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Speedup Theorem



Hypothetic Generic 

Speedup Theorem

Theorem  Let  be a distributed computing model. There 
exists a function


  

such that, for every , and every problem , 


 has complexity    has complexity .


Corollary   has complexity    has complexity .

ℳ

F : {problems} → {problems}
t ≥ 0 Π

Π t ⟺ F(Π) t − 1

Π t ⟺ F(t)(Π) 0



Brandt’s Speedup Theorem 
[PODC 2019]

•  = anonymous LOCAL model in 


• Locally Checkable Labeling (LCL): 


-   is a finite set of labels


-  is a collection of pairs of labels


-  is a collection of multisets of labels


• Problem : 


- Input: labeling in 


- Output: labeling in 

ℳ 𝒢Δ = {G : deg(G) ≤ Δ}

( f, g, h)
f
g
h

Π
( fin, gin, hin)

( fout, gout, hout)

a a′￼
b

c

c′￼

b′￼

{a, a′￼} ∈ g

{a, b, c} ∈ h



F( f, g, h) = ( f′￼, g′￼, h′￼)
•  is a set of sets of labels


•   if and only if 

,  


•   if and only if 





  

f′￼ = 22f

{S, S′￼} ∈ g′￼

∃(S, S′￼) ∈ S × S′￼ ∀(s, s′￼) ∈ S × S′￼: {s, s′￼} ∈ g

{S1, …, SΔ} ∈ h′￼

∀(S1, …, SΔ) ∈ S1 × … × SΔ,
∃(s1, …, sΔ) ∈ S1 × … × SΔ : {s1, …, sΔ} ∈ h



Theorem [Brandt, 2019] For every , and for every LCL 
problem , 


 constructible in  rounds from 




  constructible in  rounds from .

t ≥ 1
Π = (( fin, gin, hin), ( fout, gout, hout))

( fout, gout, hout) t ( fin, gin, hin)
⇕

F( fout, gout, hout) t − 1 ( fin, gin, hin)



 in  rounds  in  rounds:   


‣ 


‣  


 in  rounds  in  rounds:   


‣ -round view 


‣ For every , let 


‣ Set 

F(Π) t − 1 ⇒ Π t

{S, S′￼} ∈ g′￼out ⟺ ∃(S, S′￼) ∈ S × S′￼, ∀(s, s′￼) ∈ S × S′￼, {s, s′￼} ∈ gout

{S, T} ∈ h′￼out ⟺∀(S, T ) ∈ S × T, ∃(s, t) ∈ S × T, {s, t} ∈ hout

Π t ⇒ F(Π) t − 1

(t − 1) w = (a−t+1, …, a−1, a0, a1, …, at−1) ∈ f 2t−1
in

b ∈ fin Sb = {out(c, w, b) : c ∈ fin}

S = {Sb : b ∈ fin}

T S S′￼
bb′￼c c′￼

Proof (for )Δ = 2



Lower Bounds
• Nathan Linial [FOCS 1987]:


Lower bound   rounds for 3-coloring 


• Sebastian Brandt [PODC 2019]: 

Formalization of speedup theorem in anonymous 
LOCAL model


• Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis 
Olivetti, Mikaël Rabie, Jukka Suomela [FOCS 2019]: 


Lower Bounds for Maximal Matchings and Maximal 
Independent Set.

1
2

log⋆ n Cn



• Which models admit Speedup Theorems? 

- Full-Information protocols

- Round-Based


• Which problems admit Speedup Theorems? 

- Definition of tasks



Distributed Computing 
Through the Lens of 
Algebraic Topology



Simplicial Complexes
A simplicial complex  is a pair  where  is a finite 
set, , and





The elements of  are called vertices, and the elements of  
are called simplices. 

𝒦 (V, S) V
{{v} : v ∈ V} ⊆ S ⊆ 2V ∖ {∅}

∀σ ∈ S, ∀σ′￼⊆ σ : σ′￼ ≠ ∅ ⇒ σ′￼∈ S

V S

vertex

simplex

vertex = 0-dim simplex

edge = 1-dim simplex

triangle = 2-dim simplex

Example taken from wikipedia



Global System States
• Assume  processes, labeled from  to 


• Global state 

n 1 n

σ = {(i, si) : i ∈ [n]}
s1

s3

s′￼2

s2

σ

σ′￼ Uncertainty: 

• Process     in state  cannot 

distinguish  from 

• Even Processes     and      together, in 

respective states  and , cannot 
distinguish  from 


s1
σ σ′￼

s1 s3
σ σ′￼



Global System States

( )n = 3

Initial states Final statesStates at some time t ≥ 1

Input Complex ℐ Output Complex 𝒪Protocol Complex 𝒫(t)

All these complexes are chromatic

Triangulation taken from wikipedia



Input-Output Specification

Δ

τ ∈ Δ(σ)τ
σ

ℐ 𝒪

A task is a triple Π = (ℐ, 𝒪, Δ)

