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cannot be stored in one machine?
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How to do a computation when the input is too large and 
cannot be stored in one machine?

Development of practical systems for massively parallel 
computation: MapReduce, Hadoop, Spark, Dryad



This Talk
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Computing distances:
[Censor-Hillel, D, Korhonen, Leitersdorf, 2019] 
[D, Parter, 2020] 
[D, Fischer, Khoury, Leitersdorf, 2021]
[Biswas, D, Ghaffari, Mitrovic, Nazari, 2021]
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The Model - Congested Clique

𝑛 vertices

• 𝑛 machines

• Input per machine: 𝑂(𝑛) edges

• Each machine can send/receive a total of 𝑛
messages of 𝑂(log 𝑛) bits per round
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In the AMG workshop (Friday)

Machines have sublinear memory

Yasamin Nazari – Distance Computation in 
MPC and related models
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The Model - Congested Clique

𝑛 vertices

• 𝑛 machines

• Input per machine: 𝑂(𝑛) edges

• Each machine can send/receive a total of 𝑛
messages of 𝑂(log 𝑛) bits per round



Distance Computation

All-pairs shortest paths (APSP)
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Distance Computation

All-pairs shortest paths (APSP)

Focus: APSP in unweighted undirected graphs
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Distributed APSP

• Polynomial time algorithms for exact APSP based on 
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]
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Round 
Complexity

Variant

෨𝑂 𝑛1/3 weighted directed 

𝑂 𝑛0.158 unweighted undirected 
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𝑂(𝑛0.158)

Time complexity

Approximation

[CKKLPS ’15]
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Time complexity
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Can we get faster algorithms if we allow approximations?

𝑂(𝑛0.158)
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Distributed APSP

Matrix Multiplication Exact APSP

Sparse Matrix 
Multiplication
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Distributed APSP

Matrix Multiplication Exact APSP

Sparse Matrix 
Multiplication

2 + 𝜖 -APSP

Distance Tools

Sv
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Our Techniques

Goal: compress our graph 
while preserving the 
distances
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Our Techniques

Goal: compress our graph 
while preserving the 
distances
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Compute a spanner, a sparse subgraph that 
approximately preserves the distances



Spanners

• A 𝒌-spanner of a graph 𝐺, is a subgraph 𝐻 of 𝐺
such that for all 𝑢, 𝑣:

𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣) ≤ 𝑘 ∙ 𝑑𝐺(𝑢, 𝑣)
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Numerous applications:
• Synchronization in distributed networks
• Compact routing schemes
• Approximate shortest paths
• …
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For 𝑘 = log 𝑛: 𝑂(log 𝑛)-spanner of size 𝑂(𝑛)
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The Spanner Algorithm

Edge Sparsification
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Vertex Sparsification



Edge Sparsification
Partition the edges: 𝐸 =∪ 𝐸𝑖

Compute a spanner on each part separately

𝐸1 𝐸2 𝐸3

40



Edge Sparsification
Partition the edges: 𝐸 =∪ 𝐸𝑖

Compute a spanner on each part separately

𝐸1 𝐸2 𝐸3

41



Edge Sparsification
Partition the edges: 𝐸 =∪ 𝐸𝑖

𝐸1 𝐸2 𝐸3
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Claim: the union of the spanners is a spanner of the 
original graph



Edge Sparsification
Partition the edges: 𝐸 =∪ 𝐸𝑖

𝐸1 𝐸2 𝐸3
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Problem: what is the size of the spanner?



Edge Sparsification
Partition the edges: 𝐸 =∪ 𝐸𝑖

𝐸1 𝐸2 𝐸3
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Challenge: find a smart partitioning



Edge Partitioning: Try 1

…

𝑉1 𝑉2
𝑉 𝑛

𝑛 𝑛 𝑛

Partition the vertices into 𝑛 sets of size 𝑛
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Edge Partitioning: Try 1

…

𝑉1 𝑉2
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𝑛 𝑛 𝑛

𝐸𝑖,𝑗 = 𝑢, 𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉𝑗
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Edge Partitioning: Try 1

