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Random Walks and Markov Chains

Random Walks on Graphs

A class of Markov chains where a particle is moving on the vertices of a graph:

= start from some specified vertex
= at each step, jump to a randomly chosen neighbor
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Hitting Times (and Cover Times) on Static Graphs

——— Hitting and Cover Times
= Let thir(u, v) be the expected time for a random walk to go from u to v
= Let thit(G) := maxy, tir(u, v) be the hitting time of the graph G
= Let teov(G) the expected time to visit all vertices in G
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Some Classical Results:

= Forany graph, tit(G) < teov(G) < thir - O(log n)
[Matthews, Annals of Prob.88]

For any graph, thit(G) < teov(G) < 2|E|(|V]| — 1) = O(n®)
[Aleliunas, Karp, Lipton, Lovdsz and Rackoff, FOCS79]

For any graph, ti(G) < teov(G) < 16% = tit(G) = O(r?) if Gregular.
[Kahn, Linial, Nisan and Saks, |. Theoretical Prob.'88]

For any graph, ti(G) < (5 + 0o(1)) - n°
[Brightwell and Winkler, RSA'90]

For any graph, teov(G) < (£ + 0(1)) - n°
[Feige, RSA'95]
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Random Walk on a Dynamic Graph Sequence

Lazy Random Walks
The random walk stays with probability 1/2 at the current location.
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Random Walks on Sequences of Connected Graphs
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Agenda of this Talk

We are interested in studying the following quantities on a sequence of dynamic
graphs G = (G', G?,...) on afixed set vertices:

Mixing time Number of steps needed for the distribution of the walk to
become e-close to the stationary distribution
Hitting times Expected number of steps to go from u to v, thi:(u, v)

For static connected graphs:
regular case O(n?) mixing and hitting times
general case O(n®) mixing and hitting times

For dynamic connected graphs:
« If (! changes over time, in general, we don't have mixing
= Can we at least say something about hitting times?
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Related Work: A Dichotomy for dynamic graphs

~——— Avin, Koucky, and Lotker (ICALP'O8, RSA'18)
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= (this holds even if 7r(!) changes slowly)
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[ How can we derive these results? ]
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Classical Proof (Spanning Tree Approach)

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any static graph G, teov(G) < 2(n—1)|E|.
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= Take a spanning tree T in G

= Consider a traversal that goes
through every edge in T twice
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| For any static graph G, teov(G) < 2(n—1)|E|. ]
Proof:

= Take a spanning tree T in G

= Consider a traversal that goes
through every edge in T twice

= For any adjacent vertices /, J,
thit (1, ) + thie(j, 1) < 2| E|
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Proof:

= Take a spanning tree T in G

= Consider a traversal that goes
through every edge in T twice

= For any adjacent vertices /, J,
thit (1, ) + thie(j, 1) < 2| E|

= Thus,
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Classical Proof (Spanning Tree Approach)

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any static graph G, teov(G) < 2(n—1)|E|. ]
Proof:

= Take a spanning tree T in G

= Consider a traversal that goes
through every edge in T twice

= For any adjacent vertices /, J,
thie(1,) + taie(J, 1) < 2|E|

= Thus,
tcov(G) S Z thit(i7j) + thit(j7 i)
(i,))€E(T)
<2(n—1)-|E|
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Classical Proof (Refinement based on Shortest Path)

(cf. Aldous, Fill02)
| For any static graph with diameter D, th;(G) < 2|E| - D.

2019 Random Walks on Sequences of Connected Graphs



Classical Proof (Refinement based on Shortest Path)

(cf. Aldous, Fill02)
| For any static graph with diameter D, th;(G) < 2|E| - D.

Proof:

= Fix two vertices s, t, and consider a shortest path P = (up = s, Uy, . ..
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* Thus,
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Classical Proof (Refinement based on Shortest Path)

(cf. Aldous, Fill02)
| For any static graph with diameter D, th(G) < 2|E| - D. ]

Proof:
= Fix two vertices s, t, and consider a shortest path P = (up = s, U1, ..., u = t)
= As before thi(uj, Uir1) < 2|E|.
* Thus,

D—1 D—1
thir(s, 1) < Z thie(Ui, Uip1) < ZZ|E| =2|E|D
i—0 i—0

This proves not only a bound of O(n®) for any graph, but also O(n?) for regular graphs.

