Distance Computation in Massive Graphs

Michal Dory, University of Haifa

## **Computing Distances**





# How to do a computation when the input is too large and cannot be stored in one machine?





# How to do a computation when the input is too large and cannot be stored in one machine?

Development of practical systems for massively parallel computation: MapReduce, Hadoop, Spark, Dryad





## This Talk

#### **Computing distances:**

[Censor-Hillel, D, Korhonen, Leitersdorf, 2019]
[D, Parter, 2020]
[D, Fischer, Khoury, Leitersdorf, 2021]
[Biswas, D, Ghaffari, Mitrovic, Nazari, 2021]







• *n* machines

#### *n* vertices





#### *n* vertices

- *n* machines
- Input per machine: O(n) edges





#### *n* vertices

- *n* machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round





- *n* machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round





- *n* machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round

## The Model - Congested Clique



- *n* machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round

## In the AMG workshop (Friday)

Yasamin Nazari – Distance Computation in MPC and related models



Machines have sublinear memory

## The Model - Congested Clique



- *n* machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round

### **Distance Computation**

All-pairs shortest paths (APSP)



## **Distance Computation**

All-pairs shortest paths (APSP) Focus: APSP in unweighted undirected graphs



• Polynomial time algorithms for exact APSP based on matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

| Round<br>Complexity | Variant               |
|---------------------|-----------------------|
| $	ilde{O}(n^{1/3})$ | weighted directed     |
| $O(n^{0.158})$      | unweighted undirected |

#### Time complexity

Approximation

Can we get faster algorithms if we allow approximations?

#### Time complexity

Approximation

Can we get faster algorithms if we allow approximations?

#### Time complexity



Can we get faster algorithms if we allow approximations?

#### Time complexity



Can we get faster algorithms if we allow approximations?













#### Time complexity





#### Time complexity







## Our Techniques

<u>Goal</u>: compress our graph while preserving the distances



## Our Techniques

<u>Goal</u>: compress our graph while preserving the distances



Compute a spanner, a sparse subgraph that approximately preserves the distances

• A **k**-spanner of a graph G, is a subgraph H of Gsuch that for all u, v:  $d_G(u, v) \le d_H(u, v) \le k \cdot d_G(u, v)$ 



• A **k**-spanner of a graph G, is a subgraph H of Gsuch that for all u, v:  $d_G(u, v) \le d_H(u, v) \le k \cdot d_G(u, v)$ 

#### Numerous applications:

- Synchronization in distributed networks
- Compact routing schemes
- Approximate shortest paths
- ...



• A **k**-spanner of a graph G, is a subgraph H of Gsuch that for all u, v:  $d_G(u, v) \le d_H(u, v) \le k \cdot d_G(u, v)$ 

<u>Theorem</u> [Althöfer et al.,93]: Every graph has a (2k - 1)-spanner of size  $O(n^{1+1/k})$ 

• A **k-spanner** of a graph G, is a subgraph H of G such that for all u, v:  $d_G(u, v) \le d_H(u, v) \le k \cdot d_G(u, v)$ 

<u>Theorem</u> [Althöfer et al.,93]: Every graph has a (2k - 1)-spanner of size  $O(n^{1+1/k})$ 

For  $k = \log n$ :  $O(\log n)$ -spanner of size O(n)

<u>Theorem</u> [Althöfer et al.,93]: Every graph has a (2k - 1)-spanner of size  $O(n^{1+1/k})$ 

Goal: construct  $O(\log n)$ -spanner of size O(n)

#### <u>Theorem</u> [Althöfer et al.,93]: Every graph has a (2k - 1)-spanner of size $O(n^{1+1/k})$


# Spanners

#### <u>Theorem</u> [Althöfer et al.,93]: Every graph has a (2k - 1)-spanner of size $O(n^{1+1/k})$



# The Spanner Algorithm



# The Spanner Algorithm



Partition the edges:  $E = \bigcup E_i$ 



Compute a spanner on each part separately

Partition the edges:  $E = \bigcup E_i$ 



Compute a spanner on each part separately

Partition the edges:  $E = \bigcup E_i$ 



<u>Claim</u>: the union of the spanners is a spanner of the original graph

Partition the edges:  $E = \bigcup E_i$ 



<u>Problem</u>: what is the size of the spanner?

Partition the edges:  $E = \bigcup E_i$ 



<u>Challenge:</u> find a smart partitioning



Partition the vertices into  $\sqrt{n}$  sets of size  $\sqrt{n}$ 



$$E_{i,j} = \left\{ \{u, v\} \in E \mid u \in V_i, v \in V_j \right\}$$



$$E_{i,j} = \left\{ \{u, v\} \in E \mid u \in V_i, v \in V_j \right\}$$



$$E_{i,j} = \left\{ \{u, v\} \in E \mid u \in V_i, v \in V_j \right\}$$

Properties: 1. *n* different subsets  $E_{i,j}$ 2.  $|E_{i,j}| = O(n)$ 



#### Each machine computes a spanner for one set $E_{i,i}$



Each machine computes a spanner for one set  $E_{i,i}$ 

What is the size of the spanner?

