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Massively-Parallel Computing (MPC)

Input partitioned across N machines [Karloff, Suri, Vassilvitski’10...]
o This talk: graph problems

° m — #edges, n — #vertices, d = 2m/n
Space: S per machine, O(m) total

Communication round:
o Send and receive S bits

o Local computation (unbounded)

Complexity measure: Rounds. Ideally O(1)...
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Space Regimes
m) Sublinear: S = 0(n?) fory € (0,1)

) Near-linear: S = O(n)




Lower Bounds & MPC

Lower bounds in MPC -> Strong circuit complexity lower bounds

Conditional lower bounds?




2-vs.-1 Cycle Problem

Distinguish between:

4 )
\_ One cycle ) \_ Two cycles

Conjectured to require Q(logn) rounds in sublinear MPC

Implies immediate hardness for many fundamental problems

[Ghaffari, Kuhn, Uitto’19], [Czumaj, Davies, Parter’21]: conditional hardness results (approximate max
matching / vertex cover, coloring, spanners,...)




Our Question

2-vs.-1 Cycle is easy if we have one near-linear machine

New model: Heterogeneous MPC model (special case):
o N sublinear machines

o 1 near-linear machine
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Lower bounds still hold? Significantly faster algorithms?




Motivation
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Efficiency - only one large
machine needed!
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(Implicit) Results from Previous Works

Some State-of-the-Art results for the near-linear regime can be translated directly to HMPC

4 Connectivity — O(1) N 4 (A + 1)-coloring — O(1) N
[Ahn, Guha, McGregor’12] [Assadi,Chen,Khanna’19]
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4 Maximal Independent Set — N Exact Minimum-Cut — O(1)
O(loglogA) [Ghaffari,Nowicki,Thorup'20] - - = =
[Ghaffari,GouIeaw,RubinfeldlS] I I I I - - - -
\ J NG /




Results from [F., Horowitz, Oshman’22]

Sublinear HMPC Near-Linear
Minimum-weight 0(logn) 0(log log(m)) 0(1)
spanning tree [ASSWZ’19] n [AGM’12]
O (k)-spanner of size O(logk) o(1) 0(1)
O(nl"'l/k) [BDGMN’21] [DFKL'21]
* Stretch k1083
Maximal matchin m m O(loglog A
g O(y/logAloglogA 0 < /log—log log—) [(BHgH’lgé] )
+ /loglogn) n n
[GU’19]
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The Simplest Framework

Sparsify to size O(n)

Solve on large machine




A More General Approach

Randomly sample graph of size 0 (n) W > {*ﬁﬁr}ﬁ
S G

Expand solution to entire graph

Solve on large machine




A More General Approach

Lemma

4 )
Sampling

Reduce Size

Sample Random Subgraph
and send to large machine

Local computation on Random Subgraph
Solve related problem on sparsified subgraph

Augment Data

L y Edges stored on are augmented with global data

Expand
Expand solution to entire graph using augmented data
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Augmenting data & Labeling Schemes
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Augmenting data & Labeling Schemes




Augmenting data & Labeling Schemes
Want: send P(v;, v;) to each (v;, vj)
Cost: (}(m) messages in total —too much! %’
u& N /
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Labeling Schemes

P:VxV — R (esg. adjacency, distance)
[(vs)
Given [(v;), [(v)),
[(vy) what is P(v;, v)?

Given [(v;), [(v)), Given [(v;), [(v)),
are v;, vj adjecent? What is dist(v;, v;)?

[(vq)

Complexity = label sizes

Efficient = O(poly logn)




Augmenting data & Labeling Schemes
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Augmenting data & Labeling Schemes
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Augmenting data & Labeling Schemes

O(1) rounds!