Both proofs crucially rely on a static spanning tree or static shortest path!
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Return Times on Dynamic Graphs

A fundamental fact of the return times is that:

B
m(u) — deg(u)

thir(U, U) =

Is this true for dynamic graphs?
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Return Times on Dynamic Graphs

_ 1 2E
Pt O = 0) ~ deglw)

Is this true for dynamic graphs?

A fundamental fact of the return times is that:

No!

K b
ORZ0

Many combinatorial and probabilistic arguments seem to fail,
but what about the t-step probabilities (and return probabilities)?
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Diffusion of a Random Walk on a Static Cycle
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Diffusion of a Random Walk on a Static Cycle

 —
/ 0044 \El
0.010 0117
0.001 0.205
0.000 Step: 5 0.246
0.001 0.205

N =

0010 \:/ 0.117

0.044

AD (32&! Random Walks on Sequences of Connected Graphs 15



Diffusion of a Random Walk on a Static Cycle
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Diffusion of a Random Walk on a Static Cycle
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Diffusion of a Random Walk on a Static Cycle
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Diffusion of a Random Walk on a Static Cycle
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0.012 0167

0.071
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Diffusion of a Random Walk on a Static Cycle

=

= & l:'
0.037 / \ 0.120
0.016/ \0.160
0.009 Step: 10 0.176
0.016 0.160

N m

0.120

0.074
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Diffusion of a Random Walk on a Static Cycle

=

0.076

= = O

_ N

0.020 0.154
0.013 Step: 11 0.168
0.020 0.154

N m

0.119

0.076
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Diffusion of a Random Walk on a Static Cycle

=

0.078

_ =

0023 0.149
0.016 Step: 12 0.161
0023 0.149

= =

0.117

0.078
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Diffusion of a Random Walk on a Static Cycle

=

0.079

= en— O

_ =

0.027 0.144
0.020 Step: 13 0.155
0.027 0144

= =

0.115

0.079
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Diffusion of a Random Walk on a Static Cycle

=

] 0.080 []
0.050 / \ 0113
0.030 0139
0.023 Step: 14 0.149
0.030 0139

e =

0.113

0.080
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Diffusion of a Random Walk on a Static Cycle

=

- -
0.053 / \ 0112
0.033 0135
0.027 Step: 15 0.144
0.033 0135

e =

0.112

0.081
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Diffusion of a Random Walk on a Static Cycle

=

— O
0.055 / \ 0.110
0.037 0132
0.030 Step: 16 0.140
0.037 0132

e =

0.110

0.082
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Diffusion of a Random Walk on a Static Cycle

=

- -
0.057 / \ 0.108
0.040 0128
0.033 Step: 17 0.136
0.040 0428

e =

0.108

0.082

AD (32&! Random Walks on Sequences of Connected Graphs 15



Diffusion of a Random Walk on a Static Cycle

=

— oos2 ]
0.059 / \ 0.107
0.042 0125
0.036 Step: 18 0.132
0.042 0125

e =

0.107

0.082
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Diffusion of a Random Walk on a Static Cycle

=

— o0ss ]
0.061 / \ 0.105
0.045 0122
0.039 Step: 19 0.129
0.045 0122

e =

0.105

0.083

AD (32&! Random Walks on Sequences of Connected Graphs 15



Diffusion of a Random Walk on a Static Cycle

=

— o0ss ]
0.062 / \ 0.104
0.048 0120
0.042 Step: 20 0.126
0.048 0120

0.083
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Diffusion of a Random Walk on a Static Cycle

:l/

0.064

-

0.050

J

0.045

L

0.050

=

0.083

Step: 21

\III/

0.083

— B8

0.103

NE

0.117

\m

0.123

=1

0.117

=

0.103

ADGA
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Diffusion of a Random Walk on a Static Cycle

:l/

0.065

-

0.052

J

0.047

L

0.052

=

0.083

Step: 22

\III/

0.083

\CI

0.101

NG

0.115

\m

0.120

=1

0.115

=

0.101

ADGA
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Diffusion of a Random Walk on a Static Cycle

:l/

0.066

=

0.054

J

0.050

o

0.054

=

0.083

Step: 23

\III/

0.083

\CI

0.100

NG

0.113

\m

0.117

o

0.113

=

0.100

ADGA
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Diffusion of a Random Walk on a Static Cycle

