Speedup Theorems for All

Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale Université Paris Cité and CNRS

Speedup Theorem

Hypothetic Generic Speedup Theorem

Theorem Let \mathscr{M} be a distributed computing model. There exists a function

$$
F:\{\text { problems }\} \rightarrow\{\text { problems }\}
$$

such that, for every $t \geq 0$, and every problem Π,
Π has complexity $t \Longleftrightarrow F(\Pi)$ has complexity $t-1$.

Corollary Π has complexity $t \Longleftrightarrow F^{(t)}(\Pi)$ has complexity 0 .

Brandt's Speedup Theorem [PODC 2019]

- $\mathscr{M}=$ anonymous LOCAL model in $\mathscr{G}_{\Delta}=\{G: \operatorname{deg}(G) \leq \Delta\}$
- Locally Checkable Labeling (LCL): (f, g, h)
- f is a finite set of labels
- g is a collection of pairs of labels
- h is a collection of multisets of labels

- Problem П:
- Input: labeling in $\left(f_{i n}, g_{i n}, h_{i n}\right)$
- Output: labeling in $\left(f_{\text {out }}, g_{\text {out }}, h_{\text {out }}\right)$

$F(f, g, h)=\left(f^{\prime}, g^{\prime}, h^{\prime}\right)$

- $f^{\prime}=2^{2^{f}}$ is a set of sets of labels
- $\left\{\mathbf{S}, \mathbf{S}^{\prime}\right\} \in g^{\prime}$ if and only if

$$
\exists\left(S, S^{\prime}\right) \in \mathbf{S} \times \mathbf{S}^{\prime}, \forall\left(s, s^{\prime}\right) \in S \times S^{\prime}:\left\{s, s^{\prime}\right\} \in g
$$

- $\left\{\mathbf{S}_{1}, \ldots, \mathbf{S}_{\Delta}\right\} \in h^{\prime}$ if and only if

$$
\forall\left(S_{1}, \ldots, S_{\Delta}\right) \in \mathbf{S}_{1} \times \ldots \times \mathbf{S}_{\Delta}
$$

$$
\exists\left(s_{1}, \ldots, s_{\Delta}\right) \in S_{1} \times \ldots \times S_{\Delta}:\left\{s_{1}, \ldots, s_{\Delta}\right\} \in h
$$

Theorem [Brandt, 2019] For every $t \geq 1$, and for every LCL problem $\Pi=\left(\left(f_{\text {in }}, g_{\text {in }}, h_{\text {in }}\right),\left(f_{\text {out }}, g_{\text {out }}, h_{\text {out }}\right)\right)$,
$\left(f_{\text {out }}, g_{\text {out }}, h_{\text {out }}\right)$ constructible in t rounds from $\left(f_{\text {in }}, g_{\text {in }}, h_{\text {in }}\right)$

§

$F\left(f_{\text {out }}, g_{\text {out }}, h_{\text {out }}\right)$ constructible in $t-1$ rounds from $\left(f_{\text {in }}, g_{\text {in }}, h_{\text {in }}\right)$.

$\operatorname{Proof}($ for $\Delta=2)$

$F(\Pi)$ in $t-1$ rounds $\Rightarrow \Pi$ in t rounds:

- $\left\{\mathbf{S}, \mathbf{S}^{\prime}\right\} \in g_{\text {out }}^{\prime} \Longleftrightarrow \exists\left(S, S^{\prime}\right) \in \mathbf{S} \times \mathbf{S}^{\prime}, \forall\left(s, s^{\prime}\right) \in S \times S^{\prime},\left\{s, s^{\prime}\right\} \in g_{\text {out }}$
- $\{\mathbf{S}, \mathbf{T}\} \in h_{\text {out }}^{\prime} \Longleftrightarrow \forall(S, T) \in \mathbf{S} \times \mathbf{T}, \exists(s, t) \in S \times T,\{s, t\} \in h_{\text {out }}$
Π in t rounds $\Rightarrow F(\Pi)$ in $t-1$ rounds:
- $(t-1)$-round view $w=\left(a_{-t+1}, \ldots, a_{-1}, a_{0}, a_{1}, \ldots, a_{t-1}\right) \in f_{\text {in }}^{2 t-1}$
- For every $b \in f_{i n}$, let $S_{b}=\left\{\right.$ out $\left.(c, w, b): c \in f_{i n}\right\}$
- Set $\mathbf{S}=\left\{S_{b}: b \in f_{i n}\right\}$

Lower Bounds

- Nathan Linial [FOCS 1987]:

Lower bound $\frac{1}{2} \log ^{\star} n$ rounds for 3 -coloring C_{n}

- Sebastian Brandt [PODC 2019]:

Formalization of speedup theorem in anonymous LOCAL model

- Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, Jukka Suomela [FOCS 2019]:

Lower Bounds for Maximal Matchings and Maximal Independent Set.

