Massively Parallel Computing in a Heterogeneous Regime

 ORR FISCHERWEIZMANN INSTITUTE OF SCIENCE
BASED ON A JOINT WORK WITH ADI HOROWITZ AND ROTEM OSHMAN (TEL AVIV UNIVERSITY), AND SEVERAL PRIOR WORKS

Plan

Model \& Motivation

Techniques in HMPC

Prior and New Results

Open Problems

Massively-Parallel Computing (MPC)

Input partitioned across N machines
[Karloff, Suri, Vassilvitski'10...]

- This talk: graph problems
- m - \#edges, n - \#vertices, $d=2 m / n$

Space: S per machine, $\tilde{O}(m)$ total
Communication round:

- Send and receive S bits
- Local computation (unbounded)

Complexity measure: Rounds. Ideally O(1)...

Space Regimes

Sublinear: $S=\widetilde{\Theta}\left(n^{\gamma}\right)$ for $\gamma \in(0,1)$
\Rightarrow Near-linear: $S=\widetilde{\Theta}(n)$

Superlinear: $S=\widetilde{\Theta}\left(n^{1+\gamma}\right)$ for $\gamma \in(0,1)$

Lower Bounds \& MPC

Lower bounds in MPC -> Strong circuit complexity lower bounds

Conditional lower bounds?

2-vs.-1 Cycle Problem

Distinguish between:

Conjectured to require $\Omega(\log n)$ rounds in sublinear MPC
Implies immediate hardness for many fundamental problems
[Ghaffari, Kuhn, Uitto'19], [Czumaj, Davies, Parter'21]: conditional hardness results (approximate max matching / vertex cover, coloring, spanners,...)

Our Question

2-vs.-1 Cycle is easy if we have one near-linear machine
New model: Heterogeneous MPC model (special case):

- N sublinear machines
- 1 near-linear machine

nownoumem

Lower bounds still hold?
Significantly faster algorithms?

Motivation

"Minimal" strengthening of sublinear MPC bypasses all lower bounds!

(Implicit) Results from Previous Works

Some State-of-the-Art results for the near-linear regime can be translated directly to HMPC

Exact Minimum-Cut - O(1) $O(\log \log \Delta)$
[Ghaffari,Gouleakis,Konrad,Mitrovic,Rubinfeld'18] [Ghaffari,Nowicki,Thorup'20]

Results from [F., Horowitz, Oshman'22]

\(\left.$$
\begin{array}{|l|c|c|c|}\hline & \text { Sublinear } & \text { HMPC } & \text { Near-Linear } \\
\hline \begin{array}{l}\text { Minimum-weight } \\
\text { spanning tree }\end{array} & \begin{array}{c}O(\log n) \\
\text { [ASSWZ'19] }\end{array} & O\left(\log \log \left(\frac{m}{n}\right)\right) & \begin{array}{c}O(1) \\
\text { [AGM'12] }\end{array} \\
\hline \begin{array}{l}\boldsymbol{O}(\boldsymbol{k}) \text {-spanner of size } \\
\boldsymbol{O}\left(\boldsymbol{n}^{1+1 / k}\right)\end{array} & \begin{array}{c}O(\log k) \\
\text { [BDGMN'21] } \\
* \text { Stretch } k^{\log 3}\end{array}
$$ \& O(1) \& O(1)

[DFKL'21]\end{array}\right]\)| Maximal matching | $O(\sqrt{\log \Delta} \log \log \Delta$
 $+\sqrt{\log \log n)}$
 $\left[G U^{\prime} 19\right]$ | $O\left(\sqrt{\log \frac{m}{n}} \log \log \frac{m}{n}\right)$ |
| :---: | :---: | :---: |

Plan

Model \& Motivation

Techniques in HMPC

Prior and New Results

The Simplest Framework

A More General Approach

Randomly sample graph of size $\boldsymbol{O}(\boldsymbol{n})$

Solve on large machine

A More General Approach

Reduce Size

Sample Random Subgraph
 and send to large machine

Local computation on Random Subgraph

Solve related problem on sparsified subgraph

Augment Data

Edges stored on are augmented with global data
Expand
Expand solution to entire graph using augmented data

A More General Approach

Reduce Size

Sample Random Subgraph
 and send to large machine

Local computation on Random Subgraph

Solve related problem on sparsified subgraph

Augment Data

Edges stored on are augmented with global data
Expand
Expand solution to entire graph using augmented data

Augmenting data \& Labeling Schemes

Augmenting data \& Labeling Schemes

Augmenting data \& Labeling Schemes

Want: send $P\left(v_{i}, v_{j}\right)$ to each $\left(v_{i}, v_{j}\right)$
Cost: $\Omega(m)$ messages in total - too much!

