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Quantum Computing
 Computation paradigm based on the laws of 

quantum mechanics

The position of a photon is described by a wave function (also called quantum state)

1 photon

quantum mechanics:



Quantum Mechanics: Discrete Case

state 1

state 0

or

two-state physical system
CLASSICAL

a probability distribution over 0 and 1

𝑝𝑝
𝑞𝑞 with 𝑝𝑝,𝑞𝑞 ≥ 0 and 𝑝𝑝 + 𝑞𝑞 = 1

more generally:

QUANTUM

(“excited”)

(“non-excited”)

𝑝𝑝 is the probability to be at state 0
𝑞𝑞 is the probability to be at state 1



Quantum Mechanics: Discrete Case

state 1

a probability distribution

n-state physical system
CLASSICAL QUANTUM

state 2

state n

…
..

…
.. n possible states

𝑝𝑝1

𝑝𝑝𝑛𝑛
𝑝𝑝𝑖𝑖 is the probability to be in state i

with  𝑝𝑝𝑖𝑖 ≥ 0 and ∑𝑖𝑖 𝑝𝑝𝑖𝑖 = 1
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Quantum Mechanics: Discrete Case

state 1

a probability distribution a wave function

n-state physical system
CLASSICAL QUANTUM

state 2

state n

…
..

…
.. n possible states

𝑝𝑝1

𝑝𝑝𝑛𝑛
𝑝𝑝𝑖𝑖 is the probability to be in state i

with  𝑝𝑝𝑖𝑖 ≥ 0 and ∑𝑖𝑖 𝑝𝑝𝑖𝑖 = 1
𝛼𝛼1

𝛼𝛼𝑛𝑛

α𝑖𝑖 2 is the probability to observe state i

with  α𝑖𝑖 ∈ ℂ and ∑𝑖𝑖 α𝑖𝑖 2 = 1

state 1
state 2

state n
…

..

…
..

Description of the system: Description of the system: 

… …

makes inferences possible

makes convergence quadratically faster



History of Quantum Computing
Proposal of QC

Feynman Deutsch

1982 1985 1994 1996

Shor Grover

Wineland Haroche
Nobel Prize in Physics（2012）

First experiments

integer factoring quantum search

a wave function

𝛼𝛼1

𝛼𝛼𝑛𝑛
with  α𝑖𝑖 ∈ ℂ and ∑𝑖𝑖 α𝑖𝑖 2 = 1

Description of the system: 
…

makes inferences possible

makes convergence quadratically faster

1994 1996

Shor Grover

Discovery of fast 
quantum algorithms

Aspect  Clauser Zeilinger
Nobel Prize in Physics（2022）



History of Quantum Computing
Proposal of QC

Feynman Deutsch

1982 1985 1994 1996

Shor Grover

Discovery of fast 
quantum algorithms

Second Quantum Boom

20152018

IBM

Construction of the first quantum computers 

Google

20102020

quantum error-correction

1999

First Quantum Boom

integer factoring quantum search

Martinis

Aspect  Clauser Zeilinger
Nobel Prize in Physics（2022）

Wineland Haroche
Nobel Prize in Physics（2012）

First experiments



Universal quantum computing (requires quantum error-
correction)

example: integer factoring (about 107 qubits necessary for a 1000-bit integer)

Quantum Moore’s Law ?

number of quantum bits (qubits)

10

100

1000

104

105

106

107

108

QUANTUM 
SUPREMACY

 Task: compute the output of 
a random quantum circuit 
acting on 53 qubits

 Google’s claim: it takes 
100,000 years for a 
classical supercomputer

https://www.nature.com/articles/d41586-019-03213-z
Nature 574, 461-462 (2019)

5q(Google)

9q(Google)
22q(Google)53q(Google)
20q(IBM)

5q(IBM)

53q(IBM)

19q(Rigetti)
11q(Alibaba)

2014   2015   2016  2017  2018  2019   2020   2021   2022                         2025                                       2030      

127q(IBM)
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Quantum Distributed Computing: History
 Mostly been studied in the framework of 2-party communication complexity

Question: can quantum distributed computing be useful? 

negative results: shows impossibility of quantum distributed 
computing faster than classical distributed computing for many 
important problems (shortest paths, MST,…)

no significant advantage reported

 Relatively few results focusing on more than two parties until recently:

 exact quantum protocols for leader election on anonymous networks 
[Tani, Kobayashi, Matsumoto PODC’09]

 study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz DISC’09] LOCAL model

CONGEST model[Elkin, Klauck, Nanongkai, Pandurangan PODC’14]

seminal result: quantum protocol for the disjointness function 
[Cleve, Buhrman and Wigderson STOC’98]

Two early survey papers asking this question: [Denchev and Pandurangan ACM SIGACT 
News’08] [Arfaoui and Fraigniaud ACM SIGACT News’14 ] 



Quantum Distributed Computing: Recent Positive Answers

CONGEST model where quantum bits can be sent instead of usual bits

Quantum CONGEST model

LOCAL model where quantum bits can be sent instead of usual bits
Quantum LOCAL model

[LG, Magniez
PODC’18]

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model (when the diameter is constant)
but requires Θ(𝑛𝑛) rounds in the classical CONGEST model.

There is a computational problem that can be solved in 2 rounds in 
the quantum LOCAL model but requires Θ(n) rounds classically.

[LG, Nishimura, 
Rosmanis
STACS’19]

CONGEST-CLIQUE model where quantum bits can be sent instead of usual bits

Quantum CONGEST-CLIQUE model

The All-Pairs Shortest Path problem can be solved faster in the 
quantum CONGEST-CLIQUE model (quantum: O(n1/4) rounds, 
classical: O(n1/3) rounds [Censor-Hillel et al. PODC’15]). 

[LG, Izumi 
PODC’19]

~

~            
~            



More Recent Works

CONGEST model where quantum bits can be sent instead of usual bits

Quantum CONGEST model

[LG, Magniez
PODC’18]

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model (when the diameter is constant)
but requires Θ(𝑛𝑛) rounds in the classical CONGEST model.

~

[Censor-Hillel, Fischer, LG, Leitersdorf, Oshman ITCS’22]

[Izumi, LG, Magniez STACS’20]

[de Vos, van Apeldoorn PODC’22]

[Wu, Yao PODC’22]

[Magniez, Nayak ICALP’20]

Quantum algorithms for clique detection

Quantum algