulff-Nilsen, SODA’20
Probst Wulff-Nilsen, SODA’20

Dynamic 
Maximum 
Matching
Sankowski, SODA’07

Onak Rubinfeld, STOC’10
Baswana et al, FOCS'11

Gupta Peng, FOCS'13
Neiman Soloman, STOC'13

Bosek et al, FOCS'14
Gupta et al, SODA'14

Bhattacharya et al, SODA’15
Bernstein Stein, SODA’16
Peleg Solomon, SODA’16
Bhattacharya et al, STOC’16

Solomon, FOCS’16
Bhattacharya et al, SODA’17

Dynamic 
(Directed) 

Reachability
Even Shiloach, JACM'81

Henzinger King, FOCS'95
King Sagert, STOC'99

Demetrescu Italiano, FOCS'00
Rodditty Zwick, FOCS'02

Sankowski, FOCS'04
Lacki, SODA'11

Henzinger et al, STOC’14
Chechik et al, FOCS’16
Italiano et al, STOC’17

Bernstein et al, STOC’19

More problems…

More Example: Dynamic Graph Problems

Dynamic 
All-Pairs

Shortest Path
King, FOCS’99

Demetrescu Italiano, FOCS’00
Fakcharoenphol Rao, FOCS’01

Baswana et al, STOC’02 
Baswana et al, SODA’03
Roditty Zwick, FOCS’04

Thorup, STOC’05
Bernstein, SODA’09

Abraham et al, STOC’12
Henzinger et al, FOCS’13
Abraham et al, SODA’17

Chechik, FOCS’18
Probst Wulff-Nilsen, SODA’20

(in FOCS/STOC/SODA)



Dynamic Alg. Inside Static Alg.

Shortest path

Priority Queue
(e.g. Fibonacci Heap)

Kruskal’s MST

Union-find

Max flow 
[Sleator Tarjan’82]

Link-cut Tree

Linear Program
[Karmakar’84] [Vaidya’89]

Dynamic Linear 
System Solver

Traveling Salesman
[Chekuri Quanrud FOCS’17]

Dyn. “Global 
Min Cut”

Many more…



Non-adaptive users:
All updates are fixed from the beginning.

Example:

User

From A to B

Path P

Increase traffic on P

From A to B

Path P’

Adaptive!

Adaptive users:
Updates from users can depend on 

previous answers

Usually cannot be used as  
subroutines inside static algo.



Dynamic Spanning Forest:
Definition and Progress



Definition: Spanning Tree/Forest

Spanning tree: a smallest sub-network that connects all nodes together

Spanning forest: set of spanning trees on each connected component



Maintaining a spanning forest under changes

*Will say spanning tree and spanning forest interchangeably



Example: Dynamic Spanning Forest

Input:
Update in G

Picture

Output:
Change in F

1

54

32



Example: Dynamic Spanning Forest

Input:
Update in G

Delete(1,3)

Picture

Output:
Change in F

1

54

32

1

54

32



Example: Dynamic Spanning Forest

Input:
Update in G

Delete(1,3)

Picture

Output:
Change in F

(1,3) removed
(1,2) added

1

54

32

1

54

32



Example: Dynamic Spanning Forest

Input:
Update in G

Delete(1,3) Insert(2,3)

Picture

Output:
Change in F

(1,3) removed
(1,2) added

1

54

32

1

54

32

1

54

32



Example: Dynamic Spanning Forest

Input:
Update in G

Delete(1,3) Insert(2,3) Delete(2,4)

Picture

Output:
Change in F

(1,3) removed
(1,2) added

1

54

32

1

54

32

1

54

32

1

54

32



Example: Dynamic Spanning Forest

Input:
Update in G

Delete(1,3) Insert(2,3) Delete(2,4)

Picture

Output:
Change in F

(1,3) removed
(1,2) added

(2,4) removed
(2,3) added

1

54

32

1

54

32

1

54

32

1

54

32



Goal: minimize update time

Worst-case time to output 
changes of F for each update



Why this problem can be hard?

Almost Clique Almost Clique

Crossing Edges



Why this problem can be hard?

