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Dynamic Graph Streaming 

(single-pass algorithms)
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Dynamic Graph Streaming 
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Distributed Sketching Model

• Every problem can be solved 
with  size messages in a 
single round


• Too much communication!

O(n)
Every node write all its 

edges on the boardGoal:  

Solve problems with ideally:  
1.  communication 
2. Small number of rounds (one or  rounds)        

polylog(n)
O(1)
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“Non-Trivial” Algorithms?

• Can we find a spanning tree of 
this graph in a single round?


• How can the two endpoints 
inform the referee about the 
crucial edge?


• Important observation: 
Edges are shared by both 
endpoints 


• Other nodes can also inform 
the referee about this edge!  
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A Concrete Solution

• Assign a unique number to 
each edge


• Direct edges and write the 
number or its negation on 
each edge based on direction


• Each node sends sum of the 
numbers on its edges  


• Add up the numbers on the 
board in one of the partitions 
to find the crucial edge  

1

2 3

4

5

6

7

89

10

145

 -51-41-31-21 = -144

-33

72

Ignore this part of 
the graph

 -52-42-32+21 = -105

-144-105-33+72+145 = -65 !

Takeaway: vertices can indirectly inform the referee 
about edges of other vertices
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• AGM sketch of Ahn, Guha, and McGregor [AGM12a]:  size messages for 
finding a spanning forest of every graph with high probability. 


• Extended to various other problems: 


- MST and edge connectivity [AGM12a]


- Vertex connectivity [GMT15][AS22]


- Subgraph Counting [AGM12b]


- Sparsifiers and approximate min/max cuts [AGM13, KLMMS14]


- Spanners and approximate shortest paths [FKN21]


- Densest Subgraph, degeneracy, and arboricity [BHNT15, MTSV15, CT16]


- Graph coloring [ACK19][BCG20][AKM22][HKNT22]

𝒪(log3(n))

: number of verticesn

Majority of these results only 
need a single round!
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• A key tool for proving lower bounds: communication complexity


• Proving lower bounds in this model can be challenging


• Some reasons: 


- There are surprisingly strong algorithms that defy intuition 


- Edge sharing makes the model different from ``typical’’ 
distributed communication complexity lower bounds


• Number-in-hand vs Number-on-forehead 

It is more challenging but not impossible! 
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• Three categories of lower bounds: 


• Problems that are “hard” even for close to  rounds 


- E.g., testing triangle-freeness [BMNRST11][BMRT12]


• Problems that are “easy” even for one round 


- E.g., spanning forest and connectivity [NY19,Y21]


• Problems that are “hard” initially but become “easy” in a few  
number of rounds (are round-sensitive) 


- E.g., MIS and maximal matching [AKO20,AKZ22]

n
 total communication is needed regardless of # roundsΩ(n)

 communication is needed for one-roundΩ(log3 n)

 communication  needs at least  roundslogO(1)(n) Ω(log log n)
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Maximal Matching and Maximal 
Independent Set 

• Maximal Matching: • Maximal Independent Set (MIS): 

Collection of non-
adjacent vertices

Not a proper subset of any 
other independent set



Algorithms for MIS and Matching?

• Luby’s algorithm [L86] gives protocols for both problems with 
 round and  communication per-player


• [GGKMR18] gives an  round algorithm for MIS with 
 communication per-player on average 

O(log n) O(log n)

O(log log n)
logO(1)(n)
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[A, Kol, Oshman; 2020]


Any single-round protocol for MIS or maximal matching requires 
 communication per-player even on average 
n1/2−o(1)

[A, Kol, Zhang; 2022]


Any -round protocol for MIS or maximal matching requires 
 communication per-player in the worst case 


r
n1/20r+1

Corollary:  rounds are necessary for  communicationΩ(log log n) logO(1)(n)



Lower Bounds for 
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Warm-Up: One-Round Lower Bound

• On each side: 


-  vertices


-  fooling vertices


-  principal vertices

n

n

n − n

Any maximal matching needs many special edges

A similar-in-spirit construction to lower bounds for  
approximate matching in dynamic streams [K15,AKLY16] 
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• Analysis? 


• From the perspective of principal 
vertices: 


• “On their own’’, sending  
bits only reveals  bits about 
the special edges 


• But fooling vertices’s messages 
can change this 

o( n)
o(1)

n vertices

Send sum of edge IDs

Send edges specifically to this principal vertex



Warm-Up: One-Round Lower Bound

• Analysis? 


