Speedup Theorems for All

Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale Université Paris Cité and CNRS

11th Workshop on Advances in Distributed Graph Algorithms (ADGA) Augusta, USA, October 24, 2022

Speedup Theorem

Hypothetic Generic Speedup Theorem

Theorem Let \mathcal{M} be a distributed computing model. There exists a function

 $F: \{\text{problems}\} \rightarrow \{\text{problems}\}$

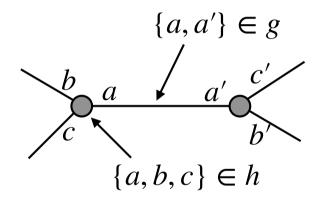
such that, for every $t \ge 0$, and every problem Π ,

 Π has complexity $t \iff F(\Pi)$ has complexity t - 1.

Corollary Π has complexity $t \iff F^{(t)}(\Pi)$ has complexity 0.

Brandt's Speedup Theorem [PODC 2019]

- \mathcal{M} = anonymous LOCAL model in $\mathcal{G}_{\Delta} = \{G : \deg(G) \leq \Delta\}$
- Locally Checkable Labeling (LCL): (f, g, h)
 - f is a finite set of labels
 - g is a collection of pairs of labels
 - h is a collection of multisets of labels
- Problem Π :
 - Input: labeling in (f_{in}, g_{in}, h_{in})
 - Output: labeling in $(f_{out}, g_{out}, h_{out})$

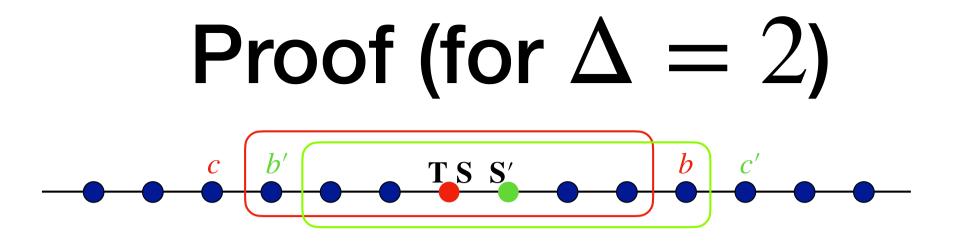


F(f, g, h) = (f', g', h')

- $f' = 2^{2^f}$ is a set of sets of labels
- $\{\mathbf{S}, \mathbf{S}'\} \in g'$ if and only if $\exists (S, S') \in \mathbf{S} \times \mathbf{S}', \ \forall (s, s') \in S \times S' : \{s, s'\} \in g$

• $\{\mathbf{S}_1, \dots, \mathbf{S}_{\Delta}\} \in h'$ if and only if $\forall (S_1, \dots, S_{\Delta}) \in \mathbf{S}_1 \times \dots \times \mathbf{S}_{\Delta},$ $\exists (s_1, \dots, s_{\Delta}) \in S_1 \times \dots \times S_{\Delta} : \{s_1, \dots, s_{\Delta}\} \in h$ **Theorem** [Brandt, 2019] For every $t \ge 1$, and for every LCL problem $\Pi = ((f_{in}, g_{in}, h_{in}), (f_{out}, g_{out}, h_{out})),$

 $(f_{out}, g_{out}, h_{out})$ constructible in *t* rounds from (f_{in}, g_{in}, h_{in}) $(f_{out}, g_{out}, h_{out})$ constructible in t - 1 rounds from (f_{in}, g_{in}, h_{in}) .



 $F(\Pi)$ in t - 1 rounds $\Rightarrow \Pi$ in t rounds:

- $\{\mathbf{S}, \mathbf{S}'\} \in g'_{out} \iff \exists (S, S') \in \mathbf{S} \times \mathbf{S}', \forall (s, s') \in S \times S', \{s, s'\} \in g_{out}$
- $\{\mathbf{S}, \mathbf{T}\} \in h'_{out} \iff \forall (S, T) \in \mathbf{S} \times \mathbf{T}, \exists (s, t) \in S \times T, \{s, t\} \in h_{out}$

 Π in *t* rounds \Rightarrow *F*(Π) in *t* – 1 rounds:

• (t-1)-round view $w = (a_{-t+1}, ..., a_{-1}, a_0, a_1, ..., a_{t-1}) \in f_{in}^{2t-1}$

- For every $b \in f_{in}$, let $S_b = \{ \text{out}(c, w, b) : c \in f_{in} \}$
- Set $\mathbf{S} = \{S_b : b \in f_{in}\}$

Lower Bounds

• Nathan Linial [FOCS 1987]:

Lower bound $\frac{1}{2}\log^* n$ rounds for 3-coloring C_n

- Sebastian Brandt [PODC 2019]: Formalization of speedup theorem in anonymous LOCAL model
- Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, Jukka Suomela [FOCS 2019]: Lower Bounds for Maximal Matchings and Maximal Independent Set.

