Massively Parallel Computing in a Heterogeneous Regime

ORR FISCHER

WEIZMANN INSTITUTE OF SCIENCE

BASED ON A JOINT WORK WITH ADI HOROWITZ AND ROTEM OSHMAN (TEL AVIV UNIVERSITY), AND SEVERAL PRIOR WORKS

*Some images used are under Creative Common License CC BY-SA 2.0/3.0 from Wikimedia.

Plan

Model & Motivation

Techniques in HMPC

Prior and New Results

Open Problems

Massively-Parallel Computing (MPC)

Input partitioned across N machines

- This talk: graph problems
- m #edges, n #vertices, d = 2m/n

Space: S per machine, $\tilde{O}(m)$ total

Communication round:

- Send and receive S bits
- Local computation (unbounded)

Complexity measure: Rounds. Ideally O(1)...

Sublinear: $S = \widetilde{\Theta}(n^{\gamma})$ for $\gamma \in (0,1)$

$$ightarrow$$
 Near-linear: $S = \widetilde{\Theta}(n)$

Superlinear:
$$S = \widetilde{\Theta}(n^{1+\gamma})$$
 for $\gamma \in (0,1)$

Lower Bounds & MPC

Lower bounds in MPC -> Strong circuit complexity lower bounds

Conditional lower bounds?

2-vs.-1 Cycle Problem

Distinguish between:

Conjectured to require $\Omega(\log n)$ rounds in sublinear MPC

Implies immediate hardness for many fundamental problems

[Ghaffari, Kuhn, Uitto'19], [Czumaj, Davies, Parter'21]: conditional hardness results (approximate max matching / vertex cover, coloring, spanners,...)

Our Question

2-vs.-1 Cycle is easy if we have one near-linear machine

New model: Heterogeneous MPC model (special case):

- N sublinear machines
- 1 near-linear machine

Lower bounds still hold?

Significantly faster algorithms?

Motivation

Efficiency - only one large machine needed!

"Minimal" strengthening of sublinear MPC bypasses all lower bounds!

(Implicit) Results from Previous Works

Some State-of-the-Art results for the near-linear regime can be translated directly to HMPC

Results from [F., Horowitz, Oshman'22]

	Sublinear	НМРС	Near-Linear
Minimum-weight spanning tree	0(log n) [ASSWZ'19]	$O(\log \log(\frac{m}{n}))$	<i>0</i> (1) [AGM'12]
$oldsymbol{O}(k)$ -spanner of size $oldsymbol{O}ig(n^{1+1/k}ig)$	O(log k) [BDGMN'21] * Stretch k ^{log 3}	0 (1)	0(1) [D F KL'21]
Maximal matching	$O(\sqrt{\log \Delta} \log \log \Delta + \sqrt{\log \log n})$ [GU'19]	$O\left(\sqrt{\log \frac{m}{n}}\log \log \frac{m}{n}\right)$	<i>O</i> (log log Δ) [BHH'19]

Plan

Model & Motivation

Techniques in HMPC

Prior and New Results

Open Problems

The Simplest Framework

	Reduce Size	
Sampling Lemma	Sample Random Subgraph and send to large machine	
	Local computation on Random Subgraph Solve related problem on sparsified subgraph	
	Augment Data Edges stored on are augmented with global data	
	Expand	

11 m

Expand solution to entire graph using augmented data

	Reduce Size	
Sampling Lemma	Sample Random Subgraph and send to large machine	
	Local computation on Random Subgraph Solve related problem on sparsified subgraph	
	Augment Data Edges stored on are augmented with global data	
	Expand Expand solution to entire graph using augmented data	

Labeling Schemes

Efficient = $O(\operatorname{poly} \log n)$

O(1) rounds!

Implementation: sublinear-space sorting alg' of [Goodrich, Sitchinava and Zhang'11]

	Reduce Size	
Sampling Lemma	Sample Random Subgraph and send to large machine	
	Local computation on Random Subgraph Solve related problem on sparsified subgraph	
	Augment Data Edges stored on are augmented with global data	
	Expand	

11 m

Expand solution to entire graph using augmented data

Plan

Model & Motivation

Techniques in HMPC

Prior and New Results

Open Problems

Examples

Connectivity

Sketching Based

Sampling based

Connectivity Algorithm [Holm, King, Thorup, Zamir, Zwick'19]

Sampling lemma:

For any $k = \Omega(\log n)$, the expected number inter-component edges of a random k-out-contraction is O(n/k).