:l/

0.067

=

0.056

J

0.052

o

0.056

=

0.083

Step: 24

\III/

0.083

\CI

0.099

NG

0.111

\m

0.115

o

0.111

=

0.099
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Diffusion of a Random Walk on a Static Cycle

:l/

0.069

=

0.058

J

0.054

o

0.058

=

0.083

Step: 25

\III/

0.083

\CI

0.098

NG

0.109

\m

0.113

o

0.109

=

0.098
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Diffusion of a Random Walk on a Static Cycle

:l/

0.070

=

0.060

J

0.056

o

0.060

=

0.083

Step: 26

\III/

0.083

\\\\\\\E]

0.097

INE

0.107

\m

0.111

o

0.107

=

0.097
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Diffusion of a Random Walk on a Static Cycle

=

= 003 ]
0.070 / \ 0.096
0.061 0.106
0.058 Step: 27 0.109
0.061 0.106

= =

0.096

0.083
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Diffusion of a Random Walk on a Static Cycle

:l/

0.071

=

0.063

o

0.059

o

0.063

=

0.083

Step: 28

\III/

0.083

\\\\\\\E]

0.095

INE

0.104

\m

0.107

o

0.104

=

0.095
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Diffusion of a Random Walk on a Static Cycle

=

= 003 ]
0.072 / \ 0.094
0.064 0.103
0.061 Step: 29 0.106
0.064 0.103

\III/

0.083
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Diffusion of a Random Walk on a Static Cycle

=

— -
0.073 / \ 0.094
0.065 0101
0.063 Step: 30 0.104
0.065 0101

0.083
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.074

=

0.067

o

0.064

o

0.067

=

0.083

Step: 31

\III/

0.083

\\\\\\\E]

0.093

INE

0.100

\m

0.103

o

0.100

=

0.093
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.074

=

0.068

o

0.065

\a

0.068

=

0.083

Step: 32

\III/

0.083

\\\\\\\E]

0.092

INE

0.099

\m

0.101

o

0.099

=

0.092
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Diffusion of a Random Walk on a Static Cycle

=

= O
0.075 / \ 0.092
0.069 0.098
0.066 Step: 33 0.100
0.069 0.098

N =

0.092

0.083
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.075

=

0.070

o

0.068

\a

0.070

=

0.083

Step: 34

\III/

0.083

\\\\\\\E]

0.091

N

0.097

\m

0.099

o

0.097

=

0.091
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Diffusion of a Random Walk on a Static Cycle

=

= O
0.076 / \ 0.091
0.071 0.096
0.069 Step: 35 0.098
0.074 0.096

N =

0.091

0.083
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Diffusion of a Random Walk on a Static Cycle

=

= O
0.076 / \ 0.090
0.071 0.095
0.070 Step: 36 0.097
0.074 0.095

N =

0.090

0.083
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.077

=

0.072

o

0.071

\a

0.072

=

0.083

Step: 37

\III/

0.083

\\\\\\\E]

0.090

=

0.094

\m

0.096

o

0.094

=

0.090
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Diffusion of a Random Walk on a Static Cycle

=

= O
0.077 / \ 0.089
- / \D
0.073 0.094
0.074 Step: 38 0.095
0.073 0.094

N =

0.089

0.083
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Diffusion of a Random Walk on a Static Cycle

=

- O]
0.078 / \ 0.089
- / \D
0.074 0.093
0.072 Step: 39 0.094
0.074 0.093

= =

0.089

0.083
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.078

=

0.074

o

0.073

\a

0.074

=

0.083

Step: 40

\III/

0.083

\\\\\\\E]

0.089

N

0.092

\m

0.094

o

0.092

=

0.089

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.078

=

0.075

o

0.074

\a

0.075

=

0.083

Step: 41

\III/

0.083

\\\\\\\E]

0.088

N

0.092

\m

0.093

o

0.092

=

0.088

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.079

=

0.075

o

0.074

\a

0.075

=

0.083

Step: 42

\III/

0.083

\\\\\\\E]

0.088

N

0.091

\m

0.092

o

0.091

=

0.088

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.079

=

0.076

o

0.075

\a

0.076

=

0.083

Step: 43

\III/

0.083

\\\\\\\E]

0.088

N

0.091

\m

0.092

o

0.091

=

0.088

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.079

=

0.077

o

0.075

\a

0.077

=

0.083

Step: 44

\III/

0.083

\\\\\\\[]