…

𝑉1 𝑉2
𝑉 𝑛

𝑛 𝑛 𝑛

𝐸𝑖,𝑗 = 𝑢, 𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉𝑗

Properties: 1. 𝑛 different subsets 𝐸𝑖,𝑗
2. 𝐸𝑖,𝑗 = 𝑂(𝑛)

𝐸1,2
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Edge Partitioning: Try 1

𝐸1,1 𝐸1,2 𝐸1,3 … 𝐸 𝑛, 𝑛

𝑛 sets of size 𝑂(𝑛)

Each machine computes a spanner for one set 𝐸𝑖,𝑗

49



Edge Partitioning: Try 1

𝐸1,1 𝐸1,2 𝐸1,3 … 𝐸 𝑛, 𝑛

𝑛 sets of size 𝑂(𝑛)

Each machine computes a spanner for one set 𝐸𝑖,𝑗

50

What is the size of the spanner?



Edge Partitioning: Try 1

𝑉𝑖 𝑉𝑗

𝑛 𝑛

𝐸𝑖,𝑗For one set 𝐸𝑖,𝑗
construct a spanner
of size 𝑂 𝑛

Overall: 𝑂 𝑛 ∙ 𝑛 = 𝑂(𝑛3/2)
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Edge Partitioning: Try 1

𝑉𝑖 𝑉𝑗

𝑛 𝑛

𝐸𝑖,𝑗For one set 𝐸𝑖,𝑗
construct a spanner
of size 𝑂 𝑛

Overall: 𝑂 𝑛 ∙ 𝑛 = 𝑂(𝑛3/2)

Goal: 𝑂 𝑛 size

Too expensive
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Edge Sparsification

Sparsification theorem: Let 𝐺 be a graph with 𝑁
vertices and 𝑀 edges, we can construct 𝑂 log𝑁 -
spanner for G with 𝑂(𝑁2/3𝑀1/3) edges
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Sparsification theorem: Let 𝐺 be a graph with 𝑁
vertices and 𝑀 edges, we can construct 𝑂 log𝑁 -
spanner for G with 𝑂(𝑁2/3𝑀1/3) edges

…

𝑉1 𝑉2
𝑉𝑑1/3

𝑁/𝑑1/3 𝑁/𝑑1/3 𝑁/𝑑1/3

𝑑 = 𝑀/𝑁

Edge Sparsification
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Edge Sparsification

Sparsification theorem: Let 𝐺 be a graph with 𝑁
vertices and 𝑀 edges, we can construct 𝑂 log𝑁 -
spanner for G with 𝑂(𝑁2/3𝑀1/3) edges

This is still larger than 𝑂(𝑛) if 𝑚 = 𝜔(𝑛)
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Edge Sparsification

Sparsification theorem: Let 𝐺 be a graph with 𝑁
vertices and 𝑀 edges, we can construct 𝑂 log𝑁 -
spanner for G with 𝑂(𝑁2/3𝑀1/3) edges

Goal: apply it on a graph where 𝑂(𝑁2/3𝑀1/3) = 𝑂(𝑛)
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The Spanner Algorithm

Edge Sparsification
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Vertex Sparsification
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Vertex Sparsification

Idea: divide the vertices into groups of close-by 
vertices, and treat each group as one vertex
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Vertex Sparsification

Using the sparsification theorem: construct 𝑂(𝑛) size 
spanner for the contracted graph
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Vertex Sparsification

Using the sparsification theorem: construct 𝑂(𝑛) size 
spanner for the contracted graph
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Vertex Sparsification

Can be converted to a spanner for the original graph
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Can be converted to a spanner for the original graph

65



The Spanner Algorithm

Edge Sparsification

66

Vertex Sparsification



𝑂 log 𝑛 -spanners of size 𝑂(𝑛)

𝑂 log 𝑛 -approximation for APSP in 𝑂(1) rounds 

Conclusion

67



Distributed APSP
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Time complexity
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𝑂(1)
[DFKL ’21]
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Near-additive Emulators Distance Sensitive Toolkit

Shortest Paths
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Long Paths Short Paths

Near-additive Emulators Distance Sensitive Toolkit

Shortest Paths



Near-additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽
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1 + Θ(𝜖) -approximation for long distances!