- Which models admit Speedup Theorems?
 - Full-Information protocols
 - Round-Based
- Which problems admit Speedup Theorems?
 - Definition of tasks

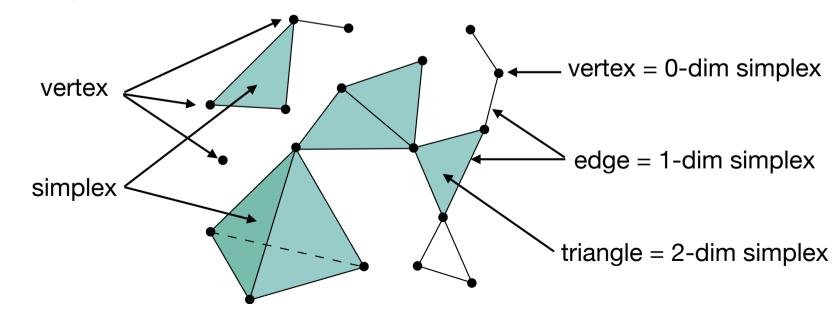
Distributed Computing Through the Lens of Algebraic Topology

Simplicial Complexes

A simplicial complex \mathscr{K} is a pair (V, S) where V is a finite set, $\{\{v\} : v \in V\} \subseteq S \subseteq 2^V \setminus \{\emptyset\}$, and

$$\forall \sigma \in S, \forall \sigma' \subseteq \sigma : \sigma' \neq \emptyset \Rightarrow \sigma' \in S$$

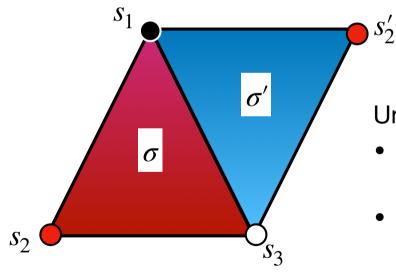
The elements of V are called vertices, and the elements of S are called simplices.



Example taken from wikipedia

Global System States

- Assume *n* processes, labeled from 1 to *n*
- Global state $\sigma = \{(i, s_i) : i \in [n]\}$

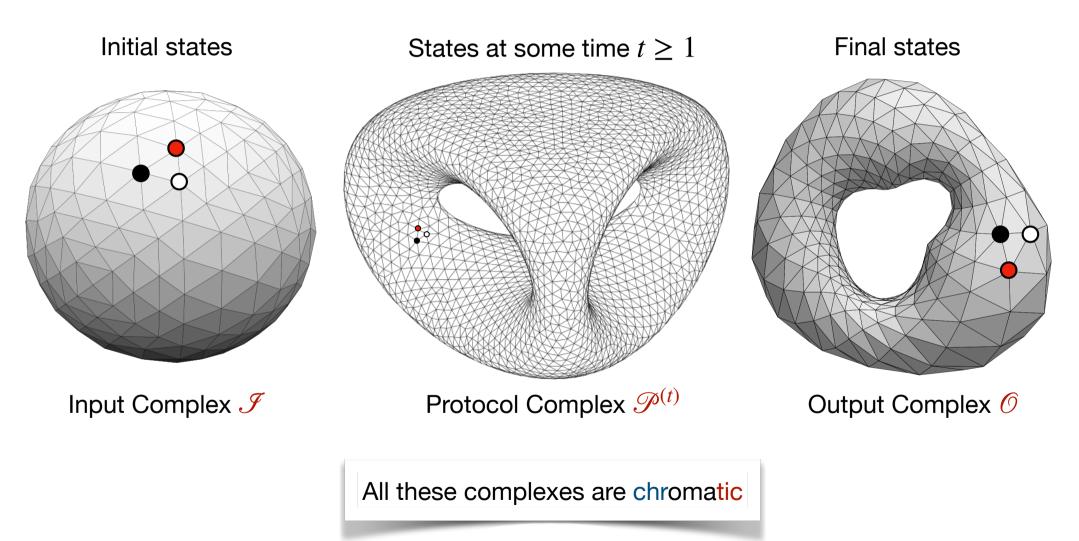


Uncertainty:

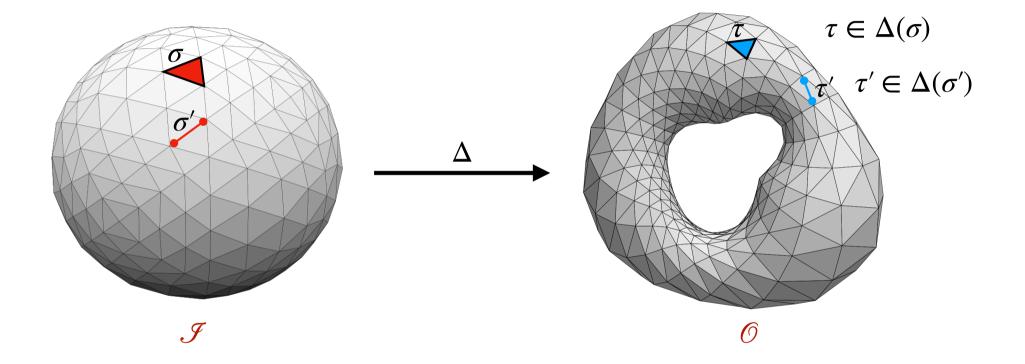
- Process igodot in state s_1 cannot distinguish σ from σ'
- Even Processes

 and O together, in respective states s₁ and s₃, cannot distinguish σ from σ'