Connectivity Algorithm [Holm, King, Thorup, Zamir, Zwick'19]

Sampling lemma:

For any $k = \Omega(\log n)$, the expected number inter-component edges of a random k-out-contraction is O(n/k).

Sparsification lemma: (1) 2-out-contractions reduce number of **vertices** to $O(n/\delta)$ (2) Contracting the random graph $E_{1/2\delta}$ reduces number of **edges** to $O(n\delta)$ Both do not affect the min-cut with good probability *

Sparsification lemma: (1) 2-out-contractions reduce number of **vertices** to $O(n/\delta)$

(2) Contracting the random graph $E_{1/2\delta}$ reduces number of **edges** to $O(n\delta)$

Both do not affect the min-cut with good probability *

Sparsification lemma:

(1) 2-out-contractions reduce number of **vertices** to $O(n/\delta)$

(2) Contracting the random graph $E_{1/2\delta}$ reduces number of **edges** to $O(n\delta)$

Both do not affect the min-cut with good probability *

Algorithm:

(a) Apply (1) to reduce number of vertices to $O(n/\delta)$

Sparsification lemma:

(1) 2-out-contractions reduce number of **vertices** to $O(n/\delta)$

(2) Contracting the random graph $E_{1/2\delta}$ reduces number of **edges** to $O(n\delta)$

Both do not affect the min-cut with good probability *

Algorithm:

(a) Apply (1) to reduce number of vertices to $O(n/\delta)$

(b) Apply (2) to reduce number of edges to $O\left(\frac{n}{\delta} \cdot \delta\right) = O(n)$

Sparsification lemma:

- (1) 2-out-contractions reduce number of **vertices** to $O(n/\delta)$
- (2) Contracting the random graph $E_{1/2\delta}$ reduces number of **edges** to $O(n\delta)$

Both do not affect the min-cut with good probability *

$(\Delta + 1)$ -coloring [Assadi,Chen,Khanna'19]

Sampling lemma: If each $v \in V$ chooses a random set $C(v) \subseteq \{1, 2, ..., \Delta + 1\}$ of size $\Theta(\text{polylog } n)$, then w.h.p. there is a proper coloring such that each vertex is colored from C(v)

Each edge remains w.p. $p \le \text{polylog } n / \Delta$ => Remaining graph is of size O(n polylog n)

$(\Delta + 1)$ -coloring [Assadi,Chen,Khanna'19]

Sampling lemma: If each $v \in V$ chooses a random set $C(v) \subseteq \{1, 2, ..., \Delta + 1\}$ of size $\Theta(\text{polylog } n)$, then w.h.p. there is a proper coloring such that each vertex is colored from C(v)

Next: Algorithms from [F., Horowitz, Oshman'22]

	Sublinear	НМРС	Near-Linear
Minimum-weight spanning tree	0(log n) [ASSWZ'19]	$O(\log \log(\frac{m}{n}))$	<i>0</i> (1) [AGM'12]
$oldsymbol{0}(k)$ -spanner of size $oldsymbol{0}ig(n^{1+1/k}ig)$	O(log k) [BDGMN'21] * Stretch k ^{log 3}	0 (1)	<i>0</i> (1) [D F KL'21]
Maximal matching	$O(\sqrt{\log \Delta} \log \log \Delta + \sqrt{\log \log n})$ [GU'19]	$O\left(\sqrt{\log \frac{m}{n}}\log \log \frac{m}{n}\right)$	<i>O</i> (log log Δ) [BHH'19]

MST Algorithm Overview

Borůvka:

MST Algorithm Overview

Doubly exponential Borůvka [Lotker, Pavlov, Patt-Shamir, Peleg'03]:

MST Algorithm Sampling Lemma (KKT'95)

Sampling Lemma [Karger, Klein, Tarjan'95]: There are at $\leq n/p$ edges which are light in G (In expectation)

MST Algorithm Overview

Sampling Lemma [Karger, Klein, Tarjan'95]: There are at $\leq n/p$ edges which are light in G

Next: Algorithms from [F., Horowitz, Oshman'22]

	Sublinear	НМРС	Near-Linear
Minimum-weight spanning tree	0(log n) [ASSWZ'19]	$O(\log \log(\frac{m}{n}))$	<i>0</i> (1) [AGM'12]
$oldsymbol{0}(k)$ -spanner of size $oldsymbol{0}ig(n^{1+1/k}ig)$	O(log k) [BDGMN'21] * Stretch k ^{log 3}	0 (1)	<i>0</i> (1) [D F KL'21]
Maximal matching	$O(\sqrt{\log \Delta} \log \log \Delta + \sqrt{\log \log n})$ [GU'19]	$O\left(\sqrt{\log \frac{m}{n}}\log \log \frac{m}{n}\right)$	<i>O</i> (log log Δ) [BHH'19]

Spanners

A spanner is a set of edges $H \subseteq E$ of small size that approximately maintains distances of the original graph.