Almost Clique Almost Clique

Crossing Edges Interesting when: 
delete a tree-edge

Want: Find a crossing edge

Question: 
Must scan all clique-edges?
Scan the whole graph? 



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

Progress
𝑛 = # of nodes, 𝑚=# of edges

Hide log factors from 
now



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

20-year gap:
A lot of successes in closely related settings

(amortized update time)

Progress
𝑛 = # of nodes, 𝑚=# of edges

Important development in 
amortized update time

Henzinger King [STOC’95]
Holm Lichtenberg Thorup [STOC’98]  

Thorup [STOC’00] 
Patrascu Demaine [STOC’04] 

Wulff-Nilsen [SODA’13] 
HHKP [SODA’17]



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

20-year gap:
A lot of successes in closely related settings

(amortized update time)

Assume user is not adaptive
Kapron King Mountjoy [SODA’13] polylog 𝑛

Progress
𝑛 = # of nodes, 𝑚=# of edges

Important development in 
amortized update time

Henzinger King [STOC’95]
Holm Lichtenberg Thorup [STOC’98]  

Thorup [STOC’00] 
Patrascu Demaine [STOC’04] 

Wulff-Nilsen [SODA’13] 
HHKP [SODA’17]



Non-adaptive users:
All updates are fixed from the beginning.

Example:

User

From A to B

Path P

Increase traffic on P

From A to B

Path P’

Adaptive!

Adaptive users:
Updates from users can depend on 

previous answers

Usually cannot be used as  
subroutines inside static algo.



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

20-year gap:
A lot of successes in closely related settings

(amortized update time)

Assume user is not adaptive
Kapron King Mountjoy [SODA’13] polylog 𝑛

Progress
𝑛 = # of nodes, 𝑚=# of edges

Important development in 
amortized update time

Henzinger King [STOC’95]
Holm Lichtenberg Thorup [STOC’98]  

Thorup [STOC’00] 
Patrascu Demaine [STOC’04] 

Wulff-Nilsen [SODA’13] 
HHKP [SODA’17]



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

20-year gap:
A lot of successes in closely related settings

(amortized update time)

Assume user is not adaptive
Kapron King Mountjoy [SODA’13] polylog 𝑛
KKPT [ESA’16] 𝑛3/5 ⋅ =>? =>? @

=>? @ A/B

Progress
𝑛 = # of nodes, 𝑚=# of edges



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

20-year gap:
A lot of successes in closely related settings

(amortized update time)

Assume user is not adaptive
Kapron King Mountjoy [SODA’13] polylog 𝑛
KKPT [ESA’16] 𝑛3/5 ⋅ =>? =>? @

=>? @ A/B

Wulff-Nilsen [STOC’17] 𝑛C.EFF

Nanongkai S [STOC’17] 𝑛C.EC3

Progress
𝑛 = # of nodes, 𝑚=# of edges

Independent works



Reference Update time
Naïve 𝑚
Frederickson [STOC’83] 𝑚3/5

EGIN [FOCS’92] 𝑛3/5

20-year gap:
A lot of successes in closely related settings

(amortized update time)

Assume user is not adaptive
Kapron King Mountjoy [SODA’13] polylog 𝑛
KKPT [ESA’16] 𝑛3/5 ⋅ =>? =>? @

=>? @ A/B

Wulff-Nilsen [STOC’17] 𝑛C.EFF

Nanongkai S [STOC’17] 𝑛C.EC3

NSW [FOCS’17] 𝒏𝒐(𝟏)

Progress
𝑛 = # of nodes, 𝑚=# of edges

Will explain how to use 
Expander decomposition 

via (simplification of) this work



Part 1.2
Dynamic Spanning Forest:

How to use Expander Decomposition



Recall: Why this problem can be hard?

