Distance Computation In
Massive Graphs

Michal Dory, University of Haifa

Computing Distances

Finland

Big Data

How to do a computation when the input is too large and
cannot be stored in one machine?

Big Data

How to do a computation when the input is too large and
cannot be stored in one machine?

Development of practical systems for massively parallel
computation: MapReduce, Hadoop, Spark, Dryad

This Talk

Computing distances:

[Censor-Hillel, D, Korhonen, Leitersdorf, 2019]
[D, Parter, 2020]

[D, Fischer, Khoury, Leitersdorf, 2021]

[Biswas, D, Ghaffari, Mitrovic, Nazari, 2021]

The Model

* n machines n vertices

The Model

n vertices

* 1 machines
* Input per machine: O(n) edges

The Model

n vertices

* 1. machines
* Input per machine: O(n) edges

* Each machine can send/receive a total of n
messages of O (logn) bits per round

The Model

* 1. machines
* Input per machine: O(n) edges

* Each machine can send/receive a total of n
messages of O (logn) bits per round

The Model

* 1. machines
* Input per machine: O(n) edges

* Each machine can send/receive a total of n
messages of O (logn) bits per round

10

The Model - Congested Clique

n vertices

* 1. machines
* Input per machine: O(n) edges

* Each machine can send/receive a total of n
messages of O (logn) bits per round

11

In the AMG workshop (Friday)

Yasamin Nazari — Distance Computation in
MPC and related models

Machines have sublinear memory

12

The Model - Congested Clique

n vertices

* 1. machines
* Input per machine: O(n) edges

* Each machine can send/receive a total of n
messages of O (logn) bits per round

13

Distance Computation

All-pairs shortest paths (APSP)

14

Distance Computation

All-pairs shortest paths (APSP)
Focus: APSP in unweighted undirected graphs

15

Distributed APSP

* Polynomial time algorithms for exact APSP based on
matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

Round Variant
Complexity

0(n1/3) weighted directed

0 (n%1°8) | unweighted undirected

16

Distributed APSP

Time complexity

.15
0(n**%) & [cKKLPS '15]

Approximation

17

Distributed APSP

Can we get faster algorithms if we allow approximations?

Time complexity

.15
0(n**%) & [cKKLPS '15]

Approximation

Distributed APSP

Can we get faster algorithms if we allow approximations?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

i Approximation

Distributed APSP

Can we get faster algorithms if we allow approximations?

Time complexity

.15
0(n**%) & [cKKLPS '15]

(2 — €)-APSP implies
Matrix Multiplication

poly(logn) 4— @ [CDKL’19] [DHZ’00, KS ‘18]

i Approximation

Distributed APSP

Can we get faster algorithms if we allow approximations?

Time complexity

.15
0(n**%) & [cKKLPS '15]

(2 — €)-APSP implies
Matrix Multiplication
poly(logn) +— (@ L’1
&t [DHZ ’00, KS ‘18]

i Approximation

Distributed APSP

Matrix Multiplication

Sparse Matrix
Multiplication

-
-=)

Exact APSP

(2 + €)-APSP

Distributed APSP

Matrix Multiplication ‘ Exact APSP
Sparse Matrix (2 + €)-APSP
Multiplication

S g

Distance Tools

Distributed APSP

Time complexity

.15
0(n**%) & [cKKLPS '15]

i Approximation

24

Distributed APSP

Can we get faster algorithms?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

i Approximation

25

Distributed APSP

Can we get faster algorithms?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

poly(loglogn) +— @ [DP '20]

i Approximation

26

Distributed APSP

Can we get faster algorithms?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]
poly(loglogn) —— © [DP’20] [|
FKL’21
0(1) = | ? Approximation

2+e€ O(logn)

27

Distributed APSP

Can we get faster algorithms?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

poly(loglogn) 4+~ @ [DP’20] ;
o0 ——— P

2+e€ O(logn)

Approximation

28

Our Techniques

Goal: compress our graph
while preserving the
distances

29

Our Techniques

Goal: compress our graph
while preserving the
distances

Compute a spanner, a sparse subgraph that
approximately preserves the distances

30

Spanners

* A k-spanner of a graph G, is a subgraph H of G
such that for all u, v:
de(u,v) <dy(u,v) < k-dg(u,v)

31

Spanners

* A k-spanner of a graph G, is a subgraph H of G

such that for all u, v:
de(u,v) <dy(u,v) < k-dg(u,v)

Numerous applications:

* Synchronization in distributed networks
 Compact routing schemes

* Approximate shortest paths

32

Spanners

* A k-spanner of a graph G, is a subgraph H of G
such that for all u, v:
de(u,v) <dy(u,v) < k-dg(u,v)

Theorem [Althofer et al.,93]: Every graph has a
1+1/k)

