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Massively-Parallel Computing (MPC)
Input partitioned across 𝑁 machines

◦ This talk: graph problems

◦ m – #edges, n – #vertices, d = 2m/n

Space: 𝑆 per machine, ෨𝑂(𝑚) total

Communication round:
◦ Send and receive 𝑆 bits

◦ Local computation (unbounded)

Complexity measure: Rounds. Ideally O(1)…

[Karloff, Suri, Vassilvitski’10…]

𝐸1 𝐸𝑁… … … … … … …

𝐸 = 𝐸1 ∪⋯∪ 𝐸𝑁
𝐸 = 𝑚

S



Space Regimes
Sublinear: 𝑆 = ෩Θ 𝑛𝛾 for 𝛾 ∈ 0,1

Near-linear: 𝑆 = ෩Θ 𝑛

Superlinear: 𝑆 = ෩Θ 𝑛1+𝛾 for 𝛾 ∈ 0,1



Lower Bounds & MPC

Lower bounds in MPC -> Strong circuit complexity lower bounds

Conditional lower bounds?



2-vs.-1 Cycle Problem
Distinguish between:

Conjectured to require Ω log𝑛 rounds in sublinear MPC

Implies immediate hardness for many fundamental problems

[Ghaffari, Kuhn, Uitto’19], [Czumaj, Davies, Parter’21]: conditional hardness results (approximate max 
matching / vertex cover, coloring, spanners,…)

One cycle Two cycles



Our Question
2-vs.-1 Cycle is easy if we have one near-linear machine

New model: Heterogeneous MPC model (special case):
◦ 𝑁 sublinear machines

◦ 1 near-linear machine

Lower bounds still hold? Significantly faster algorithms?



Motivation

Efficiency - only one large 
machine needed!

“Minimal” strengthening of 
sublinear MPC bypasses all 

lower bounds!



Exact Minimum-Cut – O(1)
[Ghaffari,Nowicki,Thorup'20]

(Implicit) Results from Previous Works

Connectivity – O(1)
[Ahn, Guha, McGregor’12]

Maximal Independent Set –
𝑂(log logΔ)

[Ghaffari,Gouleakis,Konrad,Mitrovic,Rubinfeld'18]

(Δ + 1)-coloring – O(1)
[Assadi,Chen,Khanna’19]

Some State-of-the-Art results for the near-linear regime can be translated directly to HMPC



Results from [F., Horowitz, Oshman’22]
Sublinear HMPC Near-Linear

Minimum-weight 
spanning tree

𝑂 log𝑛
[ASSWZ’19]

𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠(
𝒎

𝒏
)) 𝑂 1

[AGM’12]

𝑶 𝒌 -spanner of size 

𝑶 𝒏𝟏+ Τ𝟏 𝒌

𝑂 log 𝑘
[BDGMN’21]

* Stretch 𝑘log 3

𝑶 𝟏 𝑂 1
[DFKL’21]

Maximal matching 𝑂( logΔ log logΔ

+ log log 𝑛)
[GU’19]

𝑶 𝐥𝐨𝐠
𝒎

𝒏
𝐥𝐨𝐠 𝐥𝐨𝐠

𝒎

𝒏

𝑂(log logΔ)
[BHH’19]
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The Simplest Framework

Sparsify to size O(n)

Solve on large machine



A More General Approach

Randomly sample graph of size 𝑶(𝒏)

Solve on large machine

Expand solution to entire graph



A More General Approach
Reduce Size

Local computation on Random Subgraph
Solve related problem on sparsified subgraph

Expand
Expand solution to entire graph using augmented data

Sample Random Subgraph
and send to large machine

Augment Data
Edges stored on are augmented with global data

Sampling
Lemma



A More General Approach
Reduce Size

Local computation on Random Subgraph
Solve related problem on sparsified subgraph

Expand
Expand solution to entire graph using augmented data

Sample Random Subgraph
and send to large machine

Augment Data
Edges stored on are augmented with global data

Sampling
Lemma



𝑃(𝑣𝑖 , 𝑣𝑗)

Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …



𝑃(𝑣𝑖 , 𝑣𝑗)

Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …

𝑃(𝑣𝑖 , 𝑣𝑗)



𝑃(𝑣𝑖 , 𝑣𝑗)

Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …

Want: send 𝑃(𝑣𝑖 , 𝑣𝑗) to each (𝑣𝑖 , 𝑣𝑗)

Cost: Ω(𝑚) messages in total – too much!