Let’s solve the problem on 
graphs that this situation 

cannot happen…

Almost Clique Almost Clique

Crossing Edges



Expanders

Random Graphs
(Erdös-Rényi)

Power-law Graphs
(preferential attachment)

[Gkantsidis, Mihail, Saberi SIGMETRICS’03]
[Mihail, Papadimitriou, Saberi FOCS'03]

𝔽K-cycles 
with inverse chords

Hypercubes

Intuition
• Well-connected
• Hard to separate into two equal sides  



Definition: Expanders

𝐺 = (𝑉, 𝐸) is an expander if

∀𝑆 ⊂ 𝑉
𝐸 𝑆, 𝑆

min{ 𝑣𝑜𝑙 𝑆 , 𝑣𝑜𝑙 𝑆 }
≥

1
polylog(𝑛)

Sum of degree:
𝑣𝑜𝑙 𝑆 = ∑]∈_ degb 𝑢

In general,

𝜙-expander: e _,_
fgh{ijk _ ,ijk _ } ≥ 𝜙



Expander Paradigm

1. Solve it on expanders. 2. Combine the solutions.



Expander Paradigm

1. Solve it on expanders. 



Warm-up: One update to Expander 

Suppose that 𝑮 is an expander, and there is one update.
Goal: maintain a spanning tree 𝑻 of 𝑮.

𝑮



Warm-up: One update to Expander 

Interesting only when: delete a tree-edge
Want: edge crossing 𝑆 to reconnect
Alg: sample an edge with an endpoint in 𝑺
(can do fast)

By expansion: get edge crossing 𝑆 w.p. 3
n>=o=>?(@)

Repeat: p𝑂(1) times. Done w.h.p.

Suppose that 𝑮 is an expander, and there is one update.
Goal: maintain a spanning tree 𝑻 of 𝑮

S

T



What if there are more updates?

𝑮

after many edge deletions,
not expander anymore!

Let’s “repair” the expander



Expander Paradigm

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Pruning

Problem specific:

e.g. Random Sampling



Expander Pruning [NSW’17]

𝑮𝟎: expander 𝑮𝟏 = 𝑮𝟎 − 𝒆𝟏 𝑮𝟐 = 𝑮𝟏 − 𝒆𝟐 𝑮𝒊 = 𝑮𝒊v𝟏 − 𝒆𝒊 𝑮𝒌 = 𝑮𝒌v𝟏 − 𝒆𝒌

𝑷𝟏 𝑷𝒊 𝑷𝒌

Guarantee:
1. Time to update 𝑷𝒊v𝟏 to 𝑷𝒊 is 𝒏𝒐(𝟏)
2. So 𝑣𝑜𝑙 𝑷𝒊 = 𝒊 ⋅ 𝒏𝒐(𝟏)

3. 𝐺y 𝑉 − 𝑷𝒊 is a 3
@z(A)

-expander

*We show something slightly weaker

𝐺y 𝑉 − 𝑷𝒊 is a ( 3
@z(A))-expander* 

𝑷𝟐

where 𝒌 ≤ 𝒎/𝒏𝒐(𝟏)



Expander Pruning [NSW’17]

𝑮𝟎: expander 𝑮𝟏 = 𝑮𝟎 − 𝒆𝟏 𝑮𝟐 = 𝑮𝟏 − 𝒆𝟐 𝑮𝒊 = 𝑮𝒊v𝟏 − 𝒆𝒊 𝑮𝒌 = 𝑮𝒌v𝟏 − 𝒆𝒌

𝑷𝟏 𝑷𝒊 𝑷𝒌

𝐺y 𝑉 − 𝑷𝒊 is a ( 3
@z(A))-expander*

𝑷𝟐

Expanders can be quickly “repaired” 
under edge updates.



Expander Paradigm

1. Solve it on expanders. 

General tool:

Expander Pruning

Problem specific:

e.g. Random Sampling



Expander Paradigm

1. Solve it on expanders. 

General tool:

Expander Pruning

Problem specific:

e.g. Random Sampling

In this talk, will only show 
how to solve a relaxed problem 

(contains all conceptual ideas)



Relaxed Problem: Dynamic Spanning Subgraphs

1. Maintain Any Spanning Subgraph with }𝑶(𝒏) edges
(Easier than Spanning Forest.)

2. There are only 𝑛3vj(3) updates
(can assume w.l.o.g. by standard techniques.)



What if there are more updates?

Suppose that 𝑮 is an expander, but there are many updates.