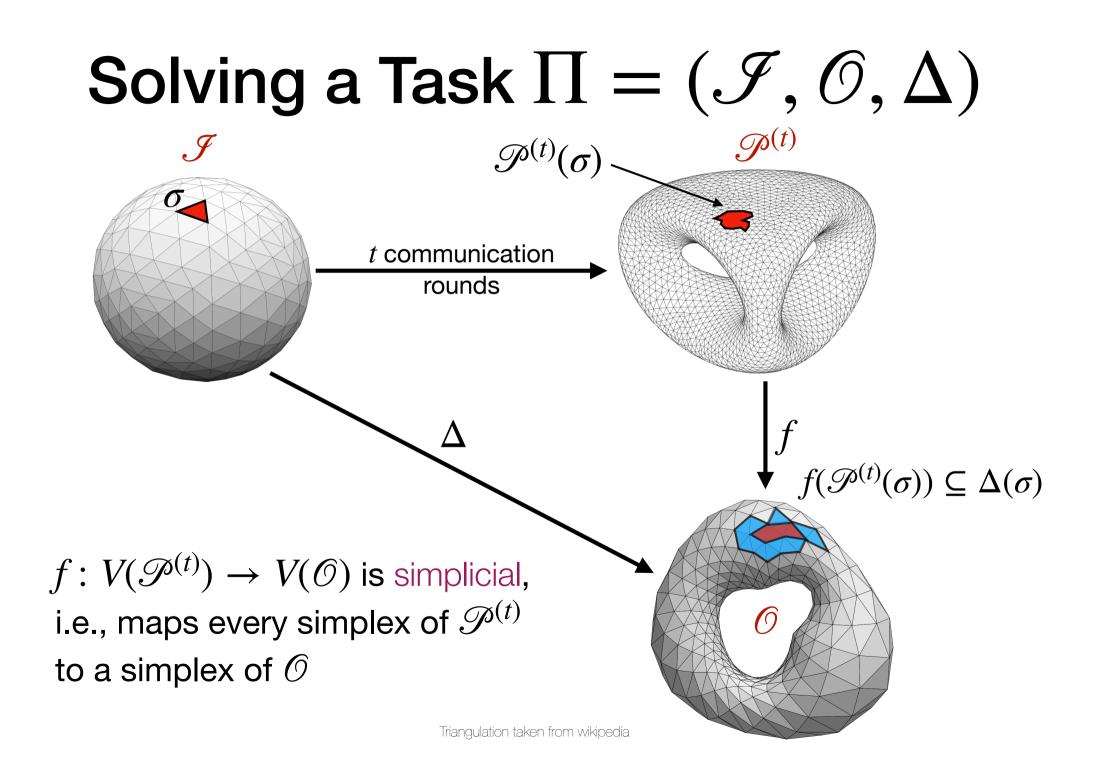
Global System States (*n* = 3)



Input-Output Specification



A task is a triple $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$



Task Solvability

Theorem A task $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$ is solvable in *t* rounds in Model \mathscr{M} if and only if there exists a chromatic simplicial map $f: V(\mathscr{P}^{(t)}) \to V(\mathscr{O})$

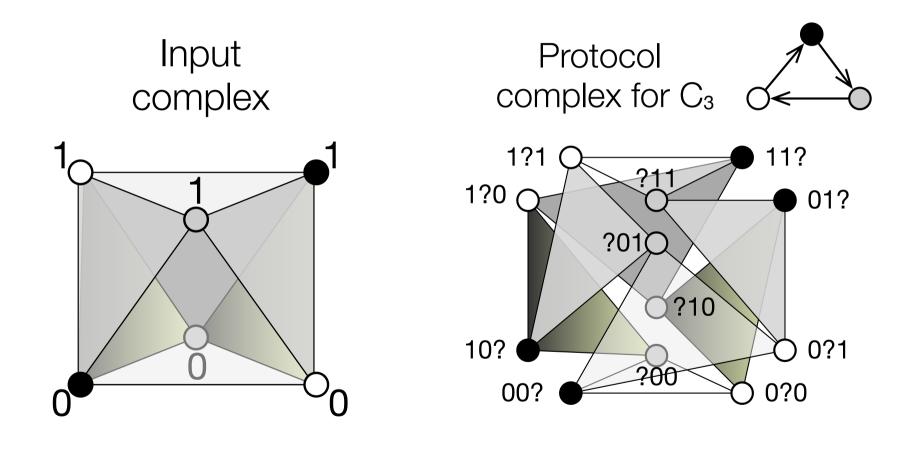
that agrees with Δ , i.e., for every $\sigma \in \mathscr{I}$, $f(\mathscr{P}^{(t)}(\sigma)) \subseteq \Delta(\sigma)$.

<u>Challenge</u>: Understanding the topological deformation $\mathscr{P}^{(t)}$ of \mathscr{I} after *t* rounds.

<u>Remark:</u> $\mathcal{P}^{(t)}$ depends on the computing model \mathcal{M} .