σ′￼

τ′￼∈ Δ(σ′￼)τ′￼

Triangulation taken from wikipedia



Solving a Task Π = (ℐ, 𝒪, Δ)

Δ
f(𝒫(t)(σ)) ⊆ Δ(σ)

f

ℐ

𝒪

𝒫(t)

 communication

rounds

t

σ

 is simplicial, 
i.e., maps every simplex of  
to a simplex of 

f : V(𝒫(t)) → V(𝒪)
𝒫(t)

𝒪

𝒫(t)(σ)

Triangulation taken from wikipedia



Task Solvability
Theorem  A task  is solvable in  rounds in 
Model  if and only if there exists a chromatic simplicial map


  

that agrees with , i.e., for every ,


 .


Challenge: Understanding the topological deformation of 
 after  rounds. 


Remark:  depends on the computing model .

Π = (ℐ, 𝒪, Δ) t
ℳ

f : V(𝒫(t)) → V(𝒪)
Δ σ ∈ ℐ

f(𝒫(t)(σ)) ⊆ Δ(σ)

𝒫(t)

ℐ t

𝒫(t) ℳ



Protocol Complex

Example 1
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Protocol Complex

Example 2
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Consensus Solvability
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Consensus

SOLVABLE!



Consensus Solvability
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Consensus

NOT SOLVABLE 
(in 1 round)



Generalized 

Brandt’s Theorem



Generalization
One can extend Brandt’s construction to all round-based iterated 
models  supporting full-information protocols: 


Generic function 


Theorem [Bastide, F., 2021] For every , and every task 
, the task  satisfies the following: 


• Assume that  satisfies -independence with respect 
to  . If  is solvable in  rounds, then  is solvable in  
rounds.


• 2. Assume that  is locally checkable in . If  is solvable 
in  rounds, then  is solvable in  rounds

ℳ

F : {tasks} → {tasks}

t ≥ 1
Π = (ℐ, 𝒪, Δ) F(Π)

Π (t − 1)
ℳ Π t F(Π) t − 1

Π ℳ F(Π)
t − 1 Π t



Applications
• Good news: Extension of Brandt’s Theorem to 


- directed graphs, hypergraphs, dynamic networks, etc.

- graphs including short cycles

- to 2-process wait-free computing in asynchronous 

shared-memory: impossibility of consensus and 
perfect renaming (for 2 processes). 


• Bad news: 

- Not many models satisfy independence

- Tasks like consensus are not locally checkable wait-

free in the asynchronous shared-memory model. 



Wait-Free Computing



Shared Memory Model

R1 R2 R3 Rn

25

p1 p2 p3 pn

Single Writer / Multiple Reader registers



Wait-Free Computing

Code of process  with input 





For  to  do

write  in register 


for  to  do read( )





decide 

i ∈ {1,…, n} xi

Vi ← xi

r = 1 t
(Vi) M[i]

j = 1 n vj ← M[ j]

Vi ← (v1, v2, …, vn)
yi = f(Vi)

26

Full 

Information


protocol

Atomic

operations

Decision

function



Read/Write Interleaving

27

W1 W2

Assume n = 3

W3 R1(2) R1(3)R3(1) R3(2)R2(3)R2(1)
time



Non possible

interleaving

A possible

interleaving

Read/Write Interleaving
{1}

{1,2}

{3}{2}

{1,2} {1,3}

{2,3}

{1,3}

{2,3}

{1,2,3} {1,2,3}

{1,2,3}

process 1
process 2
process 3

28



Snapshots 

and Immediate Snapshots

29

W1 W2 W3R1(2) R1(3) R3(1) R3(2)R2(3)R2(1)
time

IMMEDIATE SNAPSHOTS

IS1
time

IS2/IS3

W1 W2 W3 R1(2) R1(3)R3(1) R3(2)R2(3)R2(1)
time

SNAPSHOTS

S2 S1W1 W2 W3
time

S3



Immediate Snapshots
{1}

{1,2}

{3}{2}

{1,2} {1,3}

{2,3}

{1,3}

{2,3}

{1,2,3} {1,2,3}

{1,2,3}

30

process 1
process 2
process 3



(Non-Immediate) Snapshots
{1}

{1,2}

{3}{2}

{1,2} {1,3}

{2,3}

{1,3}

{2,3}

{1,2,3} {1,2,3}

{1,2,3}

31

process 1
process 2
process 3



The Rest…
{1}

{1,2}

{3}{2}

{1,2} {1,3}

{2,3}

{1,3}

{2,3}

{1,2,3} {1,2,3}

{1,2,3}

32

process 1
process 2
process 3



Iterated Model

R1 R2 R3 Rn

33

p1 p2 p3 pn

R1 R2 R3 Rn

p1 p2 p3 pn

R1 R2 R3 Rn

R1 R2 R3 Rn

R1 R2 R3 Rn

level 1

level 2

level 3

level 4

For every  the -th write of 

each process, as well as all the


  reads performed after that write

are performed in the -th level of the


memory.