For one set  $E_{i,j}$ construct a spanner of size  $O(\sqrt{n})$ 



<u>Overall</u>:  $O(n \cdot \sqrt{n}) = O(n^{3/2})$ 

For one set  $E_{i,j}$ construct a spanner of size  $O(\sqrt{n})$ 



Overall: 
$$O(n \cdot \sqrt{n}) = O(n^{3/2})$$
 Too expensive

<u>Goal</u>: O(n) size

<u>Sparsification theorem</u>: Let G be a graph with N vertices and M edges, we can construct  $O(\log N)$ -spanner for G with  $O(N^{2/3}M^{1/3})$  edges

<u>Sparsification theorem</u>: Let G be a graph with N vertices and M edges, we can construct  $O(\log N)$ -spanner for G with  $O(N^{2/3}M^{1/3})$  edges

d = M/N



<u>Sparsification theorem</u>: Let G be a graph with N vertices and M edges, we can construct  $O(\log N)$ -spanner for G with  $O(N^{2/3}M^{1/3})$  edges

This is still larger than O(n) if  $m = \omega(n)$ 

<u>Sparsification theorem</u>: Let G be a graph with N vertices and M edges, we can construct  $O(\log N)$ -spanner for G with  $O(N^{2/3}M^{1/3})$  edges

Goal: apply it on a graph where  $O(N^{2/3}M^{1/3}) = O(n)$ 

# The Spanner Algorithm



# The Spanner Algorithm



<u>Idea:</u> divide the vertices into groups of close-by vertices, and treat each group as one vertex



<u>Idea:</u> divide the vertices into groups of close-by vertices, and treat each group as one vertex



<u>Idea:</u> divide the vertices into groups of close-by vertices, and treat each group as one vertex



Using the sparsification theorem: construct O(n) size spanner for the contracted graph



Using the sparsification theorem: construct O(n) size spanner for the contracted graph



Can be converted to a spanner for the original graph



Can be converted to a spanner for the original graph



# The Spanner Algorithm







#### **Distributed APSP**

How to get a better approximation?

#### Time complexity



#### **Distributed APSP**

How to get a better approximation?

#### Time complexity



## Our Techniques



## Our Techniques


### Near-additive Emulator

A sparse graph H such that for all u, v:  $d(u, v) \le d_H(u, v) \le (1 + \epsilon)d(u, v) + \beta$ 

### Near-additive Emulator

A sparse graph H such that for all u, v:  $d(u, v) \le d_H(u, v) \le (1 + \epsilon)d(u, v) + \beta$ 

 $(1 + \Theta(\epsilon))$ -approximation for long distances!

### Near-additive Emulator

#### A sparse graph H such that for all u, v: $d(u, v) \le d_H(u, v) \le (1 + \epsilon)d(u, v) + \beta$



## Shortest Paths via Emulators

Left with short paths of length  $t = O(\beta/\epsilon)$ 

Requires  $poly(\log t) = poly(\log \log n)$  time!

## Shortest Paths via Emulators





# Conclusion

#### We saw:

| Round Complexity    | Approximation  |
|---------------------|----------------|
| $poly(\log \log n)$ | $2 + \epsilon$ |
| 0(1)                | $O(\log n)$    |

# Conclusion

#### We saw:

| Round Complexity    | Approximation  |
|---------------------|----------------|
| $poly(\log \log n)$ | $2 + \epsilon$ |
| 0(1)                | $O(\log n)$    |

Can we get O(1)-approximation in O(1) rounds?

### The Model - Congested Clique



- *n* machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round

## The Model - Congested Clique



What happens if we bound the memory?

- n machines
- Input per machine: O(n) edges
- Each machine can send/receive a total of n messages of O(log n) bits per round

#### The Model – Linear Memory MPC



What happens if we bound the memory?

- O(m/n) machines total memory of  $\tilde{O}(m)$
- $\tilde{O}(n)$  memory per machine

#### The Model – Linear Memory MPC





- O(m/n) machines total memory of  $\tilde{O}(m)$
- $\tilde{O}(n)$  memory per machine

#### The Model – Sublinear Memory MPC



•  $O(m/n^{\gamma})$  machines – total memory of  $\tilde{O}(m)$ 

•  $\tilde{O}(n^{\gamma})$  memory per machine,  $\gamma < 1$ 

#### The Model – Sublinear Memory MPC



- Spanners in poly(log log n) time [BDGMN, 2021]
- Conditional Ω(log n) lower bounds for shortest paths computations

•  $O(m/n^{\gamma})$  machines – total memory of  $\tilde{O}(m)$ 

•  $\tilde{O}(n^{\gamma})$  memory per machine,  $\gamma < 1$ 

### The Model – Sublinear Memory MPC



<u>See Friday's AMG talk</u>: Yasamin Nazari – Distance Computation in MPC and related models



•  $O(m/n^{\gamma})$  machines – total memory of  $\tilde{O}(m)$ 

•  $\tilde{O}(n^{\gamma})$  memory per machine,  $\gamma < 1$ 

#### The Model – Heterogeneous MPC



<u>Next ADGA talk</u>: Orr Fischer - Massively Parallel Computation in a Heterogeneous Regime: One Strong Machine Makes a Big Difference

One linear machine, The rest – sublinear machines



## **Open Questions**

- Can we get O(1)-approximation in O(1) rounds?
- Directed/Exact shortest paths
- What other problems can be solved in O(1) rounds?

# **Open Questions**

0(1)-round algorithms:

- Approximate APSP
- Spanners
- Minimum Spanning Tree
- $(\Delta + 1)$ -Coloring

#### <u>*O*(log log *n*)-round algorithms</u>:

- Approximate Maximum Matching
- Maximal Independent Set
- Approximate Vertex Cover