𝑮

after many edge deletions,
not expander anymore

𝑷

Expander Pruning 
maintains 𝑷 where

𝑮[𝑽 − 𝑷] is 3
@z(A)

-expander

Expander Pruning:
1. Time to update 𝑷𝒊 is 𝒏𝒐(𝟏)

2. So 𝑣𝑜𝑙 𝑷𝒊 = 𝒊 ⋅ 𝒏𝒐 𝟏

3. 𝐺y 𝑉 − 𝑷𝒊 is a 3
@z(A)

-expander



𝑮

What if there are more updates?

Suppose that 𝑮 is an expander, but there are many updates.
Algo: maintain spanning tree 𝑻 of 𝑮[𝑽 − 𝑷] union with 𝑬(𝑷, 𝑽)

𝑷

Update time: 𝑛j(3)
• Updating 𝐸 𝑃, 𝑉 : 𝑛j(3) by Expander Pruning.
• Updating 𝑇: 𝑛j(3) by Random Sampling
• 𝐺[𝑉 − 𝑃] is 3

@z(A)
-expander at any time.

Expander Pruning:
1. Time to update 𝑷𝒊 is 𝒏𝒐(𝟏)

2. So 𝑣𝑜𝑙 𝑷𝒊 = 𝒊 ⋅ 𝒏𝒐 𝟏

3. 𝐺y 𝑉 − 𝑷𝒊 is a 3
@z(A)

-expander

Work with adaptive users!



𝑮

What if there are more updates?

Suppose that 𝑮 is an expander, but there are many updates.
Algo: maintain spanning tree 𝑻 of 𝑮[𝑽 − 𝑷] union with 𝑬(𝑷, 𝑽)

𝑷

Correctness:
• 𝑇 ∪ 𝐸(𝑃, 𝑉) spans 𝐺
• 𝑇 ∪ 𝐸 𝑃, 𝑉 = 𝑂(𝑛)
• 𝑇 ≤ 𝑛
• 𝐸 𝑃, 𝑉 = 𝑣𝑜𝑙 𝑃 = 𝑂(𝑛)
• Recall: #updates is 𝑛3vj(3)

Expander Pruning:
1. Time to update 𝑷𝒊 is 𝒏𝒐(𝟏)

2. So 𝑣𝑜𝑙 𝑷𝒊 = 𝒊 ⋅ 𝒏𝒐 𝟏

3. 𝐺y 𝑉 − 𝑷𝒊 is a 3
@z(A)

-expander



Expander Paradigm

1. Solve it on expanders. 

General tool:

Expander Pruning

Problem specific:

e.g. Random Sampling

How to work with 
general graphs?

Done on expanders



Expander Paradigm

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Pruning

General tool:

Expander 
Decomposition

Problem specific:

e.g. Random Sampling



Expander Decomposition

Input: 𝐺 = 𝑉, 𝐸

Output: A partition (𝑉3, …𝑉�) of 𝑉

𝑮[𝑽𝒊] is expander ≤ 𝒎/𝟐 inter-cluster edges

“Graph = Disjoint Expanders + Few Edges”

[S Wang SODA’19]:
}𝑶 𝒎 -time w.h.p.



Repeated Expander Decomposition

Expander decomposition



Repeated Expander Decomposition

expander

≤ 𝒎
𝟐

inter-cluster edges



Repeated Expander Decomposition

≤ 𝒎
𝟐

inter-cluster edges

Expander decomposition
expander



Repeated Expander Decomposition

≤ 𝒎
𝟒

inter-cluster edges

expander
expander



Repeated Expander Decomposition

≤ 𝒎
𝟒

inter-cluster edges

expander
expander



Repeated Expander Decomposition

expander

𝐺3 𝐺5 𝐺� 𝐺�(=>? @)

expander
expander



Repeated Expander Decomposition

Input: 𝐺 = 𝑉, 𝐸

Output: (𝐺3, … , 𝐺�(=>? @) ) such that 

• 𝐺y = disjoint union of expanders

• 𝐸 = 𝐸 𝐺3 ∪̇ … ∪̇ 𝐸 𝐺�(=>? @)

Time: p𝑂(𝑚)



𝐺′ is expander

1. Preprocess: Compute repeated expander decomposition (𝐺3, … , 𝐺�(=>? @) )
2. Algo: Each expander 𝐺′, maintain spanning subgraph 𝐻′ of 𝐺′