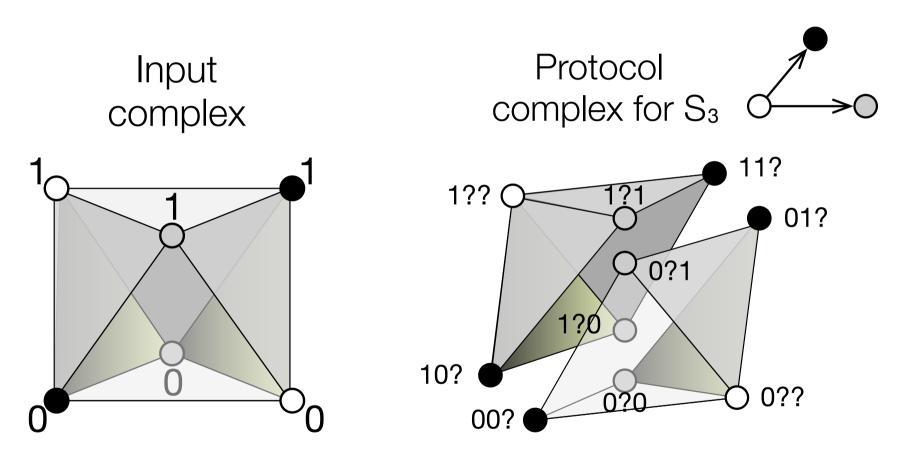
Protocol Complex

Example 1

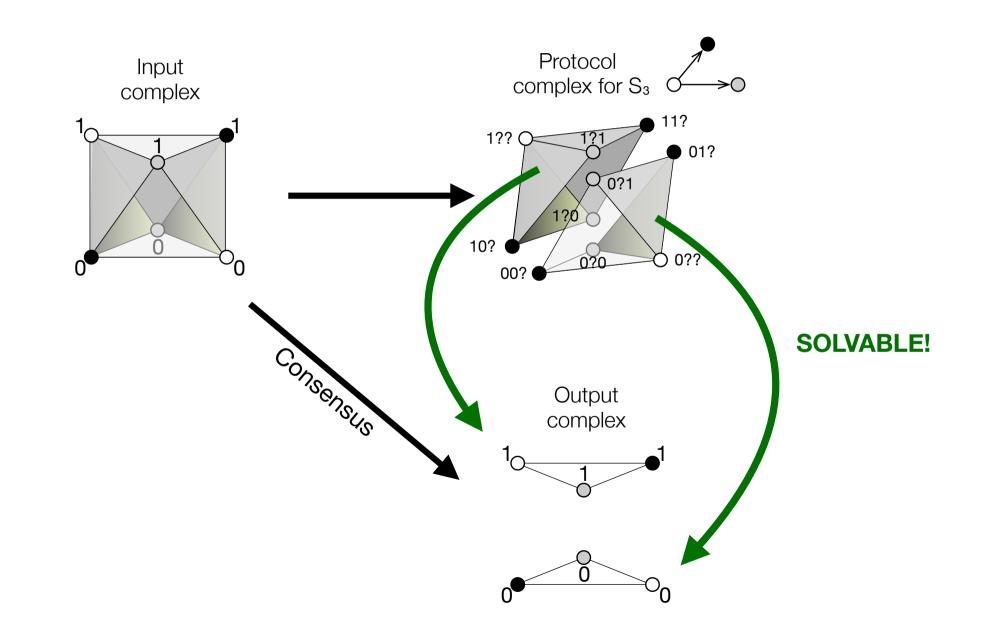


Protocol Complex

Example 2



Consensus Solvability



Consensus Solvability



Generalized Brandt's Theorem

Generalization

One can extend Brandt's construction to all round-based iterated models \mathcal{M} supporting full-information protocols:

Generic function $F : \{ \text{tasks} \} \rightarrow \{ \text{tasks} \}$

Theorem [Bastide, F., 2021] For every $t \ge 1$, and every task $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$, the task $F(\Pi)$ satisfies the following:

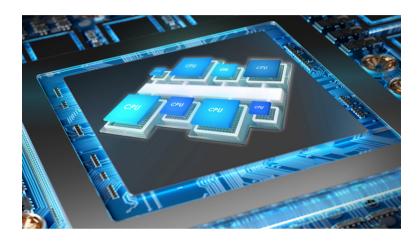
- Assume that ∏ satisfies(*t* − 1)-*independence* with respect to *M*. If ∏ is solvable in *t* rounds, then *F*(∏) is solvable in *t* − 1 rounds.
- 2. Assume that ∏ is *locally checkable* in *M*. If *F*(∏) is solvable in *t* − 1 rounds, then ∏ is solvable in *t* rounds

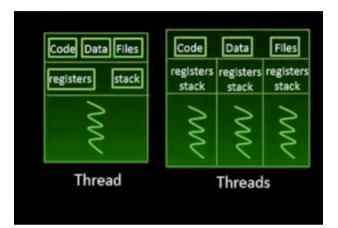
Applications

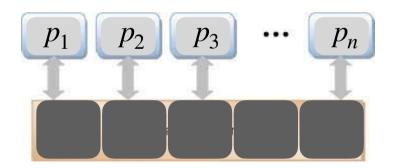
- Good news: Extension of Brandt's Theorem to
 - directed graphs, hypergraphs, dynamic networks, etc.
 - graphs including short cycles
 - to 2-process wait-free computing in asynchronous shared-memory: impossibility of consensus and perfect renaming (for 2 processes).
- Bad news:
 - Not many models satisfy independence
 - Tasks like consensus are not locally checkable waitfree in the asynchronous shared-memory model.