0.087

N

0.090

\m

0.091

o

0.090

=

0.087

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.080

=

0.077

o

0.076

\a

0.077

=

0.083

Step: 45

\III/

0.083

\\\\\\\[]

0.087

N

0.090

\m

0.091

o

0.090

=

0.087

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.080

=

0.077

o

0.076

\a

0.077

=

0.083

Step: 46

\III/

0.083

\\\\\\\[]

0.087

N

0.089

\m

0.090

o

0.089

=

0.087

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.080

=

0.078

o

0.077

\a

0.078

=

0.083

Step: 47

\III/

0.083

\\\\\\\[]

0.087

N

0.089

\m

0.090

o

0.089

=

0.087

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.080

=

0.078

o

0.077

\a

0.078

=

0.083

Step: 48

\III/

0.083

\\\\\\\[]

0.086

N

0.089

\m

0.089

o

0.089

=

0.086

ADGA
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Diffusion of a Random Walk on a Static Cycle

I:I/

0.081

=

0.079

o

0.078

\a

0.079

=

0.083

Step: 49

\III/

0.083

\\\\\\\[]

0.086

N

0.088

\m

0.089

o

0.088

=

0.086

ADGA
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Diffusion of a Random Walk on a Static Cycle

=

- -
0.081 / \ 0.086
:/ \D
0.079 0.088
0.078 Step: 50 0.089
0.079 0.088

N =

0.086

0.083
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Diffusion of a Random Walk on a Static Cycle

= As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the ¢>-norm

= More precisely, [|p, — L[5~ 1/Vt
= This property only requires each graph G' to be connected (& regular) at each step

s Random Walks on Sequences of Connected Graphs 15



Mixing in Dynamic Graphs: Definition

Sequence of (regular) graphs G = { GV}, on V with transition matrices
(PO},
« PO =7 =1/n forany t
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Mixing in Dynamic Graphs: Definition

Sequence of (regular) graphs G = {G(}°; on V with transition matrices
{PU}E

« 7P =7 =1/n forany t

£o-mixing time

tmix(G) = min {t
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Mixing in Dynamic Graphs: Definition

Sequence of (regular) graphs G = { GV}, on V with transition matrices
(PO}

« 7P =7 =1/n forany t

£o-mixing time

yev

. 1\% 1
tmix(g):mln{t Z(PL‘?;’]—E> <15, Vxe v}.

N
I\

[can be extended to non-regular graphs]
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A Bound on the />-Decrease

— Key Lemma N\

Let P be the transition matrix of a random walk on a connected, regular graph
G = (V, E). Then for any probability distribution o,

> (o) = o(v)? - Puy 2 (Z (a(u) - :,)2>2.

u,veV ueV

2019 Random Walks on Sequences of Connected Graphs 17



A Bound on the />-Decrease

— Key Lemma

Let P be the transition matrix of a random walk on a connected, regular graph
G = (V, E). Then for any probability distribution o,

> (o) = o(v)? - Puy 2 (Z (a(u) - :,)2>2.

u,veV ueV

Proof Sketch:

Aslongas ||o — 1|3 is large = o is concentrated on a small set of vertices
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A Bound on the />-Decrease

— Key Lemma

u,veV

\.

ueV

Let P be the transition matrix of a random walk on a connected, regular graph
G = (V, E). Then for any probability distribution o,

> (o) = o(v)? - Puy 2 (Z (a(u) - :,)2>2.

5

Proof Sketch:

Aslongas ||o — 1|3 is large = o is concentrated on a small set of vertices
= 3 short path between x* = argmax, o(x) and y st. o(y) < o(x*)

2019
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A Bound on the />-Decrease

— Key Lemma

Let P be the transition matrix of a random walk on a connected, regular graph
G = (V, E). Then for any probability distribution o,

> (o) = o(v)? - Puy 2 (Z (a(u) - :,)2>2.

u,veV ueV

\.

5

Proof Sketch:
Aslongas ||o — 1|3 is large = o is concentrated on a small set of vertices
= 3 short path between x* = argmax, o(x) and y st. o(y) < o(x*)
= Let ¢ be the length of such path. Then,
*\ _ 2
S (o)~ o)PPuy > T e 0

u,veV
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Main Result (covering also non-regular graphs)
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Main Result (covering also non-regular graphs)

——— Theorem
Let G be a sequence of connected graphs of n vertices with unique stationary
distribution 7. Moreover, denote with .. = miny 7(x). Then:

- tmix(g) = O(n/m)
= ti(G) = O(nlog n/m.).
= If all graphs in G are regular, t:(G) = O(n?).