Labeling Schemes

Complexity $=$ label sizes
Efficient $=0($ poly $\log n)$

Augmenting data \& Labeling Schemes

Augmenting data \& Labeling Schemes

Augmenting data \& Labeling Schemes

O(1) rounds!

Implementation: sublinear-space sorting alg' of [Goodrich, Sitchinava and Zhang'11]

Augmenting data \& Labeling Schemes

A More General Approach

Reduce Size

Sample Random Subgraph
 and send to large machine

Local computation on Random Subgraph

Solve related problem on sparsified subgraph

Augment Data

Edges stored on are augmented with global data
Expand
Expand solution to entire graph using augmented data

Plan

Model \& Motivation

Techniques in HMPC

Prior and New Results

Examples

Connectivity

Sketching Based

Connectivity - O(1)
[Holm, King, Thorup, Zamir, Zwick'19]

Sampling based

Connectivity Algorithm [Holm, King, Thorup, Zamir, Zwick'19]

k-out-contraction: Each vertex samples k edges.

Sampling lemma:
For any $k=\Omega(\log n)$, the expected number inter-component edges of a random k-out-contraction is $O(n / k)$.

Connectivity Algorithm [Holm, King, Thorup, Zamir, Zwick'19]

Sampling lemma:

For any $k=\Omega(\log n)$, the expected number inter-component edges of a random k-out-contraction is $O(n / k)$.

Algorithm:
(a) Send to

$\Theta(\log n)$ random edges from each $v \in V$
(b)
 computes the C.C of G^{\prime}. Augments information of
(c) locally marks inter-component edges and sends to \square
\square
\vdots
\vdots
(d) \square outputs connected components

Exact Minimum-Cut - O(1) [Ghaffari,Nowicki,Thorup'20]

Sparsification lemma:

(1) 2-out-contractions reduce number of vertices to $O(n / \delta)$
(2) Contracting the random graph $E_{1 / 2 \delta}$ reduces number of edges to $O(n \delta)$

Both do not affect the min-cut with good probability *

Exact Minimum-Cut - O(1) [Ghaffari,Nowicki,Thorup'20]

Sparsification lemma:

(1) 2-out-contractions reduce number of vertices to $O(n / \delta)$
(2) Contracting the random graph $E_{1 / 2 \delta}$ reduces number of edges to $O(n \delta)$

Both do not affect the min-cut with good probability *

Exact Minimum-Cut - O(1) [Ghaffari,Nowicki,Thorup'20]

Sparsification lemma:

(1) 2-out-contractions reduce number of vertices to $O(n / \delta)$
(2) Contracting the random graph $E_{1 / 2 \delta}$ reduces number of edges to $O(n \delta)$

Both do not affect the min-cut with good probability *

Algorithm:
(a) Apply (1) to reduce number of vertices to $O(n / \delta)$

Exact Minimum-Cut - O(1) [Ghaffari,Nowicki,Thorup'20]

Sparsification lemma:

(1) 2-out-contractions reduce number of vertices to $O(n / \delta)$
(2) Contracting the random graph $E_{1 / 2 \delta}$ reduces number of edges to $O(n \delta)$

Both do not affect the min-cut with good probability *

Algorithm:
(a) Apply (1) to reduce number of vertices to $O(n / \delta)$
(b) Apply (2) to reduce number of edges to $O\left(\frac{n}{\delta} \cdot \delta\right)=O(n)$

Exact Minimum-Cut - O(1) [Ghaffari,Nowicki,Thorup'20]

Sparsification lemma:
 (1) 2-out-contractions reduce number of vertices to $O(n / \delta)$
 (2) Contracting the random graph $E_{1 / 2 \delta}$ reduces number of edges to $O(n \delta)$
 Both do not affect the min-cut with good probability *

Algorithm:
(a) Apply (1) to reduce number of vertices to $O(n / \delta)$
(b) Apply (2) to reduce number of edges to $O\left(\frac{n}{\delta} \cdot \delta\right)=O(n)$
(c) Send all edges to

(d) \square outputs the min-cut of the graph

($\Delta+1$)-coloring [Assadi,Chen,Khanna'19]
 90 060

Sampling lemma:

If each $v \in V$ chooses a random set $C(v) \subseteq\{1,2, \ldots, \Delta+1\}$ of size $\Theta(\operatorname{polylog} n)$, then w.h.p. there is a proper coloring such that each vertex is colored from $\mathrm{C}(\mathrm{v})$

Each edge remains w.p. $p \leq$ polylog n / Δ => Remaining graph is of size O (n polylog n)

($\Delta+1$)-coloring [Assadi,Chen,Khanna'19] : ${ }^{\circ}$

Sampling lemma:

If each $v \in V$ chooses a random set $\mathrm{C}(\mathrm{v}) \subseteq\{1,2, \ldots, \Delta+1\}$ of size Θ (polylog n), then w.h.p. there is a proper coloring such that each vertex is colored from $\mathrm{C}(\mathrm{v})$

Algorithm:
(a) $\forall v \in V$, samples $C(v) \subseteq\{1,2, \ldots, \Delta+1\}$ of size $\Theta($ polylog $n)$
(b) Let $E^{\prime}=\{\{u, v\} \mid C(u) \cap C(v) \neq \varnothing\}$. Send E^{\prime} to

(c) Have output a proper coloring

Next: Algorithms from [F., Horowitz, Oshman'22]

	Sublinear	HMPC	Near-Linear
Minimum-weight spanning tree	$\begin{gathered} O(\log n) \\ {[\text { ASSWZ'19] }} \end{gathered}$	$O\left(\log \log \left(\frac{m}{n}\right)\right)$	$\begin{gathered} O(1) \\ {\left[A G M^{\prime} 12\right]} \end{gathered}$
$\boldsymbol{O}(\boldsymbol{k})$-spanner of size $O\left(n^{1+1 / k}\right)$	$\begin{gathered} O(\log k) \\ {[\text { BDGMN } 21]} \\ \text { * Stretch } k^{\log 3} \end{gathered}$	O(1)	$\begin{gathered} O(1) \\ {\left[D F K L^{\prime} 21\right]} \end{gathered}$
Maximal matching	$\begin{gathered} O(\sqrt{\log \Delta} \log \log \Delta \\ +\sqrt{\log \log n)} \\ {\left[G U^{\prime} 19\right]} \end{gathered}$	$O\left(\sqrt{\log \frac{m}{n}} \log \log \frac{m}{n}\right)$	$\begin{gathered} O(\log \log \Delta) \\ {\left[B H H^{\prime} 19\right]} \end{gathered}$

MST Algorithm Overview

Borůvka:

MST Algorithm Overview

Doubly exponential Borůvka [Lotker, Pavlov, Patt-Shamir, Peleg'03]:

$|F| \rightarrow|F| /(k+1)$

After x iterations: reduce to $\frac{\mathrm{n}}{2^{2^{x}}}$ components

MST Algorithm Sampling Lemma (KKT’95)

Edge
is heavy if weight \quad) $>$ weight() for all in the path of the tree between its two endpoints

Sampling Lemma [Karger, Klein, Tarjan'95]: There are at $\leq n / p$ edges which are light in G (In expectation)

MST Algorithm Overview

Sampling Lemma [Karger, Klein, Tarjan'95]: There are at $\leq n / p$ edges which are light in G

Doubly exponential Borůvka Reduce to n / d vertices in $O(\log \log d)$ rounds

Take every edge w.p. $1 / d$.

Send to

Solve MST on G_{p} $P\left(v_{i}, v_{j}\right)=$ heaviest edge between v_{i}, v_{j} $\ln \operatorname{MST}\left(G_{p}\right)$

Find light edges in G using labels
$O(n)$ edges remaining, Solve in large machine

Next: Algorithms from [F., Horowitz, Oshman'22]

$\left.\begin{array}{|l|c|c|c|}\hline & \text { Sublinear } & \text { HMPC } & \text { Near-Linear } \\ \hline \begin{array}{l}\text { Minimum-weight } \\ \text { spanning tree }\end{array} & \begin{array}{c}O(\log n) \\ \text { [ASSWZ'19] }\end{array} & O\left(\log \log \left(\frac{m}{n}\right)\right) & \begin{array}{c}O(1) \\ \text { [AGM'12] }\end{array} \\ \hline \begin{array}{l}\boldsymbol{O}(\boldsymbol{k}) \text {-spanner of size } \\ \boldsymbol{O}\left(\boldsymbol{n}^{1+1 / k}\right)\end{array} & \begin{array}{c}O(\log k) \\ \text { [BDGMN'21] } \\ \text { *Stretch } k^{\log 3}\end{array} & O(1) & O(1) \\ \text { [DFKL'21] }\end{array}\right]$

Spanners

A spanner is a set of edges $H \subseteq E$ of small size that approximately maintains distances of the original graph.

\square-edges form a 2-spanner

Good Parameters:
Size: $|H|=O\left(n^{1+1 / k}\right)$
Approximation: $\forall_{u, v} \operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq(2 k-1) \cdot \operatorname{dist}_{G}(u, v)$

Towards a Sampling Lemma for Spanners

Size: $O\left(n^{1+\frac{1}{k}} / p\right)$

The Baswana-Sen Spanner

For $\ell=1, \ldots, k$:

- Each cluster survives w.p. $1 / n^{1 / k} \quad C_{k}=\varnothing$
- If v^{\prime} s cluster is destroyed:
- If \exists neighbor u in surviving cluster: assign v to u 's cluster

$$
+ \text { add }\{u, v\} \text { to spanner }
$$

- Else: remove v from the graph

$$
\begin{aligned}
& \text { + add one edge to } \\
& \text { each previous } \\
& \text { adjacent cluster } \\
& \hline
\end{aligned}
$$