• 𝐻′ has  𝑂 𝑉 𝐺� edges
• Update time 𝑛j(3) (if the update is on 𝐺′)

Dynamic Spanning Subgraph: General Graphs

𝐺3 𝐺5 𝐺� 𝐺�(=>? @)



Dynamic Spanning Subgraph: General Graphs

1. Preprocess: Compute repeated expander decomposition (𝐺3, … , 𝐺�(=>? @) )
2. Algo: Each expander 𝐺′, maintain spanning subgraph 𝐻′ of 𝐺′

• 𝐻′ has  𝑂 𝑉 𝐺� edges
• Update time 𝑛j(3) (if the update is on 𝐺′)

3. Claim: Union of all 𝐻′ is a spanning subgraph of 𝐺 with 𝑂(𝑛 log 𝑛) edges.

𝐻′



Dynamic Spanning Subgraph: General Graphs

1. Preprocess: Compute repeated expander decomposition (𝐺3, … , 𝐺�(=>? @) )
2. Algo: Each expander 𝐺′, maintain spanning subgraph 𝐻′ of 𝐺′

• 𝐻′ has  𝑂 𝑉 𝐺� edges
• Update time 𝑛j(3) (if the update is on 𝐺′)

3. Claim: Union of all 𝐻′ is a spanning subgraph of 𝐺 with 𝑂(𝑛 log 𝑛) edges.



Dynamic Spanning Subgraphs

Conclusion: 
Given 𝐺 undergoing edge updates, 
•maintain spanning subgraph
•with 𝑂(𝑛 log 𝑛) edges 
• in 𝑛j(3) update time



Part 2
Centralized Algorithms



Expander Paradigm

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Pruning

General tool:

Expander 
Decomposition

Problem specific:

e.g. Random Sampling



Definition: Spanner

Informal: Subgraph that preserves all distances.



Definition: Spanner

Let 𝐺 = 𝑉, 𝐸 .
𝐻 = (𝑉, 𝐸�) is a 𝒌-spanner of 𝐺 if 

1. 𝐸′ ⊂ 𝐸
2. ∀ 𝑢, 𝑣 ∈ 𝐸, dist� u, v ≤ 𝑘



Spanners of Expanders

𝐺: expander
𝑇: a shortest path tree in 𝐺 (rooted at an arbitrary node 𝑟).

Observe: 𝑇 is a polylog(𝑛)-spanner of 𝐺
Proof: ∀ 𝑢, 𝑣 ∈ 𝐸, dist� 𝑢, 𝑣 ≤ dist� 𝑢, 𝑟 + dist� 𝑟, 𝑣

= polylog(𝑛)

𝐺: 𝜙-expander Fact: Diameter of expanders is polylog(𝑛).



Spanners of General Graphs

Spanner(G):
1. Compute repeated expander decomposition: (𝐺3, … , 𝐺�(=>? @) )
2. 𝐻y = Shortest path tree on each expander of 𝐺y

𝐺3 𝐺5 𝐺� 𝐺�(=>? @)

expander



Spanners of General Graphs

Spanner(G):
1. Compute repeated expander decomposition: (𝐺3, … , 𝐺�(=>? @) )
2. 𝐻y = Shortest path tree on each expander of 𝐺y
3. Return 𝐻 =∪y 𝐻y

𝐻3 𝐻5 𝐻� 𝐻�(=>? @)

∀ 𝑢, 𝑣 ∈ 𝐸,
dist� 𝑢, 𝑣 ≤ polylog(𝑛)expander

Total time: p𝑂(𝑚)

𝐸 𝐻y ≤ 𝑛 (forest),
so 𝐸 𝐻 = 𝑂(𝑛 log 𝑛).



