Distance Computation in Massive Graphs

Michal Dory, University of Haifa

Computing Distances

Big Data

How to do a computation when the input is too large and cannot be stored in one machine?

Big Data

How to do a computation when the input is too large and cannot be stored in one machine?

Development of practical systems for massively parallel computation: MapReduce, Hadoop, Spark, Dryad

This Talk

Computing distances:

[Censor-Hillel, D, Korhonen, Leitersdorf, 2019]
[D, Parter, 2020]
[D, Fischer, Khoury, Leitersdorf, 2021]
[Biswas, D, Ghaffari, Mitrovic, Nazari, 2021]

The Model

- n machines

The Model

n vertices

- n machines
- Input per machine: $O(n)$ edges

The Model

n vertices

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

The Model

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

The Model

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

The Model - Congested Clique

n vertices

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

In the AMG workshop (Friday)

Yasamin Nazari - Distance Computation in MPC and related models

Machines have sublinear memory

The Model - Congested Clique

n vertices

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

Distance Computation

All-pairs shortest paths (APSP)

Distance Computation

All-pairs shortest paths (APSP)
Focus: APSP in unweighted undirected graphs

Distributed APSP

- Polynomial time algorithms for exact APSP based on matrix multiplication [Censor-Hillel et al. 15, Le Gall 16]

Round Complexity	Variant
$\tilde{O}\left(n^{1 / 3}\right)$	weighted directed
$O\left(n^{0.158}\right)$	unweighted undirected

Distributed APSP

Time complexity

Distributed APSP

Can we get faster algorithms if we allow approximations?
Time complexity

Distributed APSP

Can we get faster algorithms if we allow approximations?
Time complexity

Distributed APSP

Can we get faster algorithms if we allow approximations?
Time complexity

Distributed APSP

Can we get faster algorithms if we allow approximations?
Time complexity

Distributed APSP

Matrix Multiplication

Multiplication

Sparse Matrix
Multiplication
$\square \quad(2+\epsilon)$-APSP

Distributed APSP

Matrix Multiplication

Sparse Matrix
 Multiplication

Exact APSP

$(2+\epsilon)$-APSP

Distance Tools

Distributed APSP

Time complexity

Distributed APSP

Can we get faster algorithms?
Time complexity

Distributed APSP

Can we get faster algorithms?
Time complexity

Distributed APSP

Can we get faster algorithms?
Time complexity

Distributed APSP

Can we get faster algorithms?
Time complexity

Our Techniques

Goal: compress our graph while preserving the distances

Our Techniques

Goal: compress our graph while preserving the distances

Compute a spanner, a sparse subgraph that approximately preserves the distances

Spanners

- A \boldsymbol{k}-spanner of a graph G, is a subgraph H of G such that for all u, v :

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq k \cdot d_{G}(u, v)
$$

Spanners

- A \boldsymbol{k}-spanner of a graph G, is a subgraph H of G such that for all u, v :

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq k \cdot d_{G}(u, v)
$$

Numerous applications:

- Synchronization in distributed networks
- Compact routing schemes
- Approximate shortest paths
- ...

Spanners

- A \boldsymbol{k}-spanner of a graph G, is a subgraph H of G such that for all u, v :

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq k \cdot d_{G}(u, v)
$$

Theorem [Althöfer et al.,93]: Every graph has a $(2 k-1)$-spanner of size $O\left(n^{1+1 / k}\right)$

Spanners

- A \boldsymbol{k}-spanner of a graph G, is a subgraph H of G such that for all u, v :

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq k \cdot d_{G}(u, v)
$$

Theorem [Althöfer et al.,93]: Every graph has a

$$
(2 k-1) \text {-spanner of size } O\left(n^{1+1 / k}\right)
$$

$$
\text { For } k=\log n: O(\log n) \text {-spanner of size } O(n)
$$

Spanners

Theorem [Althöfer et al.,93]: Every graph has a

$$
(2 k-1) \text {-spanner of size } O\left(n^{1+1 / k}\right)
$$

Goal: construct $O(\log n)$-spanner of size $O(n)$

Spanners

Theorem [Althöfer et al.,93]: Every graph has a

$$
(2 k-1) \text {-spanner of size } O\left(n^{1+1 / k}\right)
$$

Goal: construct $O(\log n)$-spanner of size $O(n)$
$O(\log n)$-approximation for APSP in $O(1)$ rounds