𝑃(𝑣𝑖 , 𝑣𝑗)



Labeling Schemes

𝑙(𝑣1)

𝑙(𝑣2)

𝑙(𝑣3)

𝑙(𝑣4)

𝑙(𝑣5)

𝑙(𝑣6)

𝑙(𝑣8)

𝑙(𝑣7)
Given 𝑙 𝑣𝑖 , 𝑙(𝑣𝑗),

what is P(𝑣𝑖 , 𝑣𝑗)? 

Given 𝑙 𝑣𝑖 , 𝑙(𝑣𝑗),

are 𝑣𝑖 , 𝑣𝑗 adjecent? 

Given 𝑙 𝑣𝑖 , 𝑙(𝑣𝑗),

What is dist(𝑣𝑖 , 𝑣𝑗)? 

(e.g. adjacency, distance)𝑃: 𝑉𝑥𝑉 → ℝ

Efficient = O(poly log 𝑛)

Complexity = label sizes



Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …

𝑙(𝑣1)

𝑙(𝑣2)

𝑙(𝑣3)

𝑙(𝑣4)

𝑙(𝑣5)

𝑙(𝑣6)

𝑙(𝑣8)

𝑙(𝑣7)



Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …

𝑙(𝑣1)

𝑙(𝑣2)

𝑙(𝑣3)

𝑙(𝑣4)

𝑙(𝑣5)

𝑙(𝑣6)

𝑙(𝑣8)

𝑙(𝑣7)

𝑙(𝑣1) 𝑙(𝑣7)



Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …

𝑙(𝑣1)

𝑙(𝑣2)

𝑙(𝑣3)

𝑙(𝑣4)

𝑙(𝑣5)

𝑙(𝑣6)

𝑙(𝑣8)

𝑙(𝑣7)

𝑙(𝑣1)

𝑙(𝑣7)

Implementation: sublinear-space sorting 
alg’ of [Goodrich, Sitchinava and Zhang'11] 

𝑙(𝑣1) 𝑙(𝑣7)

𝑙(𝑣2) 𝑙(𝑣4)

𝑙(𝑣3) 𝑙(𝑣4)

𝑙(𝑣6) 𝑙(𝑣3)

𝑙(𝑣2) 𝑙(𝑣5)

𝑙(𝑣5) 𝑙(𝑣6)

𝑙(𝑣7) 𝑙(𝑣3)

𝑙(𝑣1) 𝑙(𝑣2)

O(1) rounds!



Augmenting data & Labeling Schemes

𝐸1 𝐸𝑁… … … … … … …

(𝑣1, 𝑣?) (𝑣2, 𝑣?)

𝑙(𝑣1)
𝑙(𝑣2)

𝑙(𝑣1) 𝑙(𝑣1)

𝑙(𝑣1) 𝑙(𝑣1) 𝑙(𝑣1)



A More General Approach
Reduce Size

Local computation on Random Subgraph
Solve related problem on sparsified subgraph

Expand
Expand solution to entire graph using augmented data

Sample Random Subgraph
and send to large machine

Augment Data
Edges stored on are augmented with global data

Sampling
Lemma
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Examples

Exact Minimum-Cut – O(1)
[Ghaffari,Nowicki,Thorup'20]

Connectivity – O(1)
[Ahn, Guha, McGregor’12]

(Δ + 1)-coloring – O(1)
[Assadi,Chen,Khanna’19]

Spanners – O(1)
[F., Horowitz, Oshman’22]

MST – O(loglog(m/n))
[F., Horowitz, Oshman’22]



Connectivity

Connectivity – O(1)
[Ahn, Guha, McGregor’12]

Connectivity – O(1)
[Holm, King, Thorup, Zamir, Zwick’19]

Sketching Based Sampling based



k-out-contraction: Each vertex samples k edges. 