(2k — 1)-spanner of size O(n

33

Spanners

* A k-spanner of a graph G, is a subgraph H of G
such that for all u, v:
de(u,v) <dy(u,v) < k-dg(u,v)

Theorem [Althofer et al.,93]: Every graph has a
1+1/k)

(2k — 1)-spanner of size O(n

For k = logn: O(logn)-spanner of size O(n)

34

Spanners

Theorem [Althofer et al.,93]: Every graph has a
1+1/k)

(2k — 1)-spanner of size O(n

Goal: construct O(log n)-spanner of size O(n)

35

Spanners

Theorem [Althofer et al.,93]: Every graph has a
1+1/k)

(2k — 1)-spanner of size O(n

Goal: construct O(log n)-spanner of size O(n)

$

O (log n)-approximation for APSP in O(1) rounds

36

Spanners

Theorem [Althofer et al.,93]: Every graph has a
1+1/k)

(2k — 1)-spanner of size O(n

Goal: construct O(log n)-spanner of size O(n)

$

O (log n)-approximation for APSP in O(1) rounds

37

The Spanner Algorithm

Edge Sparsification

i

S 8 §

Vertex Sparsification

38

The Spanner Algorithm

Edge Sparsification

FoJriels

S 8 §

Vertex Sparsification

39

Edge Sparsification

Partition the edges: E =U E;

Compute a spanner on each part separately

40

Edge Sparsification

Partition the edges: E =U E;

Compute a spanner on each part separately

41

Edge Sparsification

Partition the edges: E =U E;

Claim: the union of the spanners is a spanner of the
original graph

42

Edge Sparsification

Partition the edges: E =U E;

Problem: what is the size of the spanner?

43

Edge Sparsification

Partition the edges: E =U E;

Challenge: find a smart partitioning

44

Edge Partitioning: Try 1

Vy v, Vim

\]\ } \)
| | |
Vi Vi Vi

Partition the vertices into 1/n sets of size \/n

45

Edge Partitioning: Try 1

Ei,j — {{u,v} EE|u S Vi,v S V]}

46

Edge Partitioning: Try 1

Ei,j — {{u,v} EE|u S Vi,v S V]}

47

Edge Partitioning: Try 1

Vy v, Vim
E 1,2
eig - @
\ Y]\ Y } \ Y)
Vi Vi Vi

E;;= {{u,v} eE|lueV,ve V]}

Properties: 1. n different subsets E; ;
2. |Ei,j| — O(TL)

48

Edge Partitioning: Try 1

Y
n sets of size O(n)

Each machine computes a spanner for one set Ei,j

49

Edge Partitioning: Try 1

‘a ‘a ‘a o000 ‘iaa

Y
n sets of size O(n)

Each machine computes a spanner for one set E; ;

What is the size of the spanner?

50

Edge Partitioning: Try 1

For one set E; E;,
construct a spanner _
of size 0(y/n) —/

Overall: O(n -yn) = 0(n3/?)

51

Edge Partitioning: Try 1

Vj
E. .
For one set E; ; i.J
construct a spanner —
of size 0(y/n) —]\ —

Overall: 0(n -+/n) = 0(n%/?) » Too expensive

Goal: 0(n) size

52

Edge Sparsification

Sparsification theorem: Let G be a graph with N
vertices and M edges, we can construct O (log N)-
spanner for G with O(N?/3M'/3) edges

53

Edge Sparsification

Sparsification theorem: Let G be a graph with N
vertices and M edges, we can construct O (log N)-
spanner for G with O(N?/3M1/3) edges

d=M/N

N/dl/? N/dM? N/d'/?

54

Edge Sparsification

Sparsification theorem: Let G be a graph with N
vertices and M edges, we can construct O (log N)-
spanner for G with O(N?/3M'/3) edges

This is still larger than O(n) itm = w(n)

55

Edge Sparsification

Sparsification theorem: Let G be a graph with N
vertices and M edges, we can construct O (log N)-
spanner for G with O(N?/3M'/3) edges

Goal: apply it on a graph where O(N?/3M'/3) = 0(n)

56

The Spanner Algorithm

Edge Sparsification

FoJriels

S 8 §

Vertex Sparsification

57

The Spanner Algorithm

Edge Sparsification

i

S 8 §

Vertex Sparsification

58

Vertex Sparsification

|dea: divide the vertices into groups of close-by
vertices, and treat each group as one vertex

59

Vertex Sparsification

|dea: divide the vertices into groups of close-by
vertices, and treat each group as one vertex

60

Vertex Sparsification

|dea: divide the vertices into groups of close-by
vertices, and treat each group as one vertex

61

Vertex Sparsification

Using the sparsification theorem: construct 0 (n) size
spanner for the contracted graph

62

Vertex Sparsification

Using the sparsification theorem: construct 0 (n) size
spanner for the contracted graph

