Quantum Distributed Computing

François Le Gall

Nagoya University

ADGA 2022

Remark: this talk doesn't require any prior knowledge of quantum computation

Outline of the Talk

- 1. Brief overview of quantum computation
 - ✓ Basics of quantum computation
- 2. Overview of quantum distributed computing
 - Early results about quantum distributed computing
 - ✓ Recent results
- 3. Quantum distributed algorithms in the CONGEST model

LG and Magniez. Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks. *PODC'18.*

4. Quantum distributed algorithms in the LOCAL model

LG, Rosmanis and Nishimura. Quantum Advantage for the LOCAL Model in Distributed Computing. *STACS'19.*

5. Conclusion and open problems

Outline of the Talk

- 1. Brief overview of quantum computation
 - ✓ Basics of quantum computation
- 2. Overview of quantum distributed computing
 - Early results about quantum distributed computing
 - ✓ Recent results
- 3. Quantum distributed algorithms in the CONGEST model

LG and Magniez. Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks. *PODC'18.*

4. Quantum distributed algorithms in the LOCAL model

LG, Rosmanis and Nishimura. Quantum Advantage for the LOCAL Model in Distributed Computing. *STACS'19.*

5. Conclusion and open problems

Quantum Computing

 Computation paradigm based on the laws of quantum mechanics

quantum mechanics:

The position of a photon is described by a wave function (also called quantum state)

Quantum Mechanics: Discrete Case

QUANTUM

Quantum Mechanics: Discrete Case

QUANTUM

Quantum Mechanics: Discrete Case

History of Quantum Computing

History of Quantum Computing

Second Quantum Boom

Quantum Moore's Law?

NEWS • 23 OCTOBER 2019

Hello quantum world! Google publishes landmark quantum supremacy claim

The company says that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine.

Outline of the Talk

- 1. Brief overview of quantum computation
 - ✓ Basics of quantum computation
- 2. Overview of quantum distributed computing
 - Early results about quantum distributed computing
 - ✓ Recent results
- 3. Quantum distributed algorithms in the CONGEST model

LG and Magniez. Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks. *PODC'18.*

4. Quantum distributed algorithms in the LOCAL model

LG, Rosmanis and Nishimura. Quantum Advantage for the LOCAL Model in Distributed Computing. *STACS'19.*

5. Conclusion and open problems

Quantum Distributed Computing: History

- Mostly been studied in the framework of 2-party communication complexity seminal result: quantum protocol for the disjointness function [Cleve, Buhrman and Wigderson STOC'98]
- ✓ Relatively few results focusing on more than two parties until recently:
 - exact quantum protocols for leader election on anonymous networks [Tani, Kobayashi, Matsumoto PODC'09]
 - study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz DISC'09]
LOCAL model
no significant advantage reported

Question: can quantum distributed computing be useful?

Two early survey papers asking this question: [Denchev and Pandurangan ACM SIGACT News'08] [Arfaoui and Fraigniaud ACM SIGACT News'14]

Quantum Distributed Computing: Recent Positive Answers

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

The diameter of the network can be computed in $\tilde{\Theta}(\sqrt{n})$ rounds in the quantum CONGEST model (when the diameter is constant) but requires $\Theta(n)$ rounds in the classical CONGEST model.

Quantum CONGEST-CLIQUE model

CONGEST-CLIQUE model where quantum bits can be sent instead of usual bits

[LG, Izumi PODC'19] The All-Pairs Shortest Path problem can be solved faster in the quantum CONGEST-CLIQUE model (quantum: $\tilde{O}(n^{1/4})$ rounds, classical: $\tilde{O}(n^{1/3})$ rounds [Censor-Hillel et al. PODC'15]).

Quantum LOCAL model

LOCAL model where quantum bits can be sent instead of usual bits

[LG, Nishimura, Rosmanis [STACS'19]

There is a computational problem that can be solved in 2 rounds in the quantum LOCAL model but requires $\Theta(n)$ rounds classically.

More Recent Works

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

[LG, Magniez PODC'18] The diameter of the network can be computed in $\tilde{\Theta}(\sqrt{n})$ rounds in the quantum CONGEST model (when the diameter is constant) but requires $\Theta(n)$ rounds in the classical CONGEST model.

