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1. Minor-closed graph classes

• Graph minor:
• 𝐻𝐻 is a minor of 𝐺𝐺 if 𝐻𝐻 can be obtained from 𝐺𝐺 by iteratively doing the following:

1. Removing vertices.
2. Removing edges.
3. Contracting edges.

𝐻𝐻𝐺𝐺



1. Minor-closed graph classes

• Graph minor:
• 𝐻𝐻 is a minor of 𝐺𝐺 if 𝐻𝐻 can be obtained from 𝐺𝐺 by iteratively doing the following:

1. Removing vertices.
2. Removing edges.
3. Contracting edges.

• Our focus: minor-closed graph classes.
• A graph class is minor-closed if it is closed under taking minors.

• (𝐺𝐺 is in the graph class) ∧ (𝐻𝐻 is a minor of 𝐺𝐺) → (𝐻𝐻 is also in the graph class).
• A graph class is minor-closed if it is closed under the above three operations.



1. Minor-closed graph classes

• The family of minor-closed graph classes include:
• Forests. 
• Cactus graphs.
• Planar graphs.
• Outerplanar graphs.
• Graphs of fixed genus 𝑔𝑔.
• Graphs of treewidth at most 𝑘𝑘.
• Graphs of pathwidth at most 𝑘𝑘.
• …



1. Minor-closed graph classes

• The graph minor theorem: Any minor-closed graph class can be 
characterized by a finite list of excluded minors.

• Examples:
• A graph is planar if and only if it is 𝐾𝐾3,3,𝐾𝐾5 -minor-free.
• A graph is a forest if and only if it is 𝐾𝐾3-minor-free.

• We may focus on the class of 𝐻𝐻-minor-free graphs.
• For any minor-closed graph class that is not the set of all graphs, there exists 
𝐻𝐻 such that all graphs in this class are 𝐻𝐻-minor-free.



1. Minor-closed graph classes

• Two key properties of 𝐻𝐻-minor free graphs: 
• Arboricity = 𝑂𝑂 1 .

• Uniformly sparse: Any subgraph has 𝑚𝑚 = 𝑂𝑂(𝑛𝑛).
• Lots of known algorithmic tools for bounded-arboricity graphs.

• Closed under contraction.
• Very relevant: Very often we consider a clustering and we want to work on the “cluster graph” 

which is the result of contracting each cluster into a vertex.

• We will see how they can be used in designing distributed algorithms.



2. Low-diameter decompositions

• A low-diameter decomposition removes a small fraction of edges so 
that each remaining connected component has small diameter.

• Vertex version: 
• Remove 𝜖𝜖 fraction of vertices.
• Cluster the remaining vertices into non-adjacent subsets with diameter 𝐷𝐷.

• Edge version: 
• Remove 𝜖𝜖 fraction of edges.
• Cluster the remaining vertices into non-adjacent subsets with diameter 𝐷𝐷.



2. Low-diameter decompositions

• Vertex version: 
• Remove 𝜖𝜖 fraction of vertices.
• Cluster the remaining vertices into non-adjacent subsets with diameter 𝐷𝐷.

• Edge version: 
• Remove 𝑣𝑣 fraction of edges.
• Cluster the remaining vertices into non-adjacent subsets with diameter 𝐷𝐷.

Strong diameter: diameter of a cluster 𝑆𝑆 is measured by the diameter of the subgraph 𝐺𝐺[𝑆𝑆] induced by 𝑆𝑆.

Weak diameter: diameter of a cluster 𝑆𝑆 is measured by max
𝑢𝑢,𝑣𝑣∈𝑆𝑆

dist(𝑢𝑢, 𝑣𝑣), where the distance is measured in 𝐺𝐺.

We will focus on the edge version with a strong diameter guarantee.



2. Low-diameter decompositions

• Low-diameter decomposition is useful because it allows us to reduce 
from the general graph setting to the low-diameter graph setting.

• In particular, in the low-diameter setting, brute-force information 
gathering is possible in the LOCAL model.



2. Low-diameter decompositions

• Applications: 
• Network decompositions.
• Expander decompositions and routing.
• Densest subgraph detection.
• 1 ± 𝜖𝜖 -approximation for distributed covering and packing integer linear 

programs in poly 1
𝜖𝜖

, log𝑛𝑛 rounds in LOCAL.



2. Low-diameter decompositions

• A well-known randomized construction:
• Cluster diameter: 𝑂𝑂 𝜖𝜖−1 log𝑛𝑛 .
• Round complexity: 𝑂𝑂 𝜖𝜖−1 log𝑛𝑛 in the CONGEST model.
• The number of inter-cluster edges is at most 𝜖𝜖 𝐸𝐸 in expectation.

• The current best deterministic construction:
• Cluster diameter: �𝑂𝑂 𝜖𝜖−1 log𝑛𝑛 .
• Round complexity: �𝑂𝑂 𝜖𝜖−1 log2 𝑛𝑛 in the CONGEST model. 
• The number of inter-cluster edges is at most 𝜖𝜖 𝐸𝐸 .

Miller, Peng, and Xu, SPAA 2013

Ghaffari, Grunau, Haeupler, Ilchi, Rozhoň, SODA 2023



3. Ultra-fast algorithm in minor-free networks

• Low-diameter decompositions in 𝐻𝐻-minor-free networks:
• Cluster diameter: 𝜖𝜖−𝑂𝑂 1 .
• Round complexity: 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 in the LOCAL model.
• The number of inter-cluster edges is at most 𝜖𝜖 𝐸𝐸 .

• We will show a proof sketch of this result.

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008



3. Ultra-fast algorithm in minor-free networks

• Start with the trivial clustering:
• Each vertex is a cluster.

• In each iteration:
• Reduce the number of inter-cluster edges by a constant factor.
• Growing the cluster diameter by a constant factor.

• 𝑂𝑂 log 𝜖𝜖−1 iterations suffice:
• The number of inter-cluster edges ≤ 𝜖𝜖 𝐸𝐸 .
• Cluster diameter ≤ 𝜖𝜖−𝑂𝑂 1 .

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008



3. Ultra-fast algorithm in minor-free networks

• In each iteration: 
• Take the cluster graph.
• Let each cluster 𝑢𝑢 chooses one of its neighboring cluster 𝑣𝑣 and orient the 

edge 𝑢𝑢 → 𝑣𝑣.
• This partitions the cluster graph into rooted trees. 
• Run an 𝑂𝑂 log∗ 𝑛𝑛 -round algorithm in each rooted tree to further divide the 

component into 𝑂𝑂 1 -diameter parts.

• Weighted by the multiplicity.
• Choose the highest-weight one.
• This requires sending large messages.Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008



3. Ultra-fast algorithm in minor-free networks

• Analysis:
• The cluster graph has bounded arboricity.

• A constant fraction of the inter-cluster edges are oriented.
• We can implement the final clustering step to ensure that a constant fraction 

of these inter-cluster edges will be within clusters at the end of this iteration.

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008

Indeed the number of inter-cluster edges is reduced by a constant factor.



4. Applications in minor-free networks

• Consider an optimization problem on graphs.
• We want to find a 1 ± 𝜖𝜖 -approximate solution in the LOCAL model.

• Idea:
• As long as the cost of ignoring inter-cluster edges is at most 𝜖𝜖 ⋅ OPT, we may 

simply do a brute-force computation for each cluster.

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008



4. Applications in minor-free networks

• Maximum independent set: 
• A 1 − 𝜖𝜖 -approximate solution of an 𝑯𝑯-minor-free graph can be computed 

in 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds deterministically in the LOCAL model.

• Proof:
• For bounded-arboricity graphs, OPT = Θ 𝑛𝑛 .
• We can afford to ignore all inter-cluster edges.

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008



4. Applications in minor-free networks

• Maximum matching: 
• A 1 − 𝜖𝜖 -approximate solution of a planar graph can be computed in 
𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds deterministically in the LOCAL model.

• Proof:
• We do not have OPT = Θ 𝑛𝑛 in general, due to two structures.
• We may do a preprocessing to remove these structures.
• After that, OPT = Θ 𝑛𝑛 .

…

…

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008



4. Applications in minor-free networks

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008

• Minimum dominating set: 
• A 1 + 𝜖𝜖 -approximate solution of a planar graph can be computed in 
𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds deterministically in the LOCAL model.

• Proof:
• We do not have OPT = Θ 𝑛𝑛 in general.
• First compute an 𝑂𝑂 1 -approximate solution 𝐷𝐷.
• Each vertex 𝑣𝑣 ∈ 𝑉𝑉 ∖ 𝐷𝐷 joins the cluster of any 𝑢𝑢 ∈ 𝑁𝑁 𝑣𝑣 ∩ 𝐷𝐷.
• Compute a low-diameter decomposition of the cluster graph.
• Now the number of inter-cluster edges is at most 𝜖𝜖 ⋅ OPT. 



5. Distributed property testing

• Distributed property testing:
• If 𝐺𝐺 has property 𝒫𝒫, then all vertices output accept.
• If 𝐺𝐺 is 𝝐𝝐-far from having property 𝒫𝒫, then at least one vertex outputs reject.

• State-of-the-art: Property testing of planarity in ε−𝑂𝑂(1) ⋅ 𝑂𝑂(log𝑛𝑛) rounds 
with high probability in CONGEST.

(To obtain property 𝒫𝒫, we need to insert or delete at least 𝜖𝜖|𝐸𝐸| edges.)

Levi, Medina, and Ron, PODC 2018



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• Algorithm:
• Compute a low-diameter decomposition.
• Each cluster locally decide if it has the property 𝒫𝒫.

(Deterministic)



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• Algorithm:
• Compute a low-diameter decomposition.
• Each cluster locally decide if it has the property 𝒫𝒫.

A subtle issue:

• The bound 𝜖𝜖|𝐸𝐸| on the number of inter-cluster edges is not guaranteed 

if the underlying graph does not have property 𝒫𝒫.



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• Algorithm:
• Compute a low-diameter decomposition.
• Each cluster locally decide if it has the property 𝒫𝒫.

Solution:

• To ensure that the bound 𝜖𝜖|𝐸𝐸| holds, all we need is that the cluster graph has small arboricity. 

• We can run an 𝑶𝑶 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 -round algorithm in each iteration to check whether the arboricity bound holds.

• If the arboricity bound does not hold, then some vertex will detect it and output reject.



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• Algorithm:
• Compute a low-diameter decomposition.
• Each cluster locally decide if it has the property 𝒫𝒫.

• If accept for all clusters:
• The union of all clusters still has the property 𝒫𝒫.
• The original graph is at most 𝜖𝜖-far from having the property 𝒫𝒫.

𝒫𝒫 is closed under taking disjoint union.

Number of inter-cluster 
edges is at most 𝜖𝜖|𝐸𝐸|.



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• Algorithm:
• Compute a low-diameter decomposition.
• Each cluster locally decide if it has the property 𝒫𝒫.

• If reject for at least one cluster:
• The original graph does not have property 𝒫𝒫.

𝒫𝒫 is closed under taking minor.



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• Lower bound:
• The 𝑂𝑂 log𝑛𝑛 factor is necessary.

Levi, Medina, and Ron, PODC 2018



5. Distributed property testing

• Property testing of any minor-closed property that is closed under 
disjoint union can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds in LOCAL.

• The “closed under disjoint union” condition cannot be removed:
• There is a minor-closed graph property that is not closed under disjoint union 

requiring Ω 𝑛𝑛 rounds to test.

Chang and Su, PODC 2022



6. Extension to CONGEST

• Question: Can we extend these LOCAL algorithms to CONGEST? 
• Approximate maximum matching
• Approximate maximum independent set
• Approximate minimum dominating set
• Property testing a minor-closed property that is closed under disjoint union
• …



6. Extension to CONGEST

• Two barriers:
1. Need an efficient CONGEST algorithm for the low-diameter decomposition.

• Can just use the existing CONGEST ones, although they are less efficient.

2. Need to replace the “brute-force information gathering” part with an efficient 
CONGEST algorithm.

• Seems to require a CONGEST algorithm that is efficient for small-diameter networks.



6. Extension to CONGEST

• Planarity testing can be done in 𝑂𝑂 𝐷𝐷 log𝑛𝑛 rounds in CONGEST.

• Property testing of planarity can be done in 𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂(log𝑛𝑛) rounds 
with high probability in the CONGEST model.

Levi, Medina, and Ron, PODC 2018

Ghaffari and Haeupler, PODC 2016
Low-diameter decomposition of planar 
graphs in  𝜖𝜖−𝑂𝑂(1) ⋅ 𝑂𝑂 log𝑛𝑛 rounds with 
high probability in CONGEST. 

Levi, Medina, and Ron, PODC 2018



6. Extension to CONGEST

• For the special case of property testing of planarity, it is possible to 
overcome these barriers to obtain an efficient CONGEST algorithm. 

• What about other problems?

• How can we narrow this gap between LOCAL and CONGEST?

Matching the round complexity in the LOCAL model.

Levi, Medina, and Ron, PODC 2018



7. Expander decompositions

• To answer that question, a natural approach is to consider expander 
decomposition, which can be seen as an analogue of low-diameter 
decomposition for the CONGEST model.



7. Expander decompositions

Consider a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 .

Volume of a vertex set 𝑆𝑆: 
• vol 𝑆𝑆 = ∑𝑣𝑣∈𝑆𝑆 deg 𝑣𝑣 .

Conductance of a cut 𝑆𝑆,𝑉𝑉 ∖ 𝑆𝑆 :
• Φ 𝑆𝑆 = 𝐸𝐸(𝑆𝑆, 𝑉𝑉∖𝑆𝑆)

min vol 𝑆𝑆 , vol(𝑉𝑉∖𝑆𝑆)
,  where 𝐸𝐸 𝐴𝐴,𝐵𝐵 = 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 𝑢𝑢 ∈ 𝐴𝐴 and 𝑣𝑣 ∈ 𝐵𝐵 .

Conductance of a graph 𝐺𝐺:
• Φ 𝐺𝐺 = min

𝑆𝑆⊆𝑉𝑉 s.t. 𝑆𝑆≠𝑉𝑉 and 𝑆𝑆≠∅
Φ 𝑆𝑆 .



7. Expander decompositions

Expander decompositions:
For every graph, it is possible to remove a small 𝜖𝜖 fraction of the edges so that 
each remaining connected component has high conductance 𝜙𝜙.

This allows us to reduce from general graphs to high-conductance graphs.



7. Expander decompositions

Expander routing:
In a high-conductance graph, each vertex 𝑣𝑣 can very quickly exchange messages 
with deg(𝑣𝑣) arbitrary vertices, not just the neighbors of 𝑣𝑣.

Expander decompositions:
For every graph, it is possible to remove a small 𝜖𝜖 fraction of the edges so that 
each remaining connected component has high conductance 𝜙𝜙.

This is a useful communication primitive for designing algorithms on high-conductance networks.

This allows us to reduce from general graphs to high-conductance graphs.



7. Expander decompositions

• Expander decomposition:
• Randomized:

• Conductance: 𝜙𝜙 = 1
poly log 𝑛𝑛, 1𝜖𝜖

.

• Round complexity: poly log𝑛𝑛 , 1
𝜖𝜖

.

• Deterministic:
• Conductance: 𝜙𝜙 = 1

𝑛𝑛𝑜𝑜(1)⋅poly 1
𝜖𝜖

.

• Round complexity: 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜖𝜖

.

• Expander routing:
• Randomized and deterministic:

• Round complexity: 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜙𝜙

.



7. Expander decompositions

• Applications of expander decomposition in the CONGEST model:
• It has become a standard technique in distributed subgraph finding.

• It has been applied to exact minimum cut computation.

Daga, Henzinger, Nanongkai, and Saranurak, STOC 2019

Eden, Fiat, Fischer, Kuhn, and Oshman, DISC 2019

Censor-Hillel, Leitersdorf, and Vulakh, PODC 2022

Chang, Pettie, and Zhang, SODA 2019

Chang and Saranurak, PODC 2019

⋮



7. Expander decompositions

• The usage of expander decompositions is still limited in CONGEST, as it 
does not allow us to do brute-force information gathering in each cluster.

• Can we bypass this barrier?



8. Separator theorems

• Let’s consider planar graphs.

• Planar separator theorem: 
• For any planar graph, we can remove 𝑂𝑂 𝑛𝑛 vertices to partition the graph 

into disjoint subgraphs with at most  2𝑛𝑛
3

vertices.



8. Separator theorems

• Let’s consider planar graphs.

• Planar separator theorem: 
• For any planar graph, we can remove 𝑂𝑂 𝑛𝑛 vertices to partition the graph 

into disjoint subgraphs with at most  2𝑛𝑛
3

vertices.

• A slightly less-known result:
• For any planar graph, we can remove 𝑂𝑂 Δ𝑛𝑛 edges to partition the graph 

into disjoint subgraphs with at most  2𝑛𝑛
3

vertices.
Edge separator theorem



8. Separator theorems

• Key observation:

𝐺𝐺 is a planar graph with conductance at least 𝜙𝜙.

𝐺𝐺 has maximum degree Δ = Ω 𝜙𝜙2𝑛𝑛 .

Since 𝐺𝐺 is a planar, 𝐺𝐺 has an edge separator of size 𝑂𝑂 Δ𝑛𝑛 .
Since the conductance of 𝐺𝐺 is at least 𝜙𝜙, we have Δ𝑛𝑛 = Ω 𝜙𝜙𝑛𝑛 .



8. Separator theorems

• Key observation:

𝐺𝐺 is a planar graph with conductance at least 𝜙𝜙.

𝐺𝐺 has maximum degree Δ = Ω 𝜙𝜙2𝑛𝑛 .

Since 𝐺𝐺 is a planar, 𝐺𝐺 has an edge separator of size 𝑂𝑂 Δ𝑛𝑛 .
Since the conductance of 𝐺𝐺 is at least 𝜙𝜙, we have Δ𝑛𝑛 = Ω 𝜙𝜙𝑛𝑛 .

Using random walks, the entire topology of 𝐺𝐺 can be gathered to a 
vertex efficiently, in poly 𝜙𝜙−1, log𝑛𝑛 rounds, with high probability.



8. Separator theorems

• Key observation:

𝐺𝐺 is a planar graph with conductance at least 𝜙𝜙.

𝐺𝐺 has maximum degree Δ = Ω 𝜙𝜙2𝑛𝑛 .

Since 𝐺𝐺 is a planar, 𝐺𝐺 has an edge separator of size 𝑂𝑂 Δ𝑛𝑛 .
Since the conductance of 𝐺𝐺 is at least 𝜙𝜙, we have Δ𝑛𝑛 = Ω 𝜙𝜙𝑛𝑛 .

Using random walks, the entire topology of 𝐺𝐺 can be gathered to a 
vertex efficiently, in poly 𝜙𝜙−1, log𝑛𝑛 rounds, with high probability.

This can also be done in deterministic 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜙𝜙

rounds.



8. Separator theorems

• What is the broadest natural graph class that allows each cluster of an 
expander decomposition to have small edge separator?

• For any bounded-genus graph, we can remove 𝑂𝑂 Δ𝑛𝑛 edges to 
partition the graph into disjoint subgraphs with at most  2𝑛𝑛

3
vertices.

Sykora and Vrto, Theoretical Computer Science, 1993



8. Separator theorems

• What is the broadest natural graph class that allows each cluster of an 
expander decomposition to have small edge separator?

• For any bounded-genus graph, we can remove 𝑂𝑂 Δ𝑛𝑛 edges to 
partition the graph into disjoint subgraphs with at most  2𝑛𝑛

3
vertices.

• For any 𝑯𝑯-minor-free graph, we can remove 𝑂𝑂 Δ𝑛𝑛 edges to 
partition the graph into disjoint subgraphs with at most  2𝑛𝑛

3
vertices.

Sykora and Vrto, Theoretical Computer Science, 1993

Chang and Su, PODC 2022



9. Applications of expander decompositions

• Most of the previously discussed LOCAL algorithms can be 
transformed into CONGEST algorithms.

• Randomized: poly log𝑛𝑛 , 1
𝜖𝜖

rounds.

• Deterministic: 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜖𝜖

rounds.

Chang and Su, PODC 2022



9. Applications of expander decompositions

• The list of problems include:
• 1 − 𝜖𝜖 -approximate maximum independent set on 𝐻𝐻-minor-free graphs.
• 1 − 𝜖𝜖 -approximate maximum matching on planar graphs.
• Property testing any minor-closed graph property that is closed under 

disjoint union.
• …

Chang and Su, PODC 2022



9. Applications of expander decompositions

• Our approach does not seem to apply to 1 + 𝜖𝜖 -approximate 
minimum dominating set.

• The reason is that in the dominating set algorithm the low-diameter 
decomposition is applied to the cluster graph, not the original graph.



10. Faster expander decomposition algorithm

• Expander decomposition:
• Randomized:

• Conductance: 𝜙𝜙 = 1
poly log 𝑛𝑛, 1𝜖𝜖

.

• Round complexity: poly log𝑛𝑛 , 1
𝜖𝜖

.

• Deterministic:
• Conductance: 𝜙𝜙 = 1

𝑛𝑛𝑜𝑜(1)⋅poly 1
𝜖𝜖

.

• Round complexity: 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜖𝜖

.

• Expander routing:
• Randomized and deterministic:

• Round complexity: 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜙𝜙

.

Question: Can we further improve these bounds by 
utilizing the structural properties of 𝐻𝐻-minor-free graphs?



10. Faster expander decomposition algorithm

• Expander decomposition:
• Deterministic:

• Conductance: 𝜙𝜙 = 1
poly log 𝑛𝑛, 1𝜖𝜖

.

• Round complexity: poly log𝑛𝑛 , 1
𝜖𝜖

.

• Expander routing:
• Deterministic:

• Round complexity: poly log𝑛𝑛 , 1
𝜙𝜙

.

Claim: The following improved bounds can be achieved for 𝐻𝐻-minor-free graphs.



10. Faster expander decomposition algorithm

• High-level idea:
• Find a low-diameter decomposition.

• Remove all inter-cluster edges.
• For each cluster, find a balanced sparse cut.

• Remove all cut edges.
• Recurse on each remaining connected component.

poly log𝑛𝑛 , 1
𝜖𝜖

rounds

?

Using an existing deterministic CONGEST algorithm on general graphs



10. Faster expander decomposition algorithm

• Balanced sparse cut computation:
• Partition the vertex set into poly log𝑛𝑛 , 1

𝜖𝜖
connected parts.

• Each part has roughly the same number of incident edges. 
• This partition can be computed by processing any BFS tree in a bottom-up manner.

• Consider the cluster graph.
• Each part is contracted into a vertex.

• Compute a balanced vertex separator for the cluster graph. 
• Use brute-force information gathering.
• Remove all the edges incident to the parts in the separator. 

The cluster graph is still 𝐻𝐻-minor-free.

This costs poly log𝑛𝑛 , 1
𝜖𝜖

rounds.



10. Faster expander decomposition algorithm

• The guarantee that each part has roughly the same number of 
incident edges works only if there is no high-degree vertex.

• Need to switch to a different approach if a high-degree vertex exists.



10. Faster expander decomposition algorithm

• Let 𝑣𝑣∗ be a high-degree vertex. 
• High-level idea:

• We try to let 𝑣𝑣∗ learn as much as possible about the graph topology. 
• If the learning speed is too slow, then there must be a sparse cut.
• We will identify the sparse cut and remove all the cut edges.
• In the end, 𝑣𝑣∗ can learn all information about the component 𝑆𝑆 that it belongs to.

𝑣𝑣∗

𝑆𝑆

• We will recurse on each component.
• For 𝑆𝑆, we may use brute-force computation.



10. Faster expander decomposition algorithm

• For information gathering, we use a load balancing algorithm on high-
conductance bounded-degree graphs.

• We can simulate a bounded-degree graph by letting 𝑣𝑣 simulates deg 𝑣𝑣 vertices.

Ghosh, Leighton, Maggs, Muthukrishnan, Plaxton, Rajaraman, 
Richa, Tarjan, and Zuckerman, SIAM Journal on Computing 1999



10. Faster expander decomposition algorithm

• The way this algorithm works is that whenever load 𝑢𝑢 − load 𝑣𝑣 is too high for 
some edge 𝑢𝑢, 𝑣𝑣 , then we send some items from 𝑢𝑢 to 𝑣𝑣.

• If the underlying graph has conductance 𝜙𝜙, then after poly log𝑛𝑛 , 1
𝜙𝜙

rounds each vertex 
will roughly have the same load.

• Otherwise, a sparse cut can be found.

Ghosh, Leighton, Maggs, Muthukrishnan, Plaxton, Rajaraman, 
Richa, Tarjan, and Zuckerman, SIAM Journal on Computing 1999



10. Faster expander decomposition algorithm

• We omit the technical details of how this load balancing algorithm is used to 
implement the high-level idea discussed earlier.

• This also allows us to solve expander routing in poly log𝑛𝑛 , 1
𝜙𝜙

rounds 
deterministically in 𝐻𝐻-minor-free graphs with conductance 𝜙𝜙. 

Ghosh, Leighton, Maggs, Muthukrishnan, Plaxton, Rajaraman, 
Richa, Tarjan, and Zuckerman, SIAM Journal on Computing 1999



10. Faster expander decomposition algorithm

• Expander decomposition:
• Deterministic:

• Conductance: 𝜙𝜙 = 1
poly log 𝑛𝑛, 1𝜖𝜖

.

• Round complexity: poly log𝑛𝑛 , 1
𝜖𝜖

.

• Expander routing:
• Deterministic:

• Round complexity: poly log𝑛𝑛 , 1
𝜙𝜙

.

Corollary: All 𝑛𝑛𝑜𝑜(1) ⋅ poly 1
𝜖𝜖

-round deterministic algorithms for 𝐻𝐻-minor-free graphs 

discussed earlier can be implemented to run in poly log𝑛𝑛 , 1
𝜖𝜖

rounds deterministically.



11. Ultra-fast expander decomposition

• Finding an expander decomposition in 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds for 𝐻𝐻-minor-free 
graphs in CONGEST does not seem to contradict any known lower bounds.

Question: Is poly log𝑛𝑛 , 1
𝜖𝜖

the best we can hope for?



11. Ultra-fast expander decomposition

• Idea:
• We want to turn the LOCAL 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 -round low-diameter 

decomposition algorithm into a CONGEST one.

Claim: 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 can be achieved for bounded-degree graphs.



11. Ultra-fast expander decomposition

• The main reason that the LOCAL 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 -round low-diameter 
decomposition algorithm needs large messages:

• Each cluster 𝐴𝐴 needs to identify a neighboring cluster 𝐵𝐵 such that the number of 
inter-cluster edges between 𝐴𝐴 and 𝐵𝐵 is maximized. 

• Observation:
• If each cluster has high conductance, then this task can be solved with small 

messages.



11. Ultra-fast expander decomposition

• We will modify the LOCAL 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 -round low-diameter 
decomposition algorithm as follows:

• For each cluster, run the poly log𝑛𝑛 , 1
𝜖𝜖

-round deterministic expander 
decomposition algorithm.

• After that, each cluster has enough message processing capability.



11. Ultra-fast expander decomposition

Round complexity:

• In a low-diameter decomposition, the size of a cluster is at most Δpoly
1
𝜖𝜖 .

• For 𝑛𝑛′ = Δpoly
1
𝜖𝜖 , we have: 

• poly log𝑛𝑛𝑛 , 1
𝜖𝜖

= poly logΔ , 1
𝜖𝜖

.

• The overall round complexity of our expander decomposition algorithm is:
• poly logΔ , 1

𝜖𝜖
⋅ 𝑂𝑂 log∗ 𝑛𝑛 .

For bounded-degree graphs, this is 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 .



11. Ultra-fast expander decomposition

• Expander decomposition:
• Deterministic:

• Conductance: 𝜙𝜙 = 1
poly log Δ, 1𝜖𝜖

.

• Round complexity: poly logΔ , 1
𝜖𝜖
⋅ 𝑂𝑂 log∗ 𝑛𝑛 .

Question: Are there any implications beyond bounded-degree graphs?



12. Bounded degree sparsifiers

• There exist bounded degree sparsifiers which allow us to reduce 
from bounded-arboricity graphs to the bounded-degree graphs.

“Local Algorithms for Bounded Degree Sparsifiers in Sparse Graphs” by Solomon, ITCS 2018



12. Bounded degree sparsifiers

• There exist bounded degree sparsifiers which allow us to reduce 
from bounded-arboricity graphs to the bounded-degree graphs.

“Local Algorithms for Bounded Degree Sparsifiers in Sparse Graphs” by Solomon, ITCS 2018

(1 − 𝜖𝜖)-approximate maximum matching

Graphs with arboricity 𝛼𝛼 One-round reduction The same problem in graphs with maximum degree Δ

(1 − 𝜖𝜖)-approximate maximum independent set

(1 + 𝜖𝜖)-approximate vertex cover

Δ = 𝑂𝑂 𝛼𝛼/𝜖𝜖

Δ = 𝑂𝑂 𝛼𝛼2/𝜖𝜖

Δ = 𝑂𝑂 𝛼𝛼/𝜖𝜖



12. Bounded degree sparsifiers
“Local Algorithms for Bounded Degree Sparsifiers in Sparse Graphs” by Solomon, ITCS 2018

(1 − 𝜖𝜖)-approximate maximum matching

Graphs with arboricity 𝛼𝛼 One-round reduction The same problem in graphs with maximum degree Δ

(1 − 𝜖𝜖)-approximate maximum independent set

(1 + 𝜖𝜖)-approximate vertex cover

Δ = 𝑂𝑂 𝛼𝛼/𝜖𝜖

Δ = 𝑂𝑂 𝛼𝛼2/𝜖𝜖

Δ = 𝑂𝑂 𝛼𝛼/𝜖𝜖

Corollary: All these problems can be solved in 
𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds deterministically in 
𝐻𝐻-minor-free graphs in CONGEST.

Expander decomposition
In poly logΔ , 1

𝜖𝜖
⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds



13. Conclusion and open questions

• The round complexity matches the algorithms in LOCAL model:

• Techniques:
• Improved deterministic expander decomposition.
• Bounded-degree sparsifier.

Theorem: (1 − 𝜖𝜖)-approximate maximum matching and maximum independent set can be 
solved in 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds deterministically in 𝐻𝐻-minor-free graphs in CONGEST.

Czygrinow, Hanckowiak, and Wawrzyniak, DISC 2008

Solomon, ITCS 2018



13. Conclusion and open questions

𝑯𝑯-minor-free graphs:

• Expander decomposition in 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds in CONGEST?

• What other problems can be solved in 𝜖𝜖−𝑂𝑂 1 ⋅ 𝑂𝑂 log∗ 𝑛𝑛 rounds in CONGEST?

• What other problems admit a bounded-degree sparsifier?



13. Conclusion and open questions

𝑯𝑯-minor-free graphs:

• Other non-trivial applications of our approach?

• The complexity of (1 + 𝜖𝜖)-approximate minimum dominating set in CONGEST?



13. Conclusion and open questions

• Characterization of efficiently testable minor-closed graph properties 
in CONGEST?

• Upper bound:
• Any minor-closed graph property 𝒫𝒫 closed under disjoint union admits an 

efficient property testing algorithm:
• Deterministic poly log𝑛𝑛 , 1

𝜖𝜖
rounds.

Is this the right characterization?



13. Conclusion and open questions

• Characterization of efficiently testable minor-closed graph properties 
in CONGEST?

• Upper bound:
• Any minor-closed graph property 𝒫𝒫 closed under disjoint union admits an 

efficient property testing algorithm:
• Deterministic poly log𝑛𝑛 , 1

𝜖𝜖
rounds.

Is this the right characterization?

𝒫𝒫 = graphs that can be embedded on a torus . 
• 𝒫𝒫 is not closed under disjoint union.
• Does 𝒫𝒫 admit an efficient property testing algorithm?



13. Conclusion and open questions

• Proof sketch of an Ω 𝑛𝑛 lower bound for a minor-closed graph property:

𝐴𝐴 − 𝐴𝐴 − 𝐴𝐴 −⋯− 𝐴𝐴 − 𝐴𝐴

𝐴𝐴 − 𝐴𝐴 − 𝐴𝐴 −⋯− 𝐴𝐴 − 𝐴𝐴

𝐴𝐴 − 𝐴𝐴 − 𝐴𝐴 −⋯− 𝐴𝐴 − 𝐴𝐴

𝐵𝐵 − 𝐵𝐵 − 𝐵𝐵 −⋯− 𝐵𝐵 − 𝐵𝐵

𝐵𝐵 − 𝐵𝐵 − 𝐵𝐵 −⋯− 𝐵𝐵 − 𝐵𝐵

𝐵𝐵 − 𝐵𝐵 − 𝐵𝐵 −⋯− 𝐵𝐵 − 𝐵𝐵

Θ 𝑛𝑛 vertices Θ 𝑛𝑛 vertices Θ 𝑛𝑛 vertices

Θ 𝑛𝑛 vertices Θ 𝑛𝑛 vertices Θ 𝑛𝑛 vertices

Θ 𝑛𝑛 vertices Θ 𝑛𝑛 vertices Θ 𝑛𝑛 vertices

𝑯𝑯-minor-free 𝑯𝑯-minor-freeVery far from 𝑯𝑯-minor-free

𝐻𝐻 = 𝐴𝐴 ∪ 𝐵𝐵 for some 
suitable choices of 𝐴𝐴 and 𝐵𝐵.



13. Conclusion and open questions

• This Ω 𝑛𝑛 lower bound only applies to some of the minor-closed 
graph properties that are not closed under disjoint union.

• In particular, the lower bound does not apply to 
• 𝒫𝒫 = graphs that can be embedded on a torus . 



13. Conclusion and open questions

• This Ω 𝑛𝑛 lower bound only applies to some of the minor-closed 
graph properties that are not closed under disjoint union.

• In particular, the lower bound does not apply to 
• 𝒫𝒫 = graphs that can be embedded on a torus . 

Thank you!
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