Connectivity Algorithm 
[Holm, King, Thorup, Zamir, Zwick’19]

Sampling lemma: 
For any 𝑘 = Ω(log 𝑛), the expected number inter-component edges of a random k-out-contraction is O(n/k).

k=2



Connectivity Algorithm 
[Holm, King, Thorup, Zamir, Zwick’19]

Sampling lemma: 
For any 𝑘 = Ω(log𝑛), the expected number inter-component edges of a random k-out-contraction is O(n/k).

Algorithm: 

(a) Send to            Θ(log 𝑛) random edges from each 𝑣 ∈ 𝑉

(b) computes the C.C of G’. Augments information of 

(c) locally marks inter-component edges and sends to

(d) outputs connected components 



Exact Minimum-Cut – O(1)
[Ghaffari,Nowicki,Thorup'20]

Sparsification lemma: 
(1) 2-out-contractions reduce number of vertices to 𝑂(𝑛/𝛿)

(2) Contracting the random graph 𝐸1/2𝛿 reduces number of edges to 𝑂(𝑛𝛿)

Both do not affect the min-cut with good probability *
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Exact Minimum-Cut – O(1)
[Ghaffari,Nowicki,Thorup'20]

Sparsification lemma: 
(1) 2-out-contractions reduce number of vertices to 𝑂(𝑛/𝛿)

(2) Contracting the random graph 𝐸1/2𝛿 reduces number of edges to 𝑂(𝑛𝛿)

Both do not affect the min-cut with good probability *

Algorithm: 

(a) Apply (1) to reduce number of vertices to 𝑂(𝑛/𝛿)

(b) Apply (2) to reduce number of edges to 𝑂
𝑛

𝛿
⋅ 𝛿 = 𝑂(𝑛)

(c) Send all edges to 

(d) outputs the min-cut of the graph 



(Δ + 1)-coloring [Assadi,Chen,Khanna’19]

Sampling lemma: 
If each 𝑣 ∈ 𝑉 chooses a random set C v ⊆ {1,2, … , Δ + 1} of size Θ(polylog 𝑛), 
then w.h.p. there is a proper coloring such that each vertex is colored from C(v)

Each edge remains w.p. 𝑝 ≤ polylog 𝑛 /Δ
=> Remaining graph is of size 𝑂(𝑛 polylog 𝑛)



Algorithm:

(a) ∀𝑣 ∈ 𝑉 , samples C v ⊆ {1,2, … , Δ + 1} of size Θ(polylog 𝑛)

(b) Let 𝐸’ = 𝑢, 𝑣 𝐶 𝑢 ∩ 𝐶 𝑣 ≠ ∅}. Send E’ to

(c)  Have            output a proper coloring

(Δ + 1)-coloring [Assadi,Chen,Khanna’19]

Sampling lemma: 
If each 𝑣 ∈ 𝑉 chooses a random set C v ⊆ {1,2, … , Δ + 1} of size Θ(polylog 𝑛), 
then w.h.p. there is a proper coloring such that each vertex is colored from C(v)



Next: Algorithms from [F., Horowitz, Oshman’22]
Sublinear HMPC Near-Linear

Minimum-weight 
spanning tree

𝑂 log𝑛
[ASSWZ’19]

𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠(
𝒎

𝒏
)) 𝑂 1

[AGM’12]

𝑶 𝒌 -spanner of size 

𝑶 𝒏𝟏+ Τ𝟏 𝒌

𝑂 log 𝑘
[BDGMN’21]

* Stretch 𝑘log 3

𝑶 𝟏 𝑂 1
[DFKL’21]

Maximal matching 𝑂( logΔ log logΔ

+ log log 𝑛)
[GU’19]

𝑶 𝐥𝐨𝐠
𝒎

𝒏
𝐥𝐨𝐠 𝐥𝐨𝐠

𝒎

𝒏

𝑂(log logΔ)
[BHH’19]



MST Algorithm Overview
Borůvka:



Doubly exponential Borůvka [Lotker, Pavlov, Patt-Shamir, Peleg'03]:

MST Algorithm Overview

After 𝑥 iterations: reduce to 
n

22
𝑥 components𝐹 → 𝐹 /(𝑘 + 1)

𝑘 = 1 𝑘 = 2



MST Algorithm Sampling Lemma (KKT’95)

Sampling Lemma [Karger, Klein, Tarjan’95]: There are at ≤ 𝑛/𝑝 edges which are light in G
(In expectation)