Spanners of General Graphs

Conclusion: 
Given 𝐺, 
• a polylog(𝑛)-spanner 
•with 𝑂(𝑛 log 𝑛) edges 
• in p𝑂(𝑚) time



Expander Paradigm

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander 
Decomposition

Problem specific:

Shortest path tree

Problem specific:

Random sampling

More applications:
• Cut sparsifiers: preserve cut sizes
• Spectral sparsifiers: preserve eigenvalues



Part 3
Distributed Algorithms



Definition: CONGEST model



Definition: CONGEST model

1

2

4

3

• Local knowledge:
A node know only its neighbors

• Local communication: 
A node can send messages to only its neighbors
in each round

• Bounded Bandwidth: 
Each message has size 𝑂(log 𝑛)-bit

4
2

3
?

log 𝑛 bits

Goal: 
• Compute  something about the underlying network 
• Minimize the number of rounds



Expander Paradigm (Distributed)

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Routing

General tool:

Expander 
Decomposition

Problem specific:

e.g. Random Sampling



Expander Routing (Informal)
[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

In any graph, 
can exchange with 

only neighbors
in 1 round

A node 𝑢 can exchange degb(𝑢) messages 
with any set of nodes

in 𝑛j(3) rounds in an expander

Local communicationExpanders allow global communication 
with small overhead



Expander Routing 
[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

Input: underlying graph 𝐺 = (𝑉, 𝐸) and demand graph 𝐷 = (𝑉, 𝐸′)
• 𝐺: expander
• deg�(𝑢) ≤ degb 𝑢 ∀ 𝑢 ∈ 𝑉
Output:
• for all 𝑢, 𝑣 ∈ 𝐸� simultaenously,
• 𝑢 and 𝑣 can exchange a message in 𝑛j(3) rounds (in 𝐺)

Expanders allow global communication 
with small overhead



Expander Paradigm (Distributed)

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Routing

General tool:

Expander 
Decomposition

Problem specific:

e.g. Random Sampling

Can import ideas from algorithms 
in CONGESTED-CLIQUE model

Round complexity:

• 𝑛3v� [Chang Pettie Zhang SODA’19]
(with caveat)

• 𝑛� [Chang S PODC’19]
• polylog(𝑛) [Chang S]



Part 4
Conclusion:

Survey and Open Problems



Centralized Setting



Expander Paradigm (Centralized)

1. Solve it on expanders. 2. Combine the solutions.

Problem specific:

e.g. Random Sampling
General tool:

Expander 
Decomposition



Expander Decomposition

Input: 𝐺 = 𝑉, 𝐸

Output: A partition (𝑉3, …𝑉�) of 𝑉

𝑮[𝑽𝒊] is expander ≤ 𝒎/𝟐 inter-cluster edges

“Graph = Disjoint Expanders + Few Edges”

[S Wang SODA’19]:
}𝑶 𝒎 -time w.h.p.



Fast Centralized Algorithms

Expander Paradigm is the key to all these results

Time (Randomized)
[]

Laplacian system solvers
[Spielman Teng STOC’04] 

p𝑂(𝑚)

Spectral sparsifiers
[Spielman Teng STOC’04]

p𝑂(𝑚)

Approx. max flow 
[Kelner Lee Orecchia Sidford SODA’14]

p𝑂(𝑚)

Approx. vertex max flow 
[Chuzhoy Khanna STOC’19]

p𝑂(𝑛5)

Bipartite Matching, Shortest Path, Max flow
[Cohen Madry Sankowski Vladu SODA’17]

p𝑂(𝑚3C/�)

New! [Chuzhoy Gao Li Nanongkai Peng S]:

Expander decomposition in 
𝑚3�j(3) deterministic time



Fast Centralized Algorithms

Expander Paradigm is the key to all these results

Time (Randomized)
[]

Time (Deterministic)
[CGLNPS]

Laplacian system solvers
[Spielman Teng STOC’04] 

p𝑂(𝑚) 𝑚3�j(3)

Spectral sparsifiers
[Spielman Teng STOC’04]

p𝑂(𝑚) 𝑚3�j(3)

Approx. max flow 
[Kelner Lee Orecchia Sidford SODA’14]

p𝑂(𝑚) 𝑚3�j(3)

Approx. vertex max flow 
[Chuzhoy Khanna STOC’19]

p𝑂(𝑛5) 𝑛5�j(3)

Bipartite Matching, Shortest Path, Max flow
[Cohen Madry Sankowski Vladu SODA’17]

p𝑂(𝑚3C/�) 𝑚3C/��j(3)

Open: Expander decomposition in 
p𝑂 𝑚 deterministic time 
(would remove all 𝑚j(3) below)



Dynamic Setting



Non-adaptive users:
All updates are fixed from the beginning.