63

Vertex Sparsification

Can be converted to a spanner for the original graph

64

Vertex Sparsification

Can be converted to a spanner for the original graph

65

The Spanner Algorithm

Edge Sparsification

i

S 8 §

Vertex Sparsification

66

Conclusion

O (logn)-spanners of size 0 (n)

¥

O (log n)-approximation for APSP in O(1) rounds

67

Distributed APSP

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

Approximation

2+e€ O(logn)

poly(loglogn) 4+~ @ [DP’20] ;

68

Distributed APSP

How to get a better approximation?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

poly(loglogn) — © [DP’20] m
FKL’21
0(1) & | &/ Approximation

2+e€ O(logn)

69

Distributed APSP

How to get a better approximation?

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

poly(loglogn) —6@ ’
0(1) 40— ?[FKL’'21]

2+e€ O(logn)

Approximation

70

Our Techniques

Shortest Paths

> N

Long Paths

g

Short Paths

A

Near-additive Emulators

Distance Sensitive Toolkit

71

Our Techniques

Shortest Paths

> N

Long Paths

g

Short Paths

A

Near-additive Emulators

Distance Sensitive Toolkit

72

Near-additive Emulator

A sparse graph H such that for all u, v:
dlu,v) <dyu,v) < (1+e)du,v)+p

73

Near-additive Emulator

A sparse graph H such that for all u, v:
dlu,v) <dyu,v) < (1+e)du,v)+p

(1 + O(€))-approximation for long distances!

74

Near-additive Emulator

A sparse graph H such that for all u, v:
dlu,v) <dyu,v) < (1+e)du,v)+p

Build a sparse near-additive emulator

@

(1 + O(€e))-approximation for long distances!

75

Shortest Paths via Emulators

Left with short paths of lengtht = O(f/€)

Requires poly(logt) = poly(loglogn) time!

76

Shortest Paths via Emulators

Shortest Paths

N

Long Paths: Q(S/¢€)

)

Short Paths: O(S/¢€)

¥

Near-additive Emulators:
(1 + ©(€))-approximation

Distance Sensitive Toolkit:

poly (log é) time

77

Distributed APSP

Time complexity

.15
0(n**%) & [cKKLPS '15]

poly(logn) + @ [CDKL’19]

poly(loglogn) —6@ ’
0(1) - ?[DFKL 21]

~——]

Approximation

2+e€ O(logn)

78

Conclusion

We saw:

Round Complexity

Approximation

poly(loglogn)

2+ €

0(1)

O (logn)

79

Conclusion

We saw:
Round Complexity Approximation
poly(loglogn) 2+e€
0(1) O(logn)

Can we get O(1)-approximation in O(1) rounds?

The Model - Congested Clique

n vertices

* 1. machines
* Input per machine: O (n) edges

* Each machine can send/receive a total of n

messages of O (logn) bits per round
81

The Model - Congested Clique

What happens if we
bound the memory?

* n machines
* Input per machine: O (n) edges

* Each machine can send/receive a total of n
messages of O (logn) bits per round

82

The Model — Linear Memory MPC

What happens if we
bound the memory?

* 0(m/n) machines — total memory of 0 (m)

* 0(n) memory per machine

83

The Model — Linear Memory MPC

0(10g n)-approximation
0(1)-appr0ximation

* 0(m/n) machines — total memory of O (m)

* 0(n) memory per machine

84

The Model — Sublinear Memory MPC

* 0(m/n") machines — total memory of O (m)

* 0(n¥) memory per machine, y < 1

85

The Model — Sublinear Memory MPC

* Spannersin
poly(loglogn) time
[BDGMN, 2021]

* Conditional Q1(logn) lower
bounds for shortest paths
computations

* 0(m/n") machines — total memory of O (m)

* 0(n¥) memory per machine, y < 1

86

The Model — Sublinear Memory MPC

See Friday’s AMG talk:
Yasamin Nazari — Distance
Computation in MPC and
related models

* 0(m/n") machines — total memory of O (m)

* 0(n¥) memory per machine, y < 1

87

The Model —Heterogeneous MPC

One linear machine,
The rest — sublinear machines

Next ADGA talk:

Orr Fischer - Massively
Parallel Computation in a
Heterogeneous Regime:
One Strong Machine Makes
a Big Difference

88

Open Questions

* Can we get O(1)-approximation in O(1) rounds?
* Directed/Exact shortest paths

* What other problems can be solved in O(1)
rounds?

89

Open Questions

0(1)-round algorithms: O(loglogn)-round algorithms:
* Approximate APSP * Approximate Maximum
* Spanners Matching

* Minimum Spanning Tree | |* Maximal Independent Set
* (A+ 1)-Coloring * Approximate Vertex Cover

90