Implementation: sublinear-space sorting
alg’ of [Goodrich, Sitchinava and Zhang'11]

Ey
I(v;) @—@ I(vy) I(v;) @@ I(vs)
I(v,) @—@ I(v,) I(vy) @@ (v,
I(v;) @—@ I(v,) I(v;) @—®i(y)
l(ve) @—@ l(v3) l(vi) @—@L(v)




Augmenting data & Labeling Schemes
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Examples

4 Connectivity — O(1) N 4 (A + 1)-coloring — O(1) N Exact Minimum-Cut — O(1) A
[Ahn, Guha, McGregor’12] [Assadi,Chen,Khanna’19] [Ghaffari,Nowicki,Thorup'20]
'/—.‘\/ﬁ . zi %
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Spanners — O(1) ) 4 MST — O(loglog(m/n))
[F., Horowitz, Oshman’22] [F., Horowitz, Oshman’22]




Connectivity
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Connectivity — O(1)
[Ahn, Guha, McGregor’12]
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Sketching Based
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Connectivity — O(1)
[HoIm, King, Thorup, Zamir, Zwick’19]
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Sampling based




Connectivity Algorithm
[Holm, King, Thorup, Zamir, Zwick’19]

k-out-contraction: Each vertex samples kedges.

k=2

4 )

Sampling lemma:
Forany k = Q(logn), the expected number inter-component edges of a random A-out-contraction is O(n/k).

N J




Connectivity Algorithm
[Holm, King, Thorup, Zamir, Zwick’19]
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Sampling lemma:

Forany k = Q(logn), the expected number inter-component edges of a random k-out-contraction is O(n/k).

/Algorithm:

~

=
%

O

| Ga)

oo




Exact Minimum-Cut — O(1)
[Ghaffari,Nowicki, Thorup'20] m

-

Sparsification lemma:
(1) 2-out-contractions reduce number of vertices to O(n/6)
(2) Contracting the random graph Ej /,5 reduces number of edges to 0 (no)

Both do not affect the min-cut with good probability *
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Exact Minimum-Cut — O(1)
[Ghaffari,Nowicki, Thorup'20] m

4 Sparsification lemma: )
(1) 2-out-contractions reduce number of vertices to O(n/6)
(2) Contracting the random graph Ej /,5 reduces number of edges to 0 (no)
\_ Both do not affect the min-cut with good probability * )

/Algorithm: \
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E = TR
(a) Apply (1) to reduce number of vertices to 0(n/d) Z 2
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Exact Minimum-Cut — O(1)
[Ghaffari,Nowicki, Thorup'20] m
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Sparsification lemma:
(1) 2-out-contractions reduce number of vertices to O(n/6)
(2) Contracting the random graph Ej /,5 reduces number of edges to 0 (no)

Both do not affect the min-cut with good probability *

/Algorithm: \

(a) Apply (1) to reduce number of vertices to 0(n/d)

(b) Apply (2) to reduce number of edges to O (% : 6) = 0(n)

\_ /




Exact Minimum-Cut — O(1)
[Ghaffari,Nowicki, Thorup'20] m

-

Sparsification lemma:
(1) 2-out-contractions reduce number of vertices to O(n/6)
(2) Contracting the random graph Ej /,5 reduces number of edges to 0 (no)

\_ Both do not affect the min-cut with good probability * )

/Algorithm: \

(a) Apply (1) to reduce number of vertices to 0(n/d)

(b) Apply (2) to reduce number of edges to O (% : 6) = 0(n)

(c) Send all edges to {=¢
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(A + 1)-coloring [Assadi,Chen,Khanna'19] &

4 )

Sampling lemma:
If each v € V chooses a random set C(v) € {1,2, ..., A + 1} of size @(polylogn),
then w.h.p. there is a proper coloring such that each vertex is colored from C(v)

Each edge remains w.p. p < polylogn /A
=> Remaining graph is of size O(n polylogn)




(A + 1)-coloring [Assadi,Chen,Khanna'19] &

-

~
Sampling lemma:
If each v € V chooses a random set C(v) € {1,2, ..., A + 1} of size O(polylogn),
then w.h.p. there is a proper coloring such that each vertex is colored from C(v)
\ %