Analysis: Size of the Spanner

Edges are added when:

Node v is re-clustered:

- At most once per level $\Rightarrow O(k)$ edges total

Node v is removed:

- No adjacent cluster survived
$\Rightarrow v$ was adjacent to $0\left(n^{1 / k}\right)$ clusters (w.h.p.)
$\Rightarrow O\left(n^{1 / k}\right)$ edges added (one per adjacent cluster)
Total: $O\left(n^{1+1 / k}\right)$

Analysis: Stretch

At level ℓ : cluster diameter $\leq 2 \ell$
«..
Let $\{u, v\} \in E$
Suppose u removed no later than v :

Level $\ell \leq k-1$:

Analysis: Stretch

At level ℓ : cluster diameter $\leq 2 \ell$
«..
Let $\{u, v\} \in E$
Suppose u removed no later than v :

Level $\ell \leq k-1$:

Towards an HMPC Implementation

The large machine can't hold G
Sub-sample edges of $G \Rightarrow G_{p}$

For $\ell=1, \ldots, k$:

- Each center survives w.p. $1 / n^{1 / k} *$
- If v 's cluster died:
- If \exists neighbor u in surviving cluster: assign v to u 's cluster
- Add $\{u, v\}$ to spanner
- Else: remove v from the graph
- Add one edge to each previous adjacent cluster
$\left\{\begin{array}{l}\text { Large machine, } \\ \text { on } G_{p} \\ \text { small machines, } \\ \text { on } G\end{array}\right.$

True vs. Sub-Sampled Baswana-Sen

Level 1:

True Baswana-Sen

Sub-sampled Baswana-Sen

Sub-Sampled Baswana-Sen

Stretch: unchanged - depends on

- Cluster diameter $\leq 2 k$
- Adding edges to all adjacent clusters upon removal

Size?

Analysis: Size of the Spanner

Edges are added when:
Node v is re-clustered:

- At most once per level $\Rightarrow O(k)$ edges total

Node v is removed: \quad in G_{p}

- No adjacent cluster survived

$$
\begin{aligned}
& \Rightarrow v \text { was adjacent to } \mathrm{O}\left(n^{1 / k}\right) \text { clusters (w.h.p.) } \\
& \Rightarrow 0\left(n^{1 / k}\right) \text { edges added (one per adjacent cluster) }
\end{aligned} \quad \neg \quad O\left(n^{1 / k} / p\right) \text { clusters in } G
$$

Total: $O\left(n^{1+1 / k} / p\right)$

$$
\text { in } G
$$

Spanner Algorithm Overview

Reduce Size

Reduce to n / d vertices using star contraction (Like [DFKL’21])

Take every edge w.p. $1 / d$.

Send to large Machine

Baswana-Sen on G_{p}. Send $\mathrm{l}\left(v_{i}\right), l\left(v_{j}\right)$ inter-cluster labels

Using labels, find added edges between clusters

Plan

Model \& Motivation

Techniques in HMPC

Prior and New Results

Open Problems

Open problems

```
O(1)-round MST algorithm?
```

In near-linear MPC: MST $\rightarrow m / n$ instances of Connectivity
Is MST really as hard as many independent instances of Connectivity?

Open problems

$\mathrm{O}(\log \log \Delta)$-round Maximal Matching algorithm?

Intuition: MIS \geq MM in most distributed models
In near-linear MPC: both MIS and MM in O(log $\log \Delta)$ rounds

Open problems - Conditional Lower Bounds

Open problems - Conditional Lower Bounds

Conditional Lower Bounds?

Possible candidate: Many 2-vs-1 cycles?

000000000

Open problems - Results in Generalized HMPC

Super-linear total memory?

Open problems - Deterministic Algorithms

Can we get any speedup compared to sublinear-MPC?

O(1)-round connectivity algorithm

Can other algorithms be derandomized as well?
Inherent deterministic technique?

Conclusions, Extensions \& Open Problems

Conclusion: Heterogeneous MPC circumvents hardness of sublinear MPC, and allows very fast algorithms

Open Problems:

O(1)-round MST algorithm?

Deterministic algorithms?

Conditional Lower Bounds?
Possible candidate: Many 2-to-1 cycles?
000000

Extensions:

$$
\left(\begin{array}{c}
\left(M_{\text {sub }}, M_{\text {lin }}, M_{\text {sup }}\right) \text {-Heterogeneous Model } \\
M_{\text {sub }}(m, n) \text { total memory of } \\
M_{\text {lin }}(m, n) \text { total memory of } \\
M_{\text {sup }}(m, n) \text { total memory of }
\end{array}\right.
$$