Spanners

Theorem [Althöfer et al.,93]: Every graph has a

$$
(2 k-1) \text {-spanner of size } O\left(n^{1+1 / k}\right)
$$

Goal: construct $O(\log n)$-spanner of size $O(n)$
$O(\log n)$-approximation for APSP in $O(1)$ rounds

The Spanner Algorithm

The Spanner Algorithm

Edge Sparsification

Partition the edges: $E=\cup E_{i}$

Compute a spanner on each part separately

Edge Sparsification

Partition the edges: $E=\cup E_{i}$

Compute a spanner on each part separately

Edge Sparsification

Partition the edges: $E=\cup E_{i}$

Claim: the union of the spanners is a spanner of the
original graph

Edge Sparsification

Partition the edges: $E=\cup E_{i}$

Problem: what is the size of the spanner?

Edge Sparsification

Partition the edges: $E=\cup E_{i}$

Challenge: find a smart partitioning

Edge Partitioning: Try 1

Partition the vertices into \sqrt{n} sets of size \sqrt{n}

Edge Partitioning: Try 1

Edge Partitioning: Try 1

Edge Partitioning: Try 1

Properties: 1. n different subsets $E_{i, j}$
2. $\left|E_{i, j}\right|=O(n)$

Edge Partitioning: Try 1

Each machine computes a spanner for one set $E_{i, j}$

Edge Partitioning: Try 1

Each machine computes a spanner for one set $E_{i, j}$
What is the size of the spanner?

Edge Partitioning: Try 1

For one set $E_{i, j}$
construct a spanner of size $O(\sqrt{n})$

Overall: $O(n \cdot \sqrt{n})=O\left(n^{3 / 2}\right)$

Edge Partitioning: Try 1

For one set $E_{i, j}$
construct a spanner of size $O(\sqrt{n})$

Overall: $O(n \cdot \sqrt{n})=O\left(n^{3 / 2}\right)$
Too expensive

Goal: $O(n)$ size

Edge Sparsification

Sparsification theorem: Let G be a graph with N vertices and M edges, we can construct $O(\log N)$ spanner for G with $O\left(N^{2 / 3} \mathrm{M}^{1 / 3}\right)$ edges

Edge Sparsification

Sparsification theorem: Let G be a graph with N vertices and M edges, we can construct $O(\log N)$ spanner for G with $O\left(N^{2 / 3} M^{1 / 3}\right)$ edges

$$
d=M / N
$$

$N / d^{1 / 3}$

$N / d^{1 / 3}$

Edge Sparsification

Sparsification theorem: Let G be a graph with N vertices and M edges, we can construct $O(\log N)$ spanner for G with $O\left(N^{2 / 3} M^{1 / 3}\right)$ edges

This is still larger than $O(n)$ if $m=\omega(n)$

Edge Sparsification

Sparsification theorem: Let G be a graph with N vertices and M edges, we can construct $O(\log N)$ spanner for G with $O\left(N^{2 / 3} M^{1 / 3}\right)$ edges

Goal: apply it on a graph where $O\left(N^{2 / 3} M^{1 / 3}\right)=O(n)$

The Spanner Algorithm

The Spanner Algorithm

Vertex Sparsification

Idea: divide the vertices into groups of close-by vertices, and treat each group as one vertex

Vertex Sparsification

Idea: divide the vertices into groups of close-by vertices, and treat each group as one vertex

Vertex Sparsification

Idea: divide the vertices into groups of close-by vertices, and treat each group as one vertex

Vertex Sparsification

Using the sparsification theorem: construct $O(n)$ size spanner for the contracted graph

Vertex Sparsification

Using the sparsification theorem: construct $O(n)$ size spanner for the contracted graph

Vertex Sparsification

Can be converted to a spanner for the original graph

Vertex Sparsification

Can be converted to a spanner for the original graph

The Spanner Algorithm

Conclusion

$O(\log n)$-spanners of size $O(n)$

$O(\log n)$-approximation for APSP in $O(1)$ rounds

Distributed APSP

Time complexity

Distributed APSP

 How to get a better approximation?Time complexity

Distributed APSP

 How to get a better approximation?Time complexity

Our Techniques

Shortest Paths

Long Paths

Near-additive Emulators

Short Paths

Distance Sensitive Toolkit

Our Techniques

Shortest Paths

Long Paths

Near-additive Emulators

Short Paths

Distance Sensitive Toolkit

Near-additive Emulator

A sparse graph H such that for all u, v :

$$
d(u, v) \leq d_{H}(u, v) \leq(1+\epsilon) d(u, v)+\beta
$$

Near-additive Emulator

A sparse graph H such that for all u, v :

$$
d(u, v) \leq d_{H}(u, v) \leq(1+\epsilon) d(u, v)+\beta
$$

$(1+\Theta(\epsilon))$-approximation for long distances!