Example:

User

From A to B

Path P

Increase traffic on P

From A to B

Path P’

Adaptive!

Adaptive users:
Updates from users can depend on 

previous answers

Usually cannot be used as  
subroutines inside static algo.



Problems Non-adaptive users Adaptive users Adaptive users
(by Expander 

Decomposition)

Spanning Forests
(worst case)

polylog 𝑛
[Kapron King Mountjoy SODA’13]

𝑛
[EGIN FOCS’92]

𝑛j(3)
[NSW FOCS’17]

Frontier of Dynamic Graph Algorithms

We DON’T know how to serve adaptive users!



Problems Non-adaptive users Adaptive users Adaptive users
(by Expander 

Decomposition)

Spanning Forests
(worst case)

polylog 𝑛
[Kapron King Mountjoy SODA’13]

𝑛
[EGIN FOCS’92]

𝑛j(3)
[NSW FOCS’17]

Spanners
(amortized)

polylog 𝑛
[BKS ESA06, SODA’08]

𝑚
[trivial]

𝑛j(3)
[BNSSS FOCS’17]

Single Source Shortest Paths
(decremental approximate amortized)

𝑚3�j(3)
[HKN FOCS’14]

𝑚𝑛
[Even Shiloah’81]

𝑛5�j(3)
[Bernstein] [CS]

Single Source Reachability
(decremental amortized)

𝑚
[BPW STOC’19]

𝑚𝑛
[Even Shiloah’81]

-
Cut Sparsifiers 
(worst-case)

polylog 𝑛
[ADKKP FOCS’16]

𝑚
[trivial]

-
Maximal Matching 𝑂(1)

[Solomon FOCS’16]
𝑚

[Neiman Solomon STOC’13]
-

Frontier of Dynamic Graph Algorithms

We DON’T know how to serve adaptive users!



Problems Non-adaptive users Adaptive users Adaptive users
(by Expander 

Decomposition)

Spanning Forests
(worst case)

polylog 𝑛
[Kapron King Mountjoy SODA’13]

𝑛
[EGIN FOCS’92]

𝑛j(3)
[NSW FOCS’17]

Spanners
(amortized)

polylog 𝑛
[BKS ESA06, SODA’08]

𝑚
[trivial]

𝑛j(3)
[BNSSS FOCS’17]

Single Source Shortest Paths
(decremental approximate amortized)

𝑚3�j(3)
[HKN FOCS’14]

𝑚𝑛
[Even Shiloah’81]

𝑛5�j(3)
[Bernstein Chechik STOC’16] [CS]

Single Source Reachability
(decremental amortized)

𝑚
[BPW STOC’19]

𝑚𝑛
[Even Shiloah’81]

-
Cut Sparsifiers 
(worst-case)

polylog 𝑛
[ADKKP FOCS’16]

𝑚
[trivial]

-
Maximal Matching 𝑂(1)

[Solomon FOCS’16]
𝑚

[Neiman Solomon STOC’13]
-

Frontier of Dynamic Graph Algorithms

Expander Paradigm can help in many cases!

We saw this (simplified)



Expander Paradigm (Dynamic)

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Pruning

General tool:

Expander 
Decomposition

Problem specific:

e.g. Random Sampling



Expander Pruning [NSW’17]

𝑮𝟎: expander 𝑮𝟏 = 𝑮𝟎 − 𝒆𝟏 𝑮𝟐 = 𝑮𝟏 − 𝒆𝟐 𝑮𝒊 = 𝑮𝒊v𝟏 − 𝒆𝒊 𝑮𝒌 = 𝑮𝒌v𝟏 − 𝒆𝒌

𝑷𝟏 𝑷𝒊 𝑷𝒌

𝐺y 𝑉 − 𝑷𝒊 is a ( 3
@z(A))-expander

𝑷𝟐

Expanders can be quickly “repaired” 
under edge updates.