Near-additive Emulator

A sparse graph 𝐻 such that for all 𝑢, 𝑣:
𝑑(𝑢, 𝑣) ≤ 𝑑𝐻 𝑢, 𝑣 ≤ 1 + 𝜖 𝑑 𝑢, 𝑣 + 𝛽
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1 + Θ(𝜖) -approximation for long distances!

Build a sparse near-additive emulator



Shortest Paths via Emulators

Left with short paths of length 𝑡 = 𝑂(𝛽/𝜖)
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Requires 𝑝𝑜𝑙𝑦 log 𝑡 = 𝑝𝑜𝑙𝑦(log log 𝑛) time!



Shortest Paths via Emulators
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Long Paths: Ω 𝛽/𝜖 Short Paths: O 𝛽/𝜖

Near-additive Emulators: 
1 + Θ(𝜖) -approximation

Distance Sensitive Toolkit: 

𝑝𝑜𝑙𝑦 log
𝛽

𝜖
time

Shortest Paths
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Time complexity
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We saw:

Conclusion
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Round Complexity Approximation

𝑝𝑜𝑙𝑦(log log 𝑛) 2 + 𝜖

𝑂(1) 𝑂(log 𝑛)
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Conclusion
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Round Complexity Approximation

𝑝𝑜𝑙𝑦(log log 𝑛) 2 + 𝜖

𝑂(1) 𝑂(log 𝑛)

Can we get 𝑂(1)-approximation in 𝑂(1) rounds?
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The Model - Congested Clique

𝑛 vertices

• 𝑛 machines

• Input per machine: 𝑂(𝑛) edges

• Each machine can send/receive a total of 𝑛
messages of 𝑂(log 𝑛) bits per round
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The Model - Congested Clique

• 𝑛 machines

• Input per machine: 𝑂(𝑛) edges

• Each machine can send/receive a total of 𝑛
messages of 𝑂(log 𝑛) bits per round

What happens if we 
bound the memory?
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The Model – Linear Memory MPC

• 𝑂(𝑚/𝑛) machines – total memory of ෨𝑂(𝑚)

• ෨𝑂(𝑛) memory per machine

What happens if we 
bound the memory?
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The Model – Linear Memory MPC

• 𝑂(𝑚/𝑛) machines – total memory of ෨𝑂(𝑚)

• ෨𝑂(𝑛) memory per machine

𝑂 log 𝑛 -approximation 
𝑂 1 -approximation
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The Model – Sublinear Memory MPC

• 𝑂(𝑚/𝑛𝛾) machines – total memory of ෨𝑂(𝑚)

• ෨𝑂(𝑛𝛾) memory per machine, 𝛾 < 1
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The Model – Sublinear Memory MPC

• Spanners in 
𝑝𝑜𝑙𝑦(log log 𝑛) time 
[BDGMN, 2021]

• Conditional Ω(log 𝑛) lower 
bounds for shortest paths 
computations

• 𝑂(𝑚/𝑛𝛾) machines – total memory of ෨𝑂(𝑚)

• ෨𝑂(𝑛𝛾) memory per machine, 𝛾 < 1



87

The Model – Sublinear Memory MPC

See Friday’s AMG talk:
Yasamin Nazari – Distance 
Computation in MPC and 
related models

• 𝑂(𝑚/𝑛𝛾) machines – total memory of ෨𝑂(𝑚)

• ෨𝑂(𝑛𝛾) memory per machine, 𝛾 < 1
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The Model –Heterogeneous MPC

Next ADGA talk:
Orr Fischer - Massively 
Parallel Computation in a 
Heterogeneous Regime: 
One Strong Machine Makes 
a Big Difference

One linear machine, 
The rest – sublinear machines



Open Questions
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• Can we get 𝑂(1)-approximation in 𝑂(1) rounds?

• Directed/Exact shortest paths

• What other problems can be solved in 𝑂(1)
rounds?



Open Questions
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𝑂 1 -round algorithms: 
• Approximate APSP
• Spanners
• Minimum Spanning Tree
• ∆ + 1 -Coloring

𝑂 log log 𝑛 -round algorithms: 
• Approximate Maximum 

Matching
• Maximal Independent Set
• Approximate Vertex Cover