Near-additive Emulator

A sparse graph H such that for all u, v :

$$
d(u, v) \leq d_{H}(u, v) \leq(1+\epsilon) d(u, v)+\beta
$$

Build a sparse near-additive emulator

$(1+\Theta(\epsilon))$-approximation for long distances!

Shortest Paths via Emulators

Left with short paths of length $t=O(\beta / \epsilon)$

Requires poly $(\log t)=$ poly $(\log \log n)$ time!

Shortest Paths via Emulators

Shortest Paths

Long Paths: $\Omega(\beta / \epsilon)$

Near-additive Emulators:
$(1+\Theta(\epsilon))$-approximation

Short Paths: $\mathbf{O}(\beta / \epsilon)$

Distance Sensitive Toolkit: poly $\left(\log \frac{\beta}{\epsilon}\right)$ time

Distributed APSP

Time complexity

Conclusion

We saw:

Round Complexity	Approximation
$\operatorname{poly}(\log \log n)$	$2+\epsilon$
$O(1)$	$O(\log n)$

Conclusion

We saw:

Round Complexity	Approximation
$\operatorname{poly}(\log \log n)$	$2+\epsilon$
$O(1)$	$O(\log n)$

Can we get $O(1)$-approximation in $O(1)$ rounds?

The Model - Congested Clique

n vertices

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

The Model - Congested Clique

What happens if we bound the memory?

- n machines
- Input per machine: $O(n)$ edges
- Each machine can send/receive a total of n messages of $O(\log n)$ bits per round

The Model - Linear Memory MPC

What happens if we bound the memory?

- $O(\mathrm{~m} / \mathrm{n})$ machines - total memory of $\tilde{O}(\mathrm{~m})$
- $\tilde{O}(n)$ memory per machine

The Model - Linear Memory MPC

$\checkmark O(\log n)$-approximation $\times O(1)$-approximation

- $O(\mathrm{~m} / \mathrm{n})$ machines - total memory of $\tilde{O}(\mathrm{~m})$
- $\tilde{O}(n)$ memory per machine

The Model - Sublinear Memory MPC

- $O\left(m / n^{\gamma}\right)$ machines - total memory of $\tilde{O}(m)$
- $\tilde{O}\left(n^{\gamma}\right)$ memory per machine, $\gamma<1$

The Model - Sublinear Memory MPC

- Spanners in poly $(\log \log n)$ time [BDGMN, 2021]
- Conditional $\Omega(\log n)$ lower bounds for shortest paths computations
- $O\left(m / n^{\gamma}\right)$ machines - total memory of $\widetilde{O}(m)$
- $\tilde{O}\left(n^{\gamma}\right)$ memory per machine, $\gamma<1$

The Model - Sublinear Memory MPC

See Friday's AMG talk:
Yasamin Nazari - Distance
Computation in MPC and related models

- $O\left(m / n^{\gamma}\right)$ machines - total memory of $\tilde{O}(m)$
- $\tilde{O}\left(n^{\gamma}\right)$ memory per machine, $\gamma<1$

The Model - Heterogeneous MPC

One linear machine,
The rest - sublinear machines

Next ADGA talk:
Orr Fischer - Massively
Parallel Computation in a
Heterogeneous Regime:
One Strong Machine Makes a Big Difference

Open Questions

- Can we get $O(1)$-approximation in $O(1)$ rounds?
- Directed/Exact shortest paths
- What other problems can be solved in $O(1)$ rounds?

Open Questions

O(1)-round algorithms:

- Approximate APSP
- Spanners
- Minimum Spanning Tree
- $(\Delta+1)$-Coloring
$O(\log \log n)$-round algorithms:
- Approximate Maximum Matching
- Maximal Independent Set
- Approximate Vertex Cover

