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* Processors simultaneously
send a message to the referee

Each message is
called a sketch
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This model is also called

It is also closely related to
Broadcast Congested Clique Dynamic Graph Streaming

(one-round algorithms)

(single-pass algorithms)

e Referee outputs the solution

e Access to shared randomness
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Everything same as before i @ @

Blackboard instead of a
referee

Read the blackboard at the
end of the round

Communicate based on the
new information in the next
round
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Multi-Round
Distributed Sketching Model

It is also closely related to
Dynamic Graph Streaming
(multi-pass algorithms)

This model is also called
Broadcast Congested Clique
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* Every problem can be solved
with O(n) size messages in a

single round . Every node write all its

e Too much communication! edges on the board
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Distributed Sketching Model

* Every problem can be solved
with O(n) size messages in a

Goal:

Solve problems with ideally:
1. polylog(7) communication
2. Small number of rounds (one or O(1) rounds)




Are There Even
“Non-Trivial” Algorithms
In this Model?
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“Non-Trivial” Algorithms?

Can we find a spanning tree of
this graph in a single round?

How can the two endpoints
inform the referee about the
crucial edge?

Important observation:
Edges are shared by both
endpoints

Other nodes can also inform
the referee about this edge!
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-51-41-31-21 = -144

number or its negation on
each edge based on direction

e EFach node sends sum of the
numbers on its edges

e Add up the numbers on the
board in one of the partitions 144-105-33+72+145 = -65 1
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A Concrete Solution

-52-42-32+21 = -105
o A SSIO U - re

each edge

Takeaway: vertices can indirectly inform the referee
about edges of other vertices

Add up the numbers on the
board in one of the partitions 144-105-33+72+145 = -65 1
to find the crucial edge
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Distributed Sketching Algorithms

« AGM sketch of Ahn, Guha, and McGregor [AGM12a]: O(log>(n)) size messages for
finding a spanning forest of every graph with high probability.

e Extended to various other problems:

MST and edge connectivity [AGM123]
Vertex connectivity [GMT15][AS22]

Subgraph Counting [AGM12b]

71: number of vertices

Sparsifiers and approximate min/max cuts [AGM13, KLMMS14]

Spanners and approximate shortest paths [FKN21]

Densest Subgraph, degeneracy, and arboricity [BHNT15, MTSV15, CT16]

Graph coloring [ACK19][BCG20][AKM22][HKNT22]

Majority of these results only
need a single round!
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* A key tool for proving lower bounds: communication complexity

* Proving lower bounds in this model can be challenging

e Some reasons: It is wmore challenging but not impossible!

- There are surprisingly strong algorithms that defy intuition

- Edge sharing makes the model different from “typica
distributed communication complexity lower bounds

e Number-in-hand vs Number-on-forehead
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Distributed Sketching Lower Bounds

Three categories of lower bounds:

Problems that are “hard” even for close to n rounds
Q(7n) total communication is needed regardless of # rounds

- E.g., testing triangle-freeness [BMNRST11][BMRT12]

Problems that are “easy” even for one round
Q(10g3 n) communication is needed for one-round

- E.g., spanning forest and connectivity [NY19,Y21]

Problems that are “hard” initially but become “easy” in a few
number of rounds (are round-sensitive)
1og?D(1n) communication needs at least Q(log log n) rounds

- E.g., MIS and maximal matching [AKO20,AKZ22]
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Maximal Matching and Maximal
Independent Set

 Maximal Matching:

Collection of vertex-disjoint
edges




Maximal Matching and Maximal
Independent Set

 Maximal Matching: e Maximal Independent Set (MIS):

Collection of non-
went vertices

Not a proper subset of any
other independent set




Algorithms for MIS and Matching?

e Luby’s algorithm [L86] gives protocols for both problems with
O(log n) round and O(log n) communication per-player

e [GGKMR18] gives an O(log log n) round algorithm for MIS with
1og?M(n) communication per-player on average
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[A, Kol, Oshman; 2020]

n 7= communication per-player even on average

~

Any single-round protocol for MIS or maximal matching requires

_J
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[A, Kol, Zhang; 2022]

Any r-round protocol for MIS or maximal matching requires

r+1 . . .
n'?""" communication per-player in the worst case

~

_J

corollary: £2(loglog n) rounds are necessary for 1og®D(n) communication



Lower Bounds for
Maximal Matchings
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Warm-Up: One-Round Lower Bound

e On each side:

- 71 vertices

- \/ﬁ fooling vertices

-n-— \/ﬁ principal vertices

Awny maximal matehing needs many special edges

A similar-Ln-spirit construction to Lower bounds for
approximate matching in d yna wmic streams [K15 AKLY16]
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Send edges specifically to this principal vertex
Analysis?

\/Z vertices

From the perspective of principal
vertices:

“On their own”, sending 0(\/%) sSend sum of edge (Ds

bits only reveals o(1) bits about
the special edges

But fooling vertices’s messages
can change this



Warm-Up: One-Round Lower Bound

Analysis?

From the perspective of fooling
vertices:

\/E fooling vertices can reveal

o(n) information in total no matter
what they know

) , J1 vertices
So we can “decompose” the

revealed information between
fooling and principal vertices

A similar tdea was used first by INY19,Y21]
for spanning forest
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e Analysis?

* The total information revealed
about the special edges:

I(special edges; msg) <

n - 0(\/;) | \/Z : 0(\/%) = o(n)
Jn

(0000000 )
(O0OO00O0O0O0]|(



Warm-Up: One-Round Lower Bound

)

e Analysis?