[Izumi, LG, Magniez STACS'20]

Quantum algorithms for triangle finding

[Magniez, Nayak ICALP'20]

Quantum lower bound for computing the diameter (for arbitrary diameter)

[Censor-Hillel, Fischer, LG, Leitersdorf Ochmon ITCS'22]

Quantum algorithms for Anothe

[de Vos, van Apeldoorn PODC'22

Quantum algorithms for

[Wu, Yao PODC'22]

Quantum algorithms for

Another topic: quantum distributed proof systems (Quantum proofs can be much shorter than classical proofs!) [Fraigniaud, LG, Nishimura, Paz DISC'20 (BA), ITCS'21]

Outline of the Talk

- 1. Brief overview of quantum computation
 - ✓ Basics of quantum computation
- 2. Overview of quantum distributed computing
 - Early results about quantum distributed computing
 - ✓ Recent results

3. Quantum distributed algorithms in the CONGEST model

LG and Magniez. Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks. *PODC'18.*

4. Quantum distributed algorithms in the LOCAL model

LG, Rosmanis and Nishimura. Quantum Advantage for the LOCAL Model in Distributed Computing. *STACS'19.*

5. Conclusion and open problems

Quantum CONGEST model

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

one quantum bit (qubit) = one quantum particle (e.g., one photon)

- $\checkmark\,$ can be created using a laser and sent using optical fibers
- ✓ generalizes the concept of bit (hence quantum distributed computing can trivially simulate classical distributed computing)

→ "classical" means "non-quantum"

More formally:

- ✓ network G=(V,E) of n nodes (all nodes have distinct identifiers)
- ✓ each node knows the identifiers of all its neighbors
- ✓ synchronous communication between adjacent nodes: one message of O(log n) qubits per round
- ✓ each node is a quantum processor (i.e., a quantum computer)

Complexity: the number of rounds needed for the computation

Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

$$D = \max_{u,v \in V} \{d(u,v)\}$$

-d(u,v) = distance between u and v

Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

$$D = \max_{u,v \in V} \{d(u,v)\}$$

= max {ecc (u)}
 $d(u,v) = distance between u and v$

The eccentricity of a node u is defined as

Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

$$D = \max_{u,v \in V} \{d(u,v)\}$$

= max {ecc (u)}
$$= \max_{u \in V} \{ecc (u)\}$$

The <u>eccentricity</u> of a node u is defined as

ecc (u) =
$$\max_{v \in V} \{d(u,v)\}$$

In the classical (i.e., non-quantum) CONGEST model:

- ✓ ecc(u) can be computed in O(D) rounds by constructing a Breadth-First Search tree rooted at u
- computing the diameter (i.e., the maximum eccentricity) requires
 Θ(n) rounds even for constant D
 [Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

Computation of the Diameter in the CONGEST model

Main result: sublinear-round quantum computation of the diameter whenever D=o(n)(this algorithm uses $O((\log n)^2)$ qubits of quantum memory per node)

	Classical	Quantum ([LG, Magniez, PODC'18])
Exact computation (upper bounds)	O(n) [Holzer+12, Peleg+12]	$O(\sqrt{nD})$
Exact computation (lower bounds)	$\widetilde{\Omega}(n)$ [Frischknecht+12]	$\widetilde{\Omega}(\sqrt{nD})$ [conditional]
number of rounds needed to compute the diameter (n: number of nodes, D: diameter)		

condition: holds for quantum distributed algorithms using only polylog(n) qubits of memory per node

Upper Bound

Main result: sublinear-round quantum computation of the diameter whenever D=o(n) (this algorithm uses O((log n)²) qubits of quantum memory per node)

	Classical	Quantum ([LG, Magniez, PODC'18])
Exact computation (upper bounds)	O(n) [Holzer+12, Peleg+12]	$O(\sqrt{nD})$

Computation of the diameter (decision version)

Given an integer d, decide if diameter \geq d

there is a vertex u such that ecc $(u) \ge d$

This is a search problem Idea: use the technique called "quantum search"

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Intuition behind Grover's algorithm

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Example of application: quantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a satisfying assignment (if such an assignment exists)

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Example of application: quantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a satisfying assignment (if such an assignment exists)

X = set of all possible assignments $|X| = 2^M$ Black box: computes f(x) from xpoly(M) time

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Example of application: quantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a satisfying assignment (if such an assignment exists)

X = set of all possible assignments $(X| = 2^M)$ Black box: computes f(x) from x $(V| = 2^M)$ time Quantum search solves SAT in $O(2^{M/2} \times poly(M))$ time

Define the function f: V \rightarrow {0,1} such that f(u) = $\begin{cases} 1 \text{ if ecc } (u) \ge d \\ 0 \text{ otherwise} \end{cases}$

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There is a quantum <u>centralized</u> algorithm for this search problem using $O(\sqrt{n})$ calls to a black box evaluating f

Quantum search [Grover 96]

$$u \longrightarrow f(u)$$

Computation of the diameter (decision version)

```
Given an integer d, decide if diameter \geq d
there is a vertex u such that ecc (u) \geq d
```

This is a search problem Idea: use the technique called "quantum search"