𝐺𝑝𝐺

Edge           is heavy if weight(       ) > weight(        ) for all         in the path of the tree between its two endpoints 



MST Algorithm Overview

Reduce
Size

Doubly exponential Borůvka
Reduce to 𝑛/𝑑 vertices in
𝑂(log log 𝑑) rounds

Sample

Take every edge
w.p. 1/𝑑. 
Send to

Compute &
Augment

Solve MST on 𝐺𝑝
𝑃 𝑣𝑖 , 𝑣𝑗 = heaviest

edge between 𝑣𝑖 , 𝑣𝑗
In MST(𝐺𝑝)

Expand

Find light edges in 
G using labels

𝑂(𝑛) edges remaining,
Solve in large machine

Sampling Lemma [Karger, Klein, Tarjan’95]: There are at ≤ 𝑛/𝑝 edges which are light in 𝐺



Sublinear HMPC Near-Linear

Minimum-weight 
spanning tree

𝑂 log𝑛
[ASSWZ’19]

𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠(
𝒎

𝒏
)) 𝑂 1

[AGM’12]

𝑶 𝒌 -spanner of size 

𝑶 𝒏𝟏+ Τ𝟏 𝒌

𝑂 log 𝑘
[BDGMN’21]

* Stretch 𝑘log 3

𝑶 𝟏 𝑂 1
[DFKL’21]

Maximal matching 𝑂( logΔ log logΔ

+ log log 𝑛)
[GU’19]

𝑶 𝐥𝐨𝐠
𝒎

𝒏
𝐥𝐨𝐠 𝐥𝐨𝐠

𝒎

𝒏

𝑂(log logΔ)
[BHH’19]

Next: Algorithms from [F., Horowitz, Oshman’22]



A spanner is a set of edges 𝐻 ⊆ 𝐸 of small size that approximately maintains distances of the original 
graph.

Good Parameters:

Size: 𝐻 = 𝑂(𝑛1+1/𝑘)

Approximation: ∀𝑢,𝑣dist𝐺 𝑢, 𝑣 ≤ dist𝐻 𝑢, 𝑣 ≤ (2𝑘 − 1) ⋅ dist𝐺(𝑢, 𝑣)

Spanners

-edges form a 2-spanner



Towards a Sampling Lemma for Spanners

𝐺𝑝𝐺

Size: 𝑂(𝑛1+
1

𝑘/𝑝)



The Baswana-Sen Spanner
For ℓ = 1,… , 𝑘:

◦ Each cluster survives w.p. 1/𝑛 Τ1 𝑘

◦ If 𝑣’s cluster is destroyed:

◦ If ∃neighbor 𝑢 in surviving cluster: assign 𝑣 to 𝑢’s cluster

◦ Else: remove 𝑣 from the graph

𝑢𝑣
+ add 𝑢, 𝑣 to spanner

+ add one edge to 
each previous 

adjacent cluster

𝐶𝑘 = ∅

𝑣



Analysis: Size of the Spanner
Edges are added when:

Node 𝑣 is re-clustered:
◦ At most once per level ⇒𝑂 𝑘 edges total

Node 𝑣 is removed:
◦ No adjacent cluster survived

⇒ 𝑣 was adjacent to O 𝑛 Τ1 𝑘 clusters (w.h.p.)

⇒𝑂 𝑛 Τ1 𝑘 edges added (one per adjacent cluster)

Total: 𝑂 𝑛1+ Τ1 𝑘

𝑢𝑣

𝑣



Analysis: Stretch
At level ℓ: cluster diameter ≤ 2ℓ

Let 𝑢, 𝑣 ∈ 𝐸

Suppose 𝑢 removed no later than 𝑣 :

Level ℓ ≤ 𝑘 − 1 :

𝑢 𝑣

2ℓ



Analysis: Stretch
At level ℓ: cluster diameter ≤ 2ℓ

Let 𝑢, 𝑣 ∈ 𝐸

Suppose 𝑢 removed no later than 𝑣 :

Level ℓ ≤ 𝑘 − 1 :