i = 1,2,… i

n − 1
i



Iterated Wait-Free Computing

Code of process  with input 





For  to  do

write  in register 


for  to  do read( )





decide 

i ∈ {1,…, n} xi

Vi ← xi

r = 1 t
(Vi) Mr[i]

j = 1 n vj ← Mr[ j]

Vi ← (v1, v2, …, vn)
yi = f(Vi)

34



Multi-Round Computation

with Immediate Snapshots

35

1st round
2nd round

x1

x2 x3

σ
{x1}

{x1, x2}

{x3}{x2}

{x1, x2} {x1, x3}

{x2, x3}

{x1, x3}

{x2, x3}

{x1, x2, x3} {x1, x2, x3}

{x1, x2, x3}

{{}, {x2}, {x1, x2, x3}}



Wait-Free Solvability
Lemma For every task ,  is solvable wait-free in the 
asynchronous shared-memory read/write model    is 
solvable wait-free in the asynchronous shared-memory IIS 
model. 


Theorem [Herlihy-Shavit, 1999] A task  is 
solvable wait-free in the asynchronous shared-memory read/
write model if and only if there exists  and a simplicial map


  

that agrees with , i.e., for every ,


 .

Π Π
⟺ Π

Π = (ℐ, 𝒪, Δ)

t ≥ 0
f : 𝖼𝗁(t)(ℐ) → 𝒪

Δ σ ∈ ℐ
f(𝖼𝗁(t)(σ)) ⊆ Δ(σ)

-th chromatic subdivision of t ℐ



Wait-Free 

Speedup Theorem



Intuition
• Let   be a -round algorithm solving  in the 

wait-free IIS model


• What can be done in  rounds?


• Every process starting with input : 

1. performs  rounds: state 

2. assumes running solo during the -th round: state 

3. outputs 


• What properties satisfy these outputs? 

f t Π = (ℐ, 𝒪, Δ)

t − 1

x ∈ V(ℐ)
t − 1 s

t {s}
y = f({s}) ∈ V(𝒪)



These Outputs 

are Close to Each Other

τ

y1

y2 y3

!(1)(τ)

Ξ f

{y1}

{y2} {y3}

Δ(σ)

y1

y2
a

c

b

f

d

g

e

y3

e

f

d

c
d e

c

a

f

g

ab



Local Tasks
• Let  be a task


• Let 


• Let  be a chromatic set with 


• Local task  where 


-  if 


-  if 

Π = (ℐ, 𝒪, Δ)

σ ∈ ℐ

τ ⊆ Δ(σ) name(τ) = name(σ)

Πτ,σ = (τ, Δ(σ), Δτ,σ)
Δτ,σ(τ′￼) = τ′￼ |τ′￼| = 1
Δτ,σ(τ′￼) = 𝗉𝗋𝗈𝗃name(τ′￼)(Δ(σ)) |τ′￼| > 1



Closure Tasks
Definition The closure of a task  is the task 


 

where  and, for every  and , we 
set  if 


1.   and 

2.  the local task  is solvable in 1 round. 


Theorem [F., Paz, Rajsbaum, 2022] For every , and every 
task , if  is solvable in  rounds then 

 is solvable in  rounds. 

Π = (ℐ, 𝒪, Δ)
closure(Π) = (ℐ, 𝒪′￼, Δ′￼)

V(𝒪′￼) = V(𝒪) σ ∈ ℐ τ ⊆ V(𝒪)
τ ∈ Δ′￼(σ)

name(τ) = name(σ) τ ⊆ V(Δ(σ))
Πτ,σ

t ≥ 1
Π = (ℐ, 𝒪, Δ) Π t

closure(Π) t − 1



Proof

σ ρ
!(t−1)(σ)

!(t)(σ)

!(1)(ρ)

Δ(σ)

τ = f′ (ρ) τ′ 

!(1)(τ)

Ξt−1 Ξ

Ξ

χff′ 

xi

vi {vi}

yi = f′ (vi) = f({vi})

yi

g = f ∘ χ

{yi}
τ

κ′ 

ρ′ 



Applications
• closure(consensus) = consensus  impossibility of 

consensus.


• closure( -agreement) = -agreement  lower bound 
 rounds for -agreement.


• extension to models including test&set and binary-
consensus objects.


• However, closure(set-agreement) is trivial, i.e., can be 
solved in zero rounds. 

⟹

ϵ (2ϵ) ⟹
⌈log2 1/ϵ⌉ ϵ



Wrap Up



Conclusion 

and Open Problems

• Algebraic topology bridges the different models of 
distributed computing. 


• Which tasks have non-trivial closures? 


• Is there an if-and-only-if speedup theorem for 
asynchronous wait-free computing? 


• Which (full information) models allow for the design of 
(useful) speedup theorem? E.g., what about -resilient 
models? 

t