Wait-Free Computing

Shared Memory Model

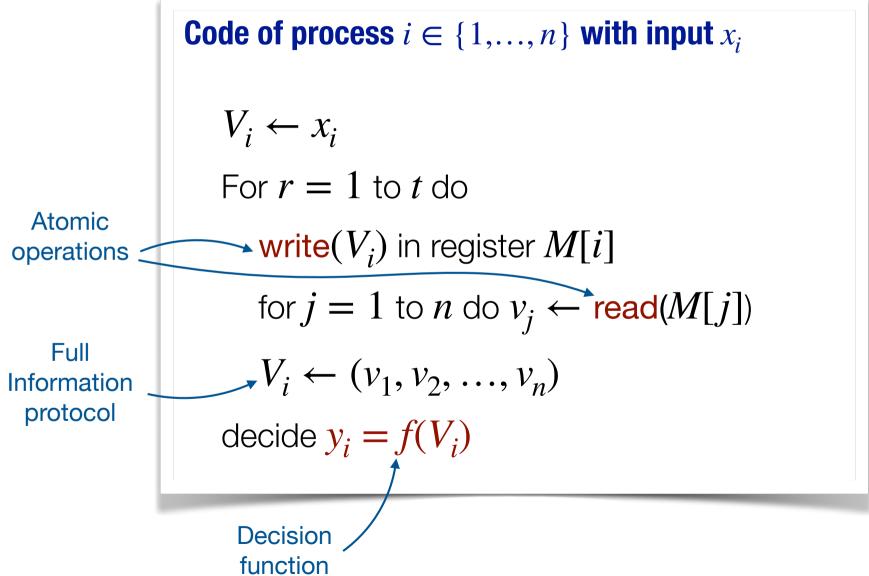






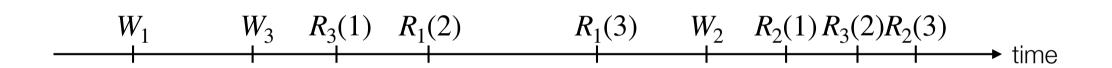
Single Writer / Multiple Reader registers

Wait-Free Computing

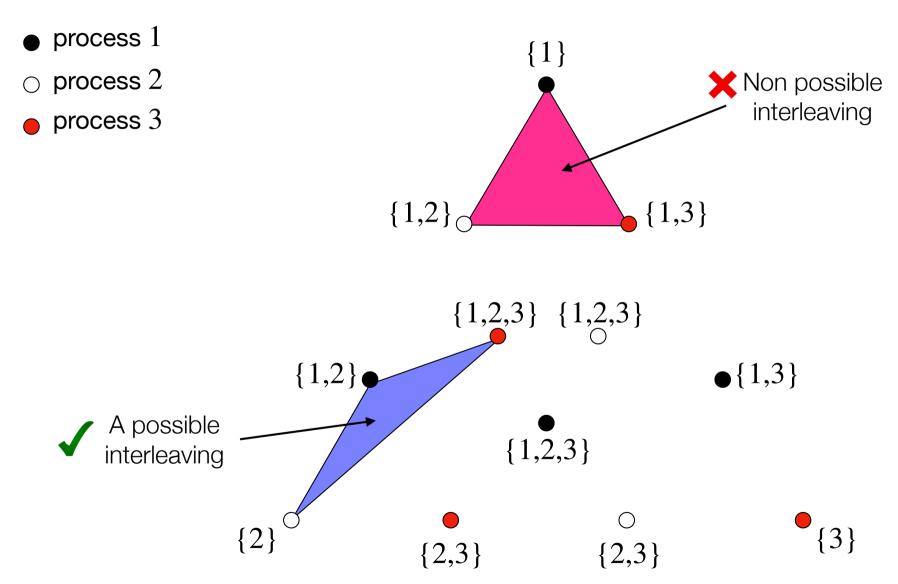


Read/Write Interleaving

Assume n = 3

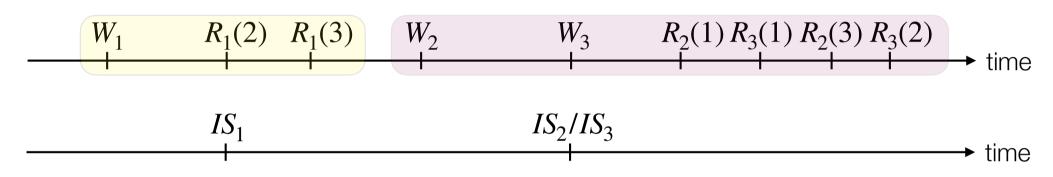


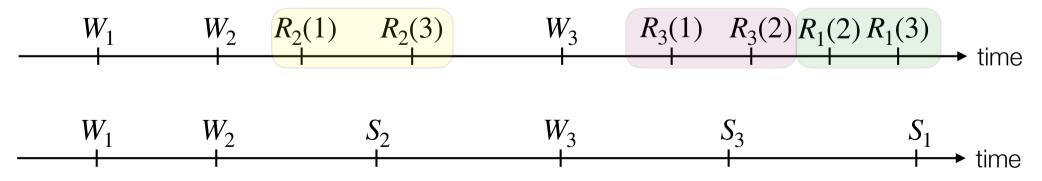
Read/Write Interleaving



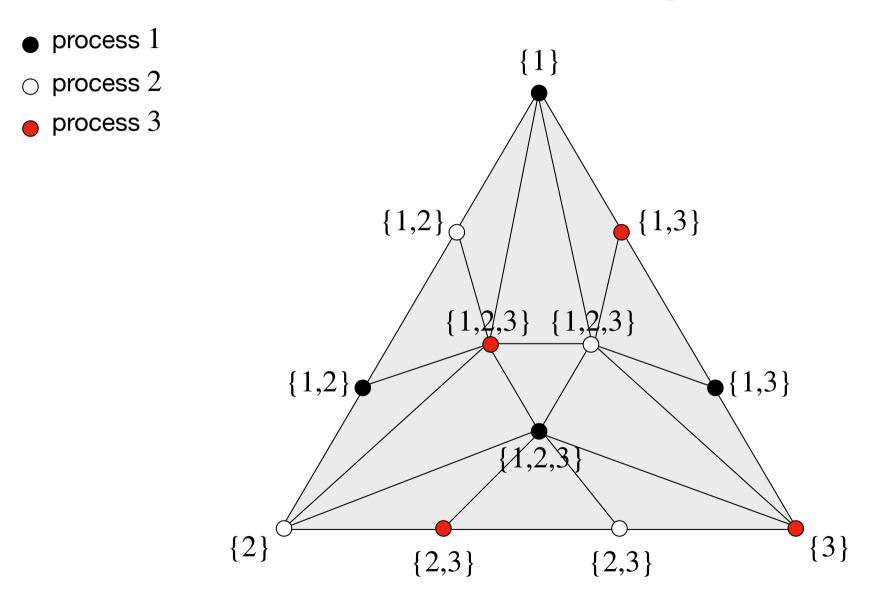
Snapshots and Immediate Snapshots

IMMEDIATE SNAPSHOTS





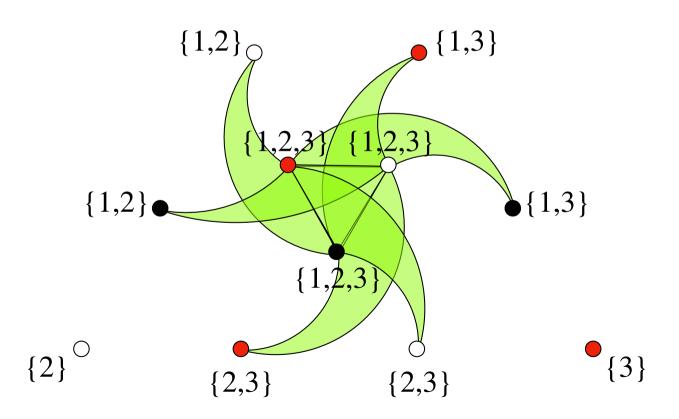
Immediate Snapshots



(Non-Immediate) Snapshots

{1}

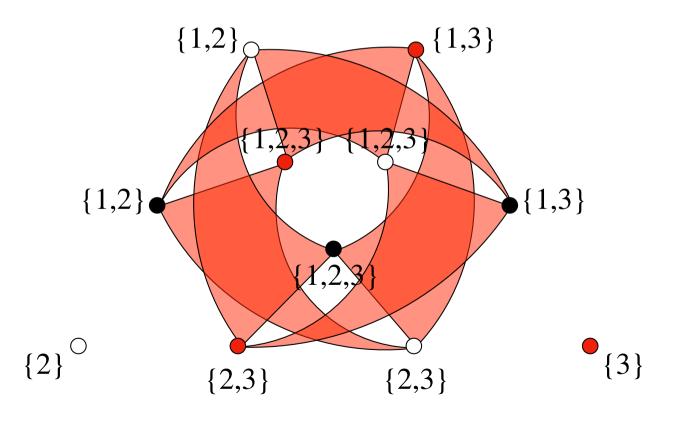
- process 1
- $_{\bigcirc}$ process 2
- process 3



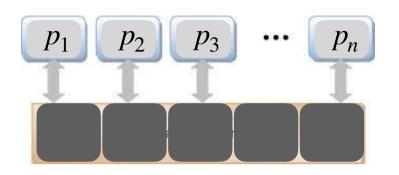
The Rest...