* The total information revealed
about the special edges:

Shannon mutual information

I(special edges; msg) <

o(xf )

-/ - 0(\/_)—0(71)

(ooocoocoo])( )

( O0OO00O0O0O0O |

# of pnw&m vertices # o-f foolinonyertices

Their Limited knowledge  Thelr Limited banodwidth



Warm-Up: One-Round Lower Bound

)
)

e Analysis?

* The total information revealed
about the special edges: o(n) bits

* Not enough to reveal enough
edges for the maximal matching

(OO0 0O000 ]|
( O0OO00O000O0 |



Warm-Up: One-Round Lower Bound

e Conclusion:

4 )

Any single-round protocol for maximal matching requires Q(\/E)
communication per-player in worst case

N\ J
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e On each side:

- N blocks of vertices with N1/
vertices

0000) (@ee)
0000) (@ee)

- N?? fooling blocks

|

- N — N?” principal blocks

~

Awn (r — 1) round hard itnstance
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An r-Round Lower Bound

e On each side:

- N blocks of vertices with N1/
vertices

- N?? fooling blocks

- N — N?” principal blocks

A fooling instance:
Marginally to each vertex Looks
like an actwal (r — 1) tnstance

Based on a brilliant tdea tntroduced by [ANRWLS]
for one-sided matching problem

(O00000000000) (eee)

(O00000000000) (eee




An r-Round Lower Bound

 From the perspective of principal
blocks:

- They play in N> (r — 1)-round
iInstances

- They need to solve their special

instance

e Obliviousness implies with o(N ')
communication per-player, only
o(1) bits is revealed about their
special instance in the first round



An r-Round Lower Bound

 From the perspective of fooling
blocks:

e Limited bandwidth implies with
o(N'”) communication per-player,
they can only reveal o(N*?) bits in
total in the first round

(C00000000000) (eee)

(O00000000000) (eee



An r-Round Lower Bound

e So, after the first round:

e 0(1) bits is revealed about most

principal (r — 1) round instances

e So, the distributions of these

instances remain almost the same

even after the first message

e But the players now only have

(r — 1) rounds to solve these

instances

(C00000000000) (eee)

(O00000000000) (eee
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 The standard approach at this
point: round elimination
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An r-Round Lower Bound

 The standard approach at this
point: round elimination

e This is “communication complexity
round elimination” as opposed to
“LOCAL round elimination”

— [Duris, Galil, and Schnitger;
STOC 1984]

- [Nisan, Wigderson; STOC 1991]

(C00000000000) (eee)

(O00000000000) (eee




An r-Round Lower Bound

e Use any r-round protocol to get an
(r — 1)-protocol:

- Embed the (r — 1)-round
Instance in a random principal
instance

- Sample the first message of the

protocol without communication

- Run the protocol from its

second-round onwards

- Simulate the remaining players

(00000800000 (eee)

(000000800000 (cee




An r-Round Lower Bound

e This step is quite technical
because of persistence of fooling
blocks across subsequent rounds
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blocks across subsequent rounds

- They continue “injecting noise”
throughout the protocol, not only
in the first round
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An r-Round Lower Bound

e This step is quite technical
because of persistence of fooling
blocks across subsequent rounds

- They continue “injecting noise”
throughout the protocol, not only
in the first round

e Main novelty: a new round
elimination approach based on a
non-simultaneous simulation of
other players via only their
messages not their inputs

(C00000e00000) (eee)

(000000800000 (cee




An r-Round Lower Bound

e Conclusion:

4 )

r+1
Any r-round protocol for maximal matching requires (7 /! + )

communication per-player in worst case

N\ J
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e \We can prove “some” multi-round lower bounds for round-
sensitive problems

* Two key techniques:

- A novel round elimination via simulating players through their
messages and not their inputs

- Core component: break the dependency of edge sharing by
limiting the number of “fooling vertices”

 There are “few” players whose removal makes proving the
rest of the argument an “easy” number-in-hand
communication argument
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e We can prove “some” multi-round lower bounds for round-
sensitive problems

We are quite far from “right” answers/techniques yet!

 There are “few” players whose removal makes proving the
rest of the argument an “easy” number-in-hand
communication argument



Concluding Remarks

(* They don't seem tight even for one-round protocols

e \We can prove “some” multi-round lower bounds for round-
sensitive problems

_ This is a lossy argument in general
* Two key techniques: f (both here and elsewhere)

- A novel round elimination via simulating players through their
messages and not their inputs

- Core component: break the dependency of edge sharing by
limiting the number of “fooling vertices”

 There are “few” players whose removal makes proving the
rest of the argument an “easy” number-in-hand

communication argument .
This ts a very crude argument:

we have no “handle” on the type of information revealeo
by these vertices only it size
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Open Problems

Awno/or extend thelr protocol to worst-case communteatlon

e “Easier” immediate open questions: ‘\

- Extend [AKZ22] lower bound to average communication (to match [GGKMR18] protocol)

- Prove €2(n) one-round lower bounds for MIS and matching (to match trivial bounds)
e “Harder” open questions:

- Prove strong lower bounds for shortest path even in one round

- Prove =~ Q(logn) round lower bounds for matching
— > At this point, a longstanding open question

- Prove n**!) lower bound for deterministic connectivity in one round \
e “Conceptual” open questions: O
- Characterize protocols in this model: are they all linear sketches? 2N l s

- Connections between “LOCAL” vs “communication” round elimination? @'Q
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