𝑢 𝑣
Path of length ≤ 2ℓ ≤ 2 𝑘 − 1

Stretch ≤ 2𝑘 − 1

2ℓ



Towards an HMPC Implementation
The large machine can’t hold 𝐺

Sub-sample edges of 𝐺 ⇒ 𝐺𝑝

For ℓ = 1,… , 𝑘:

• Each center survives w.p. 1/𝑛 Τ1 𝑘 *
• If 𝑣’s cluster died:

• If ∃neighbor 𝑢 in surviving cluster: assign 𝑣 to 𝑢’s cluster
• Add 𝑢, 𝑣 to spanner

• Else: remove 𝑣 from the graph
• Add one edge to each previous adjacent cluster

Large machine,
on 𝐺𝑝

Small machines,
on 𝐺



True vs. Sub-Sampled Baswana-Sen
Level 1:

True Baswana-Sen Perspective of the 
large machine

Perspective of the 
small machines

Sub-sampled Baswana-Sen



Sub-Sampled Baswana-Sen
Stretch: unchanged – depends on

◦ Cluster diameter ≤ 2𝑘

◦ Adding edges to all adjacent clusters upon removal

Size?



Analysis: Size of the Spanner



in 𝐺𝑝

in 𝐺

𝑂(𝑛 Τ1 𝑘/𝑝) clusters in 𝐺

Edges are added when:

Node 𝑣 is re-clustered:
◦ At most once per level ⇒𝑂 𝑘 edges total

Node 𝑣 is removed:
◦ No adjacent cluster survived

⇒ 𝑣 was adjacent to O 𝑛 Τ1 𝑘 clusters (w.h.p.)

⇒𝑂 𝑛 Τ1 𝑘 edges added (one per adjacent cluster)

Total: 𝑂 𝑛1+ Τ1 𝑘/𝑝



Spanner Algorithm Overview

Reduce
Size

Reduce to 𝑛/𝑑 vertices
using star contraction
(Like [DFKL’21])

Sample

Take every edge
w.p. 1/𝑑. 
Send to large
Machine

Compute &
Augment

Baswana-Sen 
on 𝐺𝑝. Send l(𝑣𝑖), 𝑙(𝑣𝑗)

inter-cluster labels

Expand

Using labels, 
find added edges
between clusters

𝑙(𝑣)
𝑙(𝑢)

𝑙(𝑤)
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In near-linear MPC: MST → 𝑚/𝑛 instances of Connectivity 

Is MST really as hard as many independent instances of Connectivity?

Open problems

O(1)-round MST algorithm?



Intuition: MIS ≥ MM in most distributed models

In near-linear MPC: both MIS and MM in O(log log Δ) rounds

Open problems

Maximal Independent Set –
𝑂(log logΔ)

[Ghaffari,Gouleakis,Konrad,Mitrovic,Rubinfeld'18]

Maximal Matching in 
𝑂(log logΔ)

[Behnezhad, Hajiaghayi, Harris'19]

?

O(log logΔ)-round Maximal Matching algorithm?



Open problems – Conditional Lower Bounds

Possible candidate: Many 2-vs-1 cycles?

Conditional Lower Bounds?



Open problems – Conditional Lower Bounds

Possible candidate: Many 2-vs-1 cycles?

Conditional Lower Bounds?
X

Hardness



Open problems – Results in Generalized HMPC

Super-linear total memory?



Can we get any speedup compared to sublinear-MPC?

Can other algorithms be derandomized as well? 

Inherent deterministic technique?

Open problems – Deterministic Algorithms

O(1)-round connectivity algorithm



Conclusions, Extensions & Open Problems

(𝑀𝑠𝑢𝑏, 𝑀𝑙𝑖𝑛, 𝑀𝑠𝑢𝑝) −Heterogeneous Model

𝑀𝑠𝑢𝑏(𝑚, 𝑛) total memory of

𝑀𝑙𝑖𝑛(𝑚, 𝑛) total memory of

𝑀𝑠𝑢𝑝(𝑚, 𝑛) total memory of
Deterministic algorithms?

O(1)-round MST algorithm?

Conditional Lower Bounds?
Possible candidate: Many 2-to-1 cycles?

Open Problems: Extensions:

Conclusion: Heterogeneous MPC circumvents hardness of sublinear MPC, and allows very fast algorithms

THANK YOU