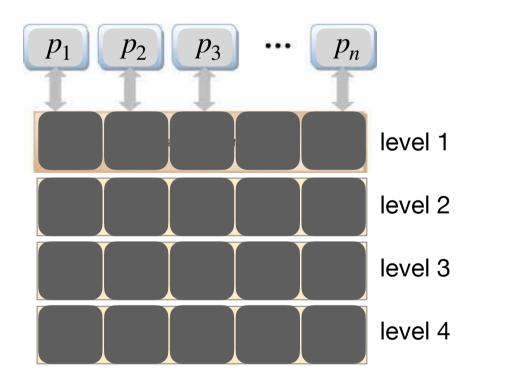
{1}

- process 1process 2
- process 3



Iterated Model

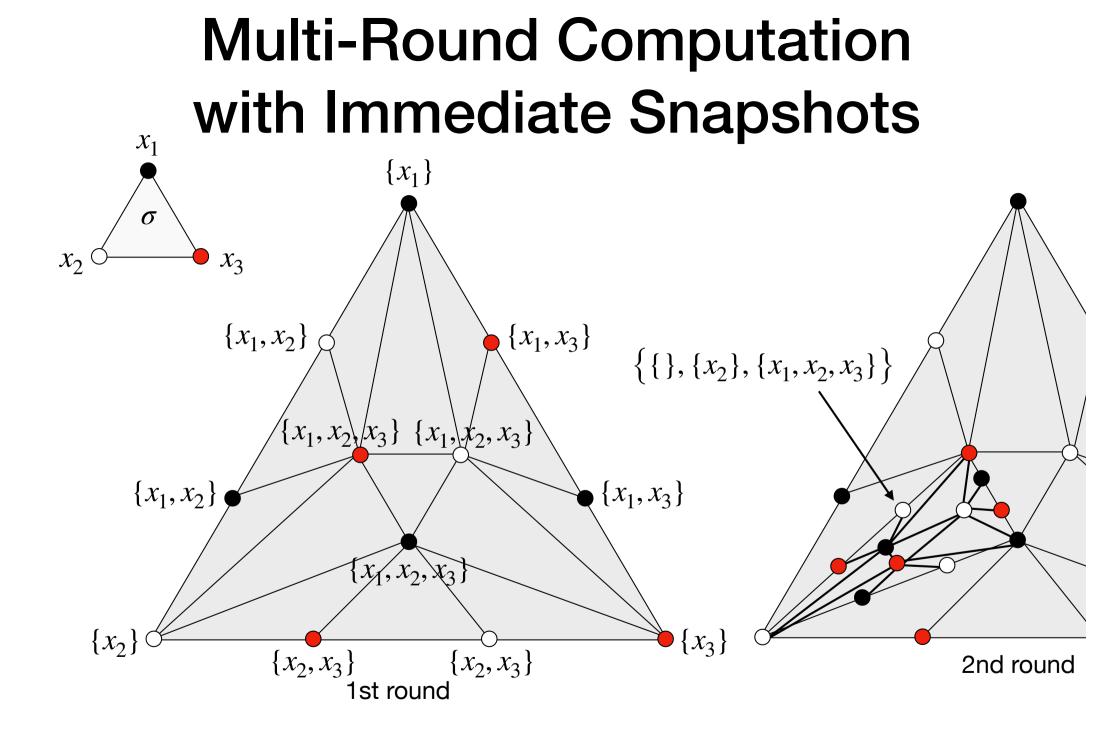




For every i = 1, 2, ... the *i*-th write of each process, as well as all the n - 1 reads performed after that write are performed in the *i*-th level of the memory.

Iterated Wait-Free Computing

Code of process $i \in \{1, ..., n\}$ with input x_i $V_i \leftarrow x_i$ For r = 1 to t do write (V_i) in register $M_r[i]$ for j = 1 to n do $v_i \leftarrow \text{read}(M_r[j])$ $V_i \leftarrow (v_1, v_2, \dots, v_n)$ decide $y_i = f(V_i)$



Wait-Free Solvability

Lemma For every task Π , Π is solvable wait-free in the asynchronous shared-memory read/write model $\iff \Pi$ is solvable wait-free in the asynchronous shared-memory IIS model.

Theorem [Herlihy-Shavit, 1999] A task $\Pi = (\mathcal{F}, \mathcal{O}, \Delta)$ is solvable wait-free in the asynchronous shared-memory read/ write model if and only if there exists $t \ge 0$ and a simplicial map

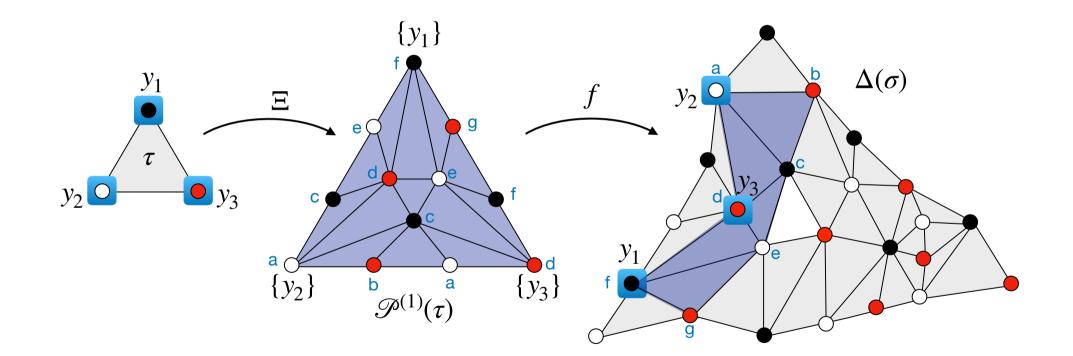
 $f: ch^{(t)}(\mathcal{J}) \to \mathcal{O}$ *t*-th chromatic subdivision of \mathcal{F} that agrees with Δ , i.e., for every $\sigma \in \mathcal{I}$, $f(ch^{(t)}(\sigma)) \subset \Delta(\sigma)$.