Define the function f: V \rightarrow {0,1} such that f(u) = $\begin{cases} 1 \text{ if ecc } (u) \ge d \\ 0 \text{ otherwise} \end{cases}$

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There is a quantum <u>centralized</u> algorithm for this search problem using $O(\sqrt{n})$ calls to a black box evaluating f

Quantum search [Grover 96]

Quantum distributed algorithm computing the diameter

- $\checkmark\,$ The network elects a leader
- The leader locally runs this centralized quantum algorithm for search, in which each call to the black box is implemented by executing the standard O(D)-round classical algorithm computing the eccentricity

Define the function f: V \rightarrow {0,1} such that f(u) = $\begin{cases} 1 \text{ if ecc } (u) \ge d \\ 0 \text{ otherwise} \end{cases}$

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There is a quantum <u>centralized</u> algorithm for this search problem using $O(\sqrt{n})$ calls to a black box evaluating f

Quantum search [Grover 96]

Quantum distributed algorithm computing the diameter

✓ The network elects a leader

The leader locally runs this centralized quantum algorithm for search, in which each call to the black box is implemented by executing the standard O(D)-round classical algorithm computing the eccentricity

Complexity: $O(\sqrt{n} \times D)$ rounds

With further work, the complexity can be reduced to $O(\sqrt{nD})$ rounds

The Upper Bound

	Classical	Quantum ([LG, Magniez, PODC'18])
Exact computation (upper bounds)	O(n) [Holzer+12, Peleg+12]	$O(\sqrt{nD})$

Lower Bounds

- per node, then the reduction can be adjusted to give a two-party protocol for DISJ using few messages (idea: send communication in batches)
- ✓ the (two-party) r-message quantum communication complexity of $DISJ_n$ is $\Omega(n/r + r)$ qubits [Braverman+15]

Summary on the Quantum CONGEST

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

[LG, Magniez PODC'18] The diameter of the network can be computed in $\tilde{O}(\sqrt{nD})$ rounds in the quantum CONGEST model, but requires $\Theta(n)$ rounds in the classical CONGEST model.

Useful for problems in distributed computing where the bottleneck is a search problem

"Recipe" to build a quantum distributed algorithm (even without knowing anything about quantum computation):

If you need to find a good element among *N* candidates and have a *r*-round procedure to check if an element is good, there is a $O(r\sqrt{N})$ -round quantum algorithm for this search problem.

"Distributed Quantum Search"

Summary on the Quantum CONGEST

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

[LG, Magniez PODC'18] The diameter of the network can be computed in $\tilde{O}(\sqrt{nD})$ rounds in the quantum CONGEST model, but requires $\Theta(n)$ rounds in the classical CONGEST model.

[Izumi, LG, Magniez STACS'20]

Quantum algorithms for triangle finding using distributed quantum search (quantum: $\tilde{O}(n^{1/4})$ rounds, classical: $\tilde{O}(n^{1/3})$ rounds [Chang and Saranurak PODC'19]).

[Censor-Hillel, Fischer, LG, Leitersdorf, Oshman ITCS'22]

Quantum algorithms for clique detection using nested distributed quantum search (for triangle detection: $\tilde{O}(n^{1/5})$ rounds in the quantum setting).

[de Vos, van Apeldoorn PODC'22]

Quantum algorithms for cycle detection and girth computation using a more general framework for distributed quantum search using parallel queries

[Wu, Yao PODC'22]

Quantum algorithms for weighted diameter and radius using distributed quantum search

Outline of the Talk

- 1. Brief overview of quantum computation
 - ✓ Basics of quantum computation
- 2. Overview of quantum distributed computing
 - Early results about quantum distributed computing
 - ✓ Recent results
- 3. Quantum distributed algorithms in the CONGEST model

LG and Magniez. Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks. *PODC'18.*

4. Quantum distributed algorithms in the LOCAL model

LG, Rosmanis and Nishimura. Quantum Advantage for the LOCAL Model in Distributed Computing. *STACS'19.*

5. Conclusion and open problems

Quantum distributed computing: Recent Works

Quantum CONGEST model CONGEST model where quantum bits can be see quantum distributed search The diameter of the network can be computed in $\Theta(\sqrt{n})$ rounds in [LG, Magniez the quantum CONGEST model (when the diameter is constant) PODC'18] but requires $\Theta(n)$ rounds in the classical CONGEST model. Quantum CONGEST-CLIQUE model CONGEST-CLIQUE model where quantum quantum distributed search The All-Pairs Shortest Path problem can be solved faster in the [LG, Izumi PODC'19] quantum CONGEST-CLIQUE model (quantum: O(n^{1/4}) rounds, classical: $O(n^{1/3})$ rounds [Censor-Hillel et al. PODC'15]). Quantum LOCAL model

LOCAL model where quantum bits can be see

completely different technique

40

[LG, Nishimura, Rosmanis STACS'19]

There is a computational problem that can be solved in 2 rounds in the quantum LOCAL model but requires $\Theta(n)$ rounds classically.