• From the perspective of fooling 
vertices: 


•  fooling vertices can reveal 
 information in total no matter 

what they know 


• So we can “decompose” the 
revealed information between 
fooling and principal vertices

n
o(n)

n vertices

A similar idea was used first by [NY19,Y21]  
for spanning forest 
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Warm-Up: One-Round Lower Bound

• Analysis? 


• The total information revealed 
about the special edges: 

# of principal vertices

Their limited knowledge

# of fooling vertices

Their limited bandwidth

n ⋅
o( n)

n
+ n ⋅ o( n) = o(n)

𝕀(special edges; msg) ⩽
Shannon mutual information



Warm-Up: One-Round Lower Bound

• Analysis? 


• The total information revealed 
about the special edges:  bits


• Not enough to reveal enough 
edges for the maximal matching

o(n)



Warm-Up: One-Round Lower Bound

• Conclusion:  

Any single-round protocol for maximal matching requires  
communication per-player in worst case 


Ω( n)
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An -Round Lower Boundr

• On each side: 


-  blocks of vertices with  
vertices


-  fooling blocks


-  principal blocks

N N1/5

N2/5

N − N2/5

A fooling instance:  
Marginally to each vertex looks 

like an actual  instance (r − 1)

Based on a brilliant idea introduced by [ANRW15] 
for one-sided matching problem 



An -Round Lower Boundr

• From the perspective of principal 
blocks:


- They play in  -round 
instances


- They need to solve their special 
instance 


• Obliviousness implies with  
communication per-player, only 

 bits is revealed about their 
special instance in the first round

N2/5 (r − 1)

o(N1/5)

o(1)

N2/5



An -Round Lower Boundr

• From the perspective of fooling 
blocks:


• Limited bandwidth implies with 
 communication per-player, 

they can only reveal  bits in 
total in the first round

o(N1/5)
o(N4/5)

N2/5



An -Round Lower Boundr

• So, after the first round: 


•  bits is revealed about most 
principal  round instances 


• So, the distributions of these 
instances remain almost the same 
even after the first message


• But the players now only have 
 rounds to solve these 

instances

o(1)
(r − 1)

(r − 1)

N2/5
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An -Round Lower Boundr

• The standard approach at this 
point: round elimination


• This is “communication complexity 
round elimination” as opposed to 
“LOCAL round elimination” 


- [Duris, Galil, and Schnitger; 
STOC 1984]


- [Nisan, Wigderson; STOC 1991]

N2/5



An -Round Lower Boundr

• Use any -round protocol to get an 
-protocol:


- Embed the -round 
instance in a random principal 
instance


- Sample the first message of the 
protocol without communication


- Run the protocol from its 
second-round onwards


- Simulate the remaining players

r
(r − 1)

(r − 1)

N2/5
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An -Round Lower Boundr

• This step is quite technical 
because of persistence of fooling 
blocks across subsequent rounds


- They continue “injecting noise” 
throughout the protocol, not only 
in the first round 


• Main novelty: a new round 
elimination approach based on a 
non-simultaneous simulation of 
other players via only their 
messages not their inputs 

N2/5



An -Round Lower Boundr

• Conclusion:  

Any -round protocol for maximal matching requires  
communication per-player in worst case 


r Ω(n1/10r+1)
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Concluding Remarks

• We can prove “some” multi-round lower bounds for round-
sensitive problems 


• Two key techniques:


- A novel round elimination via simulating players through their 
messages and not their inputs 


- Core component: break the dependency of edge sharing by 
limiting the number of “fooling vertices” 


• There are “few” players whose removal makes proving the 
rest of the argument an “easy” number-in-hand 
communication argument

They don’t seem tight even for one-round protocols

This is a lossy argument in general  
(both here and elsewhere)

This is a very crude argument: 
we have no “handle” on the type of information revealed 

 by these vertices only it size 
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- Prove strong lower bounds for shortest path even in one round


- Prove  round lower bounds for matching


- Prove  lower bound for deterministic connectivity in one round 


• “Conceptual” open questions:


- Characterize protocols in this model: are they all linear sketches?  


- Connections between “LOCAL” vs “communication” round elimination? 

Ω(n)

≈ Ω(log n)

nΩ(1)
At this point, a longstanding open question
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