Wait-Free Speedup Theorem

Intuition

- Let f be a t-round algorithm solving $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$ in the wait-free IIS model
- What can be done in t 1 rounds?
- Every process starting with input $x \in V(\mathscr{I})$:
 - 1. performs t 1 rounds: state *s*
 - 2. assumes running solo during the *t*-th round: state $\{s\}$
 - 3. outputs $y = f(\{s\}) \in V(\mathcal{O})$
- What properties satisfy these outputs?

These Outputs are Close to Each Other



Local Tasks

- Let $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$ be a task
- Let $\sigma \in \mathscr{I}$
- Let $\tau \subseteq \Delta(\sigma)$ be a chromatic set with $name(\tau) = name(\sigma)$
- Local task $\Pi_{\tau,\sigma} = (\tau, \Delta(\sigma), \Delta_{\tau,\sigma})$ where

$$\begin{array}{l} - \ \Delta_{\tau,\sigma}(\tau') = \tau' \text{ if } |\tau'| = 1 \\ - \ \Delta_{\tau,\sigma}(\tau') = \operatorname{proj}_{name(\tau')}(\Delta(\sigma)) \text{ if } |\tau'| > 1 \end{array} \end{array}$$

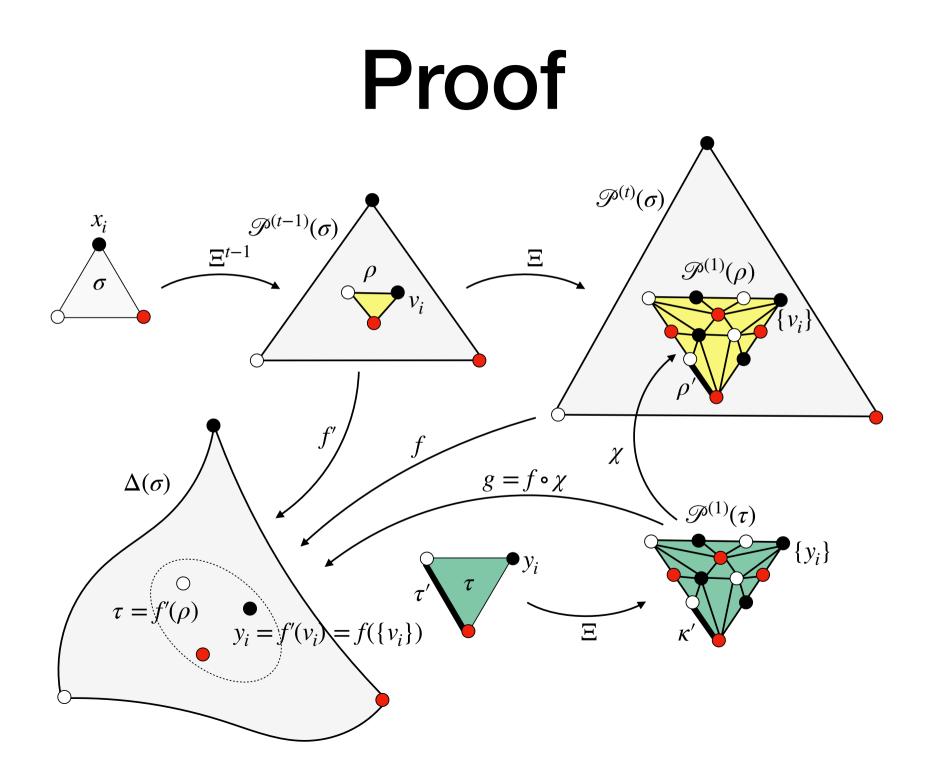
Closure Tasks

Definition The closure of a task $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$ is the task $closure(\Pi) = (\mathscr{I}, \mathscr{O}', \Delta')$

where $V(\mathcal{O}') = V(\mathcal{O})$ and, for every $\sigma \in \mathscr{I}$ and $\tau \subseteq V(\mathcal{O})$, we set $\tau \in \Delta'(\sigma)$ if

- 1. $name(\tau) = name(\sigma) and \tau \subseteq V(\Delta(\sigma))$
- 2. the local task $\Pi_{\tau,\sigma}$ is solvable in 1 round.

Theorem [F., Paz, Rajsbaum, 2022] For every $t \ge 1$, and every task $\Pi = (\mathscr{I}, \mathscr{O}, \Delta)$, if Π is solvable in *t* rounds then closure(Π) is solvable in t - 1 rounds.



Applications

- closure(consensus) = consensus ⇒ impossibility of consensus.
- $closure(\epsilon agreement) = (2\epsilon) agreement \implies lower bound$ $[log_2 1/\epsilon]$ rounds for ϵ -agreement.
- extension to models including test&set and binaryconsensus objects.
- However, closure(set-agreement) is trivial, i.e., can be solved in zero rounds.

Wrap Up

Conclusion and Open Problems

- Algebraic topology bridges the different models of distributed computing.
- Which tasks have non-trivial closures?
- Is there an if-and-only-if speedup theorem for asynchronous wait-free computing?
- Which (full information) models allow for the design of (useful) speedup theorem? E.g., what about *t*-resilient models?