-edges form a 2-spanner

Good Parameters:

Size: $|H| = O(n^{1+1/k})$

Approximation: $\forall_{u,v} \text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq (2k-1) \cdot \text{dist}_G(u,v)$

Towards a Sampling Lemma for Spanners

Size:
$$O(n^{1+\frac{1}{k}}/p)$$

The Baswana-Sen Spanner

For $\ell = 1, \dots, k$:

- Each cluster survives w.p. $1/n^{1/k}$ $C_k = \emptyset$
- If v's cluster is destroyed:
 - If \exists neighbor u in surviving cluster: assign v to u's cluster

Analysis: Size of the Spanner

Edges are added when:

Node v is re-clustered:

• At most once per level $\Rightarrow O(k)$ edges total

Node v is removed:

• No adjacent cluster survived

 $\Rightarrow v$ was adjacent to $O(n^{1/k})$ clusters (w.h.p.)

 $\Rightarrow O(n^{1/k})$ edges added (one per adjacent cluster)

Total: $O(n^{1+1/k})$

Analysis: Stretch

Analysis: Stretch

Towards an HMPC Implementation

The large machine can't hold G

Sub-sample edges of $G \Rightarrow G_p$

For $\ell = 1, \dots, k$:

- Each center survives w.p. $1/n^{1/k} *$
- If *v*'s cluster died:
 - If \exists neighbor u in surviving cluster: assign v to u's cluster
 - Add $\{u, v\}$ to spanner
 - Else: remove v from the graph
 - Add one edge to each previous adjacent cluster

Large machine, on G_p Small machines, on G

True vs. Sub-Sampled Baswana-Sen

Sub-sampled Baswana-Sen

Sub-Sampled Baswana-Sen

Stretch: unchanged – depends on

• Cluster diameter $\leq 2k$

Adding edges to all adjacent clusters upon removal

Size?

Analysis: Size of the Spanner

in G_p

Edges are added when:

• At most once per level $\Rightarrow O(k)$ edges total

Node v is removed:

No adjacent cluster survived

 $\Rightarrow v$ was adjacent to $O(n^{1/k})$ clusters (w.h.p.)

 $\Rightarrow O(n^{1/k})$ edges added (one per adjacent cluster)

Total: $O(n^{1+1/k}/p)$

Spanner Algorithm Overview

Send to large Machine

(Like [DFKL'21])

inter-cluster labels

Plan

Model & Motivation

Techniques in HMPC

Prior and New Results

Open Problems

Open problems

O(1)-round MST algorithm?

In near-linear MPC: MST $\rightarrow m/n$ instances of Connectivity

Is MST really as hard as many independent instances of Connectivity?

Open problems

 $O(\log \log \Delta)$ -round Maximal Matching algorithm?

Intuition: $MIS \ge MM$ in most distributed models

In near-linear MPC: both MIS and MM in $O(\log \log \Delta)$ rounds

Open problems – Conditional Lower Bounds

Conditional Lower Bounds?

Possible candidate: Many 2-vs-1 cycles?

Open problems – Conditional Lower Bounds

Open problems – Results in Generalized HMPC

Super-linear total memory?

Open problems – Deterministic Algorithms

Can we get any speedup compared to sublinear-MPC?

O(1)-round connectivity algorithm

Can other algorithms be derandomized as well?

Inherent deterministic technique?

Conclusions, Extensions & Open Problems

Conclusion: Heterogeneous MPC circumvents hardness of sublinear MPC, and allows very fast algorithms

Open Problems:

O(1)-round MST algorithm?

Deterministic algorithms?

Conditional Lower Bounds? Possible candidate: Many 2-to-1 cycles?

Extensions:

 $(M_{sub}, M_{lin}, M_{sup})$ –Heterogeneous Model

 $M_{sup}(m, n)$ total memory of

 $M_{sub}(m,n)$ total memory of

 $M_{lin}(m, n)$ total memory of

°0(

THANK YOU