/Algorithm: \

(a) Vv €V ,= samples C(v) € {1,2, ...,A + 1} of size ©(polylogn)

(b) Let E” = {{u, v}| C(u) N C(v) # 0}. Send £’ to =
VAR

(c) Have = output a proper coloring

e 3
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Next: Algorithms from [F., Horowitz, Oshman’22]
Sublinear HMPC Near-Linear
Minimum-weight 0(logn) 0(log log(m)) 0(1)
spanning tree [ASSWZ’19] n [AGM’12]
O (k)-spanner of size O(logk) o(1) 0(1)
O(nl"'l/k) [BDGMN’21] [DFKL'21]
* Stretch k083
Maximal matching 0(\/@loglogA P m O(loglogA)
+/loglogn) O\loeT leloe s, [BHR19]
[GU’19]




MST Algorithm Overview

Boruvka:
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MST Algorithm Overview

Doubly exponential Bortvka [Lotker, Pavlov, Patt-Shamir, Peleg'03]:

-

\_ k=1 k=2

IF| > |F|/(k + 1) After x iterations: reduce to 2% components




MST Algorithm Sampling Lemma (KKT’95)
€ 2 (G, 2

N NG /

Edge\is heavy if weightN> weight( ) for all in the path of the tree between its two endpoints

Sampling Lemma [Karger, Klein, Tarjan’95]: There are at < n/p edges which are lightin G
(In expectation)




MST Algorithm Overview

[Sampling Lemma [Karger, Klein, Tarjan’95]: There are at < n/p edges which are lightin G ]
Reduce Sample Compute & Expand
Size Augment
) 4 ) 4 )
® / [ _q\\
X I:> ¢ ® &< * :b 0 (n) edges remaining,
— — o " Solve in large machine
Y __*  J e -
Doubly exponential Boruvka  Take every edge Solve MST on (4, Find light edges in
gca(?scTotoog/i:E;t;ces in W.p. 1/d P(vi, Uj) — heaviest G using labels
g10§8 edge between v;, v;
In MST(G)
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Next: Algorithms from [F., Horowitz, Oshman’22]
Sublinear HMPC Near-Linear
Minimum-weight 0(logn) 0(log log(m)) 0(1)
spanning tree [ASSWZ’19] n [AGM’12]
O (k)-spanner of size O(logk) o(1) 0(1)
0(n1+1/k) [BDGMN’21] [DFKL'21]
* Stretch k083
Maximal matching 0(\/@loglogA P m O(loglogA)
+/loglogn) O\loeT leloe s, [BHR19]
[GU’19]




Spanners

A spanner is a set of edges H € E of small size that approximately maintains distances of the original
graph.

% ‘\.@ B -edges form a 2-spanner

Good Parameters:

Size: |[H| = 0(n**t1/k)

Approximation: V, , dists (u, v) < disty(u, v) < (2k — 1) - distg(u, v)




Towards a Sampling Lemmma for Spanners
T N

1
Size: 0(n' 1k /p)




The Baswana-Sen Spanner

Forf =1, ..., k:
> Each cluster survives w.p. 1/n1/k [ Ck =0 ]
o If v’s cluster is destroyed:
o If Aneighbor u in surviving cluster: assign v to u’s cluster

v

[+ add {u, v} to spanner]

o Else: remove v from the graph

% a )

+ add one edge to
each previous
adjacent cluster




Analysis: Size of the Spanner

Edges are added when:

Node v is re-clustered:
> At most once per level = 0(k) edges total

Node v is removed:
> No adjacent cluster survived

= v was adjacent to O(nl/k) clusters (w.h.p.) 1%

= O(nl/k) edges added (one per adjacent cluster)

Total: O(nt*1/k)




Analysis: Stretch

At level £: cluster diameter < 2¢

Let {u, v} € E

Suppose u removed no later than v :