Quantum LOCAL model

Messages can now have arbitrary length

Quantum CONGEST model

- ✓ network G=(V,E) of n nodes (all nodes have distinct identifiers)
- ✓ each node knows the identifiers of all its neighbors
- ✓ synchronous communication between adjacent nodes: one message of O(log n) qubits per round
- ✓ each node is a quantum processor (i.e., a quantum computer)

Complexity: the <u>number of rounds</u> needed for the computation

Quantum LOCAL model

- ✓ network G=(V,E) of n nodes (all nodes have distinct identifiers)
- ✓ each node knows the identifiers of all its neighbors
- ✓ synchronous communication between adjacent nodes: one message of arbitrary length per round
- ✓ each node is a quantum processor (i.e., a quantum computer)

Complexity: the <u>number of rounds</u> needed for the computation

Superiority of the Quantum LOCAL model [LG, Rosmanis and Nishimura 2018]

Consider a ring of size n (seen as a triangle)

- Each "corner" gets a bit as input
- Each node will output one bit

Superiority of the Quantum LOCAL model

Claim 1: There is a 2-round quantum algorithm that outputs the uniform distribution over all binary strings $(z_1, z_2, ..., z_n) \in \{0,1\}^n$ satisfying the following condition:

	$m_{odd} = 0$	if	$(b_1, b_2, b_3) = (0, 0, 0)$
J	$m_{odd} \oplus m_R = 1$	if	$(b_1, b_2, b_3) = (1, 1, 0)$
	$m_{odd} \oplus m_B = 1$	if	$(b_1, b_2, b_3) = (0, 1, 1)$
	$m_{odd} \oplus m_L = 1$	if	$(b_1, b_2, b_3) = (1, 0, 1)$.

Claim 1: There is a 2-round quantum algorithm that outputs the uniform distribution over all binary strings $(z_1, z_2, ..., z_n) \in \{0,1\}^n$ satisfying the following condition:

$m_{odd} = 0$	if	$(b_1, b_2, b_3) = (0, 0, 0)$
$m_{odd} \oplus m_R = 1$	if	$(b_1, b_2, b_3) = (1, 1, 0)$
$m_{odd} \oplus m_B = 1$	if	$(b_1, b_2, b_3) = (0, 1, 1)$
$m_{odd} \oplus m_L = 1$	if	$(b_1, b_2, b_3) = (1, 0, 1)$.

Quantum LOCAL model: Summary

- ✓ Huge separation (2 rounds quantumly vs. $\Theta(n)$ rounds classically),
- This significantly improves the only known previous separation "1 round quantumly vs. 2 rounds classically" from [Gavoille, Kosowski, Markiewicz DISC'09]
- This separation is another example of quantum non-locality (phenomenon where "quantum correlations are highly non-local")

experimental verification (1980s)

Aspect Clauser Zeilinger Nobel Prize in Physics (2022)

 Unfortunately, this separation is for a very artificial problem (as the separation in [Gavoille, Kosowski, Markiewicz DISC'09])

Quantum LOCAL model

LOCAL model where quantum bits can be sent instead of usual bits

[LG, Nishimura, Rosmanis [STACS'19]

There is a computational problem that can be solved in 2 rounds in the quantum LOCAL model but requires $\Theta(n)$ rounds classically.

Conclusions and Open Problem distributed search

- In the CONGEST and CONGEST-CLIQUE models, several important graphtheoretic problems can be solved faster using quantum distributed algorithms: diameter, clique detection, cycle detection, computing the girth...
- In the LOCAL model, quantum distributed algorithms can also be faster for some (artificial) computational tasks
 quantum non-locality

Open problems:

- ✓ Find other applications of quantum distributed algorithms in the CONGEST or CONGEST-CLIQUE models
 - Other applications of the "distributed quantum search" recipe
 - New techniques (e.g., quantum walks)
- Consider other models (e.g., asynchronous computation, faulty communication,..) in the quantum setting
- ✓ Find one interesting application [LG and Rosmanis, in preparation] the LOCAL model
 On a ring, one round is not enough for 3-coloring.
 - Can we get a quantum advantage for a locally-checkable problem (LCP)?
 - What is the quantum complexity of 3-coloring on the ring? Can we prove an Ω(log*n) lower bound? (Already asked in [Arfaoui and Fraigniaud ACM SIGACT News'14])