~
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Main Result (covering also non-regular graphs)

—— Theorem

Let G be a sequence of connected graphs of n vertices with unique stationary
distribution 7. Moreover, denote with .. = miny 7(x). Then:

- tmix(g) = O(n/m)
= ti(G) = O(nlog n/m.).
= If all graphs in G are regular, t:(G) = O(n?).

\

~

To prove the bound on mixing:

2019 Random Walks on Sequences of Connected Graphs



Main Result (covering also non-regular graphs)

—— Theorem

Let G be a sequence of connected graphs of n vertices with unique stationary
distribution 7. Moreover, denote with .. = miny 7(x). Then:

- tmix(g) = O(n/m)
= ti(G) = O(nlog n/m.).
= If all graphs in G are regular, t:(G) = O(n?).

\

~

To prove the bound on mixing:
= Key Lemma = if £>-normis ¢, after O(n/(m.c)) steps it is less than ¢/2
= Hence after O(n/m.) steps, £>-norm will be small constant = walk mixed
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Main Result (covering also non-regular graphs)

——— Theorem
Let G be a sequence of connected graphs of n vertices with unique stationary
distribution 7. Moreover, denote with .. = miny 7(x). Then:

- tmix(g) = O(n/m)
= ti(G) = O(nlog n/m.).
= If all graphs in G are regular, t:(G) = O(n?).

\

~

To prove the bound on mixing:
= Key Lemma = if £>-normis ¢, after O(n/(m.c)) steps it is less than ¢/2
= Hence after O(n/m.) steps, £>-norm will be small constant = walk mixed

To prove the bound on hitting:
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Main Result (covering also non-regular graphs)

——— Theorem
Let G be a sequence of connected graphs of n vertices with unique stationary
distribution 7. Moreover, denote with .. = miny 7(x). Then:

* tmix(9) = O(n/)
= ti(G) = O(nlog n/m.).
= If all graphs in G are regular, t:(G) = O(n?).

\

~

To prove the bound on mixing:
= Key Lemma = if £>-normis ¢, after O(n/(m.c)) steps it is less than ¢/2
= Hence after O(n/m.) steps, £>-norm will be small constant = walk mixed

To prove the bound on hitting:
= first obtain a refined bound on the £>-norm decrease at each step
= relate t-step probabilities to the £2-norm in variance of the walk
= use probabilistic arguments to relate {-step probabilities to hitting times
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Outline

Random Walks on Sequences of (Possibly) Disconnected Graphs
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What happens when the connectivity properties of the graph
change over time?

ADC%OAE Random Walks on Sequences of (Possibly) Disconnected Graphs
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How to bound mixing when connectivity is intermittent

= In static graphs, the eigenvalues of the individual transition matrices give a
good bound on mixing:

tle(G) < lOg( )

1-2" - A
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How to bound mixing when connectivity is intermittent

= In static graphs, the eigenvalues of the individual transition matrices give a
good bound on mixing:

tle(G) < lOg( )

1-2" - A

= This is not necessarily true for dynamic graphs:
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How to bound mixing when connectivity is intermittent

= In static graphs, the eigenvalues of the individual transition matrices give a
good bound on mixing:

1 log(n)
<t <
3 S (@) £ 705

= This is not necessarily true for dynamic graphs:

Odd ¢

1-A(PD) =0
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How to bound mixing when connectivity is intermittent

= In static graphs, the eigenvalues of the individual transition matrices give a
good bound on mixing:

tle(G) < lOg( )

1-2" - A
= This is not necessarily true for dynamic graphs:
O O
O O
O O
O O
O O
O O
O O
Event
1-APYY=0

s Random Walks on Sequences of (Possibly) Disconnected Graphs 21



Average transition probabilities

oddt:1-APY)=0

Event:1 — A(PP)=0

AD(;EA;l Random Walks on Sequences of (Possibly) Disconnected Graphs
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Average transition probabilities

Average transition probabilities P

=

1—A(P)=9Q(1)

odd t: 1 — A(PY) =0

Event:1 — A(PP)=0
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Mixing based on average connectivity properties