Expander Pruning [NSW’17]

𝑮𝟎: expander 𝑮𝟏 = 𝑮𝟎 − 𝒆𝟏 𝑮𝟐 = 𝑮𝟏 − 𝒆𝟐 𝑮𝒊 = 𝑮𝒊v𝟏 − 𝒆𝒊 𝑮𝒌 = 𝑮𝒌v𝟏 − 𝒆𝒌

𝑷𝟏 𝑷𝒊 𝑷𝒌

Guarantee:
1. Time to update 𝑷𝒊v𝟏 to 𝑷𝒊 is 𝒏𝒐(𝟏)
2. So 𝑣𝑜𝑙 𝑷𝒊 = 𝒊 ⋅ 𝒏𝒐(𝟏)

3. 𝐺y 𝑉 − 𝑷𝒊 is a 3
@z(A)

-expander

𝐺y 𝑉 − 𝑷𝒊 is a ( 3
@z(A))-expander 

𝑷𝟐

where 𝒌 ≤ 𝒎/𝒏𝒐(𝟏)

Open: 
Improve 𝑛j(3) to polylog(𝑛)
imply polylog(𝑛) worst-case update time for many 
problems (e.g. spanning subgraphs, spectral 
sparsifiers)



Distributed Setting



Expander Paradigm (Distributed)

1. Solve it on expanders. 2. Combine the solutions.

General tool:

Expander Routing

General tool:

Expander 
Decomposition

Problem specific:

e.g. Random Sampling



Expander Routing
[Ghaffari Kuhn Su PODC'17] [Ghaffari Li DISC'18]

A node 𝑢 can exchange degb(𝑢) messages 
with any set of nodes

in 𝑛j(3) rounds in an expander

Expanders allow 
global communication 

with small overhead

Open: 
Improve 𝑛j(3) to polylog(𝑛)

(Many applications even in 
centralized setting (chat offline))



Distributed CONGEST algorithm
Upper bound Lower bound

Triangle (3-clique) listing p𝑂(𝑛3/�)
[Chang Pettie Zhang SODA’18]

[Chang S PODC’19]

}Ω(𝑛3/�)
[Izumi LeGall PODC’17]

4-clique listing p𝑂(𝑛�/�)
[Eden Fiat Fischer Kuhn 

Oshman DISC’19]

}Ω(𝑛3/5)
[Fischer Gonen Kuhn Oshman 

SPAA‘18]

5-clique listing p𝑂(𝑛53/55)
[Eden et al. DISC’19]

}Ω(𝑛�/�)
[Fischer et al. SPAA‘18]

𝑘-vertex subgraph detection 𝑛5v (3/�)
[Eden et al. DISC’19]

𝑛5v�(3/�)
[Fischer et al. SPAA‘18]

Expander Paradigm used in all upper bounds



Distributed CONGEST algorithm
Upper bound Lower bound

Triangle (3-clique) listing p𝑂(𝑛3/�)
[Chang Pettie Zhang SODA’18]

[Chang S PODC’19]

}Ω(𝑛3/�)
[Izumi LeGall PODC’17]

4-clique listing p𝑂(𝑛�/�)
[Eden Fiat Fischer Kuhn 

Oshman DISC’19]

}Ω(𝑛3/5)
[Fischer Gonen Kuhn Oshman 

SPAA‘18]

5-clique listing p𝑂(𝑛53/55)
[Eden et al. DISC’19]

}Ω(𝑛�/�)
[Fischer et al. SPAA‘18]

𝑘-vertex subgraph detection 𝑛5v (3/�)
[Eden et al. DISC’19]

𝑛5v�(3/�)
[Fischer et al. SPAA‘18]

𝑘-clique enumeration ? }Ω(𝑛3v5/�)
[Fischer et al. SPAA‘18]

Open: 
Application which is not 
subgraph detection/listing



History: Distributed Expander Decomposition

Reference Rounds Note
[Chang Pettie Zhang SODA’19] 𝑛3v¢ Output an extra part: 

a subgraph with arboricity 𝑛¢

[Chang S PODC’19] 𝑛�

[Chang S in progress] polylog(𝑛)
[Chang S in progress] 𝑛� Deterministic
Open: polylog(𝑛) Deterministic