- Which models admit Speedup Theorems?
- Full-Information protocols
- Round-Based
- Which problems admit Speedup Theorems?
- Definition of tasks

Distributed Computing

 Through the Lens of Algebraic Topology
Simplicial Complexes

A simplicial complex \mathscr{K} is a pair (V, S) where V is a finite set, $\{\{v\}: v \in V\} \subseteq S \subseteq 2^{V} \backslash\{\varnothing\}$, and

$$
\forall \sigma \in S, \forall \sigma^{\prime} \subseteq \sigma: \sigma^{\prime} \neq \varnothing \Rightarrow \sigma^{\prime} \in S
$$

The elements of V are called vertices, and the elements of S are called simplices.

Global System States

- Assume n processes, labeled from 1 to n
- Global state $\sigma=\left\{\left(i, s_{i}\right): i \in[n]\right\}$

Global System States ($n=3$)

Initial states
States at some time $t \geq 1$

Input Complex \mathscr{J}

Final states

All these complexes are chromatic

Input-Output Specification

A task is a triple $\Pi=(\mathscr{J}, \mathcal{O}, \Delta)$

Solving a Task $\Pi=(\mathscr{I}, \mathcal{O}, \Delta)$

Task Solvability

Theorem A task $\Pi=(\mathscr{J}, \mathcal{O}, \Delta)$ is solvable in t rounds in Model \mathscr{M} if and only if there exists a chromatic simplicial map

$$
f: V\left(\mathscr{P}^{(t)}\right) \rightarrow V(\mathcal{O})
$$

that agrees with Δ, i.e., for every $\sigma \in \mathscr{I}$,

$$
f\left(\mathscr{P}^{(t)}(\sigma)\right) \subseteq \Delta(\sigma)
$$

Challenge: Understanding the topological deformation $\mathscr{P}^{(t)}$ of \mathscr{J} after t rounds.

Remark: $\mathscr{P}^{(t)}$ depends on the computing model \mathscr{M}.

Protocol Complex

Example 1

Input
complex

Protocol
complex for C_{3}

\bigcirc

Protocol Complex

Example 2

Input complex

\bigcirc

Consensus Solvability

Consensus Solvability

Generalized

Brandt's Theorem

Generalization

One can extend Brandt's construction to all round-based iterated models \mathscr{M} supporting full-information protocols:

$$
\text { Generic function } F:\{\text { tasks }\} \rightarrow \text { \{tasks }\}
$$

Theorem [Bastide, F., 2021] For every $t \geq 1$, and every task
$\Pi=(\mathscr{F}, \mathcal{O}, \Delta)$, the task $F(\Pi)$ satisfies the following:

- Assume that Π satisfies $(t-1)$-independence with respect to \mathscr{M}. If Π is solvable in t rounds, then $F(\Pi)$ is solvable in $t-1$ rounds.
- 2. Assume that Π is locally checkable in \mathscr{M}. If $F(\Pi)$ is solvable in $t-1$ rounds, then Π is solvable in t rounds

Applications

- Good news: Extension of Brandt's Theorem to
- directed graphs, hypergraphs, dynamic networks, etc.
- graphs including short cycles
- to 2-process wait-free computing in asynchronous shared-memory: impossibility of consensus and perfect renaming (for 2 processes).
- Bad news:
- Not many models satisfy independence
- Tasks like consensus are not locally checkable waitfree in the asynchronous shared-memory model.

Wait-Free Computing

Shared Memory Model

Single Writer / Multiple Reader registers

Wait-Free Computing

Code of process $i \in\{1, \ldots, n\}$ with input x_{i}

Read/Write Interleaving

Assume $n=3$

Read/Write Interleaving

- process 1
- process 2
- process 3

Snapshots and Immediate Snapshots

IMMEDIATE SNAPSHOTS

SNAPSHOTS

Immediate Snapshots

- process 1
- process 2
- process 3

(Non-Immediate) Snapshots

- process 1
- process 2
- process 3

The Rest...

- process 1
- process 2
- process 3

\{3\}

Iterated Model

For every $i=1,2, \ldots$ the i-th write of each process, as well as all the $n-1$ reads performed after that write are performed in the \boldsymbol{i}-th level of the memory.