——— Theorem

1. 7P = nforany t
2. there exists a time window T > 1 such that, forany i > 0,
is ergodic with spectral gap greater or equal than 1 — A
Then, tmix(G) = O(T?log(1/7.)/(1 — \))

\

Consider a sequence G with transition matrices { P)}5°; such that

Pl TH(1)-T]

s Random Walks on Sequences of (Possibly) Disconnected Graphs
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Mixing based on average connectivity properties

~——— Theorem
Consider a sequence G with transition matrices { P)}5°; such that

1. 7P = nforany t

2. there exists a time window T > 1 such that, forany / > 0, pl ]

is ergodic with spectral gap greater or equal than 1 — A
Then, tmix(G) = O(T?log(1/7.)/(1 — \))

\

——— Corollary

Suppose that for any time windowZ = [i- T +1,(i + 1) - T] and any subset
of vertices A C V there exists i € Z such that ® () (A) > ¢. Then,

tmix(G) = O(T®log(1/7.)/¢°)
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Mixing based on average connectivity properties

~——— Theorem
Consider a sequence G with transition matrices { P)}5°; such that

1. 7P = nforany t

2. there exists a time window T > 1 such that, forany / > 0, pl ]

is ergodic with spectral gap greater or equal than 1 — A
Then, tmix(G) = O(T?log(1/7.)/(1 — \))

\

——— Corollary
Suppose that for any time windowZ = [i- T +1,(i + 1) - T] and any subset
of vertices A C V there exists i € Z such that ® () (A) > ¢. Then,

tmix(G) = O(T®log(1/7.)/¢°)

\

Since thit(G) = O(tmix(G)/m+«), does polynomial mixing time imply polynomial
hitting times?
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Mixing based on average connectivity properties

~——— Theorem
Consider a sequence G with transition matrices { P)}5°; such that

1. 7P = nforany t

2. there exists a time window T > 1 such that, forany / > 0, pl ]

is ergodic with spectral gap greater or equal than 1 — A
Then, tmix(G) = O(T?log(1/7.)/(1 — \))

\

——— Corollary
Suppose that for any time windowZ = [i- T +1,(i + 1) - T] and any subset
of vertices A C V there exists i € Z such that ® () (A) > ¢. Then,

tmix(G) = O(T®log(1/7.)/¢°)

\

Since thit(G) = O(tmix(G)/m+«), does polynomial mixing time imply polynomial
hitting times?
= NO! When the graphs are disconnected, 7. can be exponentially small

2019 Random Walks on Sequences of (Possibly) Disconnected Graphs
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Mixing based on average connectivity properties

~——— Theorem
Consider a sequence G with transition matrices { P)}5°; such that

1. 7P = nforany t

2. there exists a time window T > 1 such that, forany / > 0, pl ]

is ergodic with spectral gap greater or equal than 1 — A
Then, tmix(G) = O(T?log(1/7.)/(1 — \))

\

——— Corollary
Suppose that for any time windowZ = [i- T +1,(i + 1) - T] and any subset
of vertices A C V there exists i € Z such that ® () (A) > ¢. Then,

tmix(G) = O(T®log(1/7.)/¢°)

\

Since thit(G) = O(tmix(G)/m+«), does polynomial mixing time imply polynomial
hitting times?

= NO! When the graphs are disconnected, 7. can be exponentially small

= Why? We can simulate a random walk on a directed graph:
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Random Walk Behaviour:

= Since the stationary distribution is exponentially small for the
vertices at the bottom, hitting time is exponential in n

= However, average transition matrix P can be easily made ergodic
(add same cycle of n — 2 matrices in reverse order)

= = mixing time polynomial in n by our theorem!
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We have exhibited a dichotomy for random walks on dynamic graphs:

= If stationary distribution does not change over time, behaviour is comparable
to static graphs

= otherwise, they lose many nice properties associated with random walks on
static graphs (even when the changes in the stationary distribution are small,
e.g. all graphs are bounded-degree)

Bad counter-examples often simulate random walks on directed graphs.
= Is there a more profound link between dynamic graphs and directed graphs?

Here we have only considered worst-case changes to the edge set.

= random changes: dynamic version of Random Graphs G(n, p)
= bounded changes: edge set changes by a small number at each step

But: In real-world graphs, also the vertex set may change!
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