Level ¢ < k —1:

_ M



Analysis: Stretch

At level £: cluster diameter < 2¢

Let {u, v} € E

Suppose u removed no later than v :

< — .
level < k —1: Path of length < 2¢ < 2(k — 1)

|:>[ Stretch < 2k — 1 J




Towards an HMPC Implementation

The large machine can’t hold G

Sub-sample edgesof G = G,

( ™
Forf{ =1, ..., k:
e Each center survives w.p. 1/nl/k *
e If v’s cluster died:
* If Aneighbor u in surviving cluster: assign v to u’s cluster :I_ Large machine,
« Add {u, v} to spanner on Gp
* Else: remove v from the graph :I_ Small machines,
L  Add one edge to each previous adjacent cluster ) on G




True vs. Sub-Sampled Baswana-Sen

Level 1:

True Baswana-Sen Perspective of the Perspective of the

\Iarge machine small machines /

Sub-sampled Baswana-Sen




Sub-Sampled Baswana-Sen

Stretch: unchanged — depends on
o Cluster diameter < 2k

o Adding edges to all adjacent clusters upon removal

Size?




Analysis: Size of the Spanner

Edges are added when:
Node v is re-clustered: ‘/
> At most once per level = 0(k) edges total
Node v is removed:
° No adjacent cluster survive

> v was-to O(nl/k) clusters (w h.p.)

Total: 0(n*1/% /p) i




Spanner Algorithm Overview

Reduce Sample Compute & Expand
Size Augment
,° 4 4 ) 4 )
[(u

i ) | A
Ce fk * \_ \_ ) \_ lw) )
Reduce ton/d vertices  Take every edge Baswana-Sen Using labels,
using star contraction w.p. 1/d. on G,. Send I(v;),l(v;) find added edges
(Like [DFKL'21]) Send to large inter-cluster labels between clusters

Machine ,@,
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Open problems

[ O(1)-round MST algorithm? J

In near-linear MPC: MST — m/n instances of Connectivity

Is MIST really as hard as many independent instances of Connectivity?




Open problems

[ O(loglog A)-round Maximal Matching algorithm? J

Intuition: MIS 2 MM in most distributed models
In near-linear MPC: both MIS and MM in O(loglog A) rounds

4 Maximal Independent Set — N 4 Maximal Matching in
O(loglogA) O(loglogA)

[Ghaffari,Gouleakis,Konrad,Mitrovic,Rubinfeld'18] [Behnezhwis'w]
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Open problems — Conditional Lower Bounds

[ Conditional Lower Bounds? J

-

Possible candidate: Many 2-vs-1 cycles? A
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Open problems — Conditional Lower Bounds

[ Conditional Lower Bounds? J

A /\
OoOlko)

-

Possible candidate: Many 2-vs-1 cycles?




Open problems — Results in Generalized HMPC
N/ 2

N
) | / -||| o 1 1'.1
o . 1 TH
w - [ ] w - [ ] [ ] [ ] w - [ ] w -
II n - n . n - n . n - n . n - n .

-~

Super-linear total memory?




Open problems — Deterministic Algorithms

Can we get any speedup compared to sublinear-MPC?

[ O(1)-round connectivity algorithm I

Can other algorithms be derandomized as well?

Inherent deterministic technique?




Conclusions, Extensions & Open Problems

[Conclusion: Heterogeneous MPC circumvents hardness of sublinear MPC, and allows very fast algorithms ]

Open Problems: Extensions:
e R //’ ‘\\
O(1)-round MST algorithm? (Msup, Miin, Msup) —Heterogeneous Model
q J Mg, (m, n) total memory of @
4 h M,;,, (m, n) total memory of ;;

Deterministic algorithms?

- J K
4 )

M., (m, n) total memory of “/

Conditional Lower Bounds?
Possible candidate: Many 2-to-1 cycles?
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