Iterated Wait-Free Computing

Code of process $i \in\{1, \ldots, n\}$ with input x_{i}

$$
\begin{aligned}
& V_{i} \leftarrow x_{i} \\
& \text { For } r=1 \text { to } t \text { do } \\
& \quad \text { write }\left(V_{i}\right) \text { in register } M_{r}[i] \\
& \quad \text { for } j=1 \text { to } n \text { do } v_{j} \leftarrow \operatorname{read}\left(M_{r}[j]\right) \\
& \quad V_{i} \leftarrow\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& \text { decide } y_{i}=f\left(V_{i}\right)
\end{aligned}
$$

Multi-Round Computation with Immediate Snapshots

Wait-Free Solvability

Lemma For every task Π, Π is solvable wait-free in the asynchronous shared-memory read/write model $\Longleftrightarrow \Pi$ is solvable wait-free in the asynchronous shared-memory IIS model.

Theorem [Herlihy-Shavit, 1999] A task $\Pi=(\mathscr{I}, \mathcal{O}, \Delta)$ is solvable wait-free in the asynchronous shared-memory read/ write model if and only if there exists $t \geq 0$ and a simplicial map

$$
f: \operatorname{ch}^{(t)}(\mathscr{F}) \rightarrow \mathcal{O} \quad t \text {-th chromatic subdivision of } \mathscr{F}
$$

that agrees with Δ, i.e., for every $\sigma \in \mathscr{J}$,

$$
f\left(\operatorname{ch}^{(t)}(\sigma)\right) \subseteq \Delta(\sigma)
$$

Wait-Free

 Speedup Theorem

 Speedup Theorem}

Intuition

- Let f be a t-round algorithm solving $\Pi=(\mathscr{I}, \mathcal{O}, \Delta)$ in the wait-free IIS model
- What can be done in $t-1$ rounds?
- Every process starting with input $x \in V(\mathscr{J})$:

1. performs $t-1$ rounds: state s
2. assumes running solo during the t-th round: state $\{s\}$
3. outputs $y=f(\{s\}) \in V(\mathcal{O})$

- What properties satisfy these outputs?

These Outputs are Close to Each Other

Local Tasks

- Let $\Pi=(\mathscr{I}, \mathcal{O}, \Delta)$ be a task
- Let $\sigma \in \mathscr{J}$
- Let $\tau \subseteq \Delta(\sigma)$ be a chromatic set with name $(\tau)=\operatorname{name}(\sigma)$
- Local task $\Pi_{\tau, \sigma}=\left(\tau, \Delta(\sigma), \Delta_{\tau, \sigma}\right)$ where

$$
\begin{aligned}
& -\Delta_{\tau, \sigma}\left(\tau^{\prime}\right)=\tau^{\prime} \text { if }\left|\tau^{\prime}\right|=1 \\
& -\Delta_{\tau, \sigma}\left(\tau^{\prime}\right)=\operatorname{proj}_{\text {name }\left(\tau^{\prime}\right)}(\Delta(\sigma)) \text { if }\left|\tau^{\prime}\right|>1
\end{aligned}
$$

Closure Tasks

Definition The closure of a task $\Pi=(\mathscr{F}, \mathcal{O}, \Delta)$ is the task

$$
\text { closure }(\Pi)=\left(\mathscr{F}, \mathcal{O}^{\prime}, \Delta^{\prime}\right)
$$

where $V\left(\mathcal{O}^{\prime}\right)=V(\mathcal{O})$ and, for every $\sigma \in \mathscr{J}$ and $\tau \subseteq V(\mathcal{O})$, we set $\tau \in \Delta^{\prime}(\sigma)$ if

1. name $(\tau)=\operatorname{name}(\sigma)$ and $\tau \subseteq V(\Delta(\sigma))$
2. the local task $\Pi_{\tau, \sigma}$ is solvable in 1 round.

Theorem [F., Paz, Rajsbaum, 2022] For every $t \geq 1$, and every task $\Pi=(\mathscr{J}, \mathcal{O}, \Delta)$, if Π is solvable in t rounds then closure (Π) is solvable in $t-1$ rounds.

Proof

Applications

- closure(consensus) $=$ consensus \Longrightarrow impossibility of consensus.
- closure $(\epsilon$-agreement $)=(2 \epsilon)$-agreement \Longrightarrow lower bound $\left\lceil\log _{2} 1 / \epsilon\right\rceil$ rounds for ϵ-agreement.
- extension to models including test\&set and binaryconsensus objects.
- However, closure(set-agreement) is trivial, i.e., can be solved in zero rounds.

Wrap Up

Conclusion and Open Problems

- Algebraic topology bridges the different models of distributed computing.
- Which tasks have non-trivial closures?
- Is there an if-and-only-if speedup theorem for asynchronous wait-free computing?
- Which (full information) models allow for the design of (useful) speedup theorem? E.g., what about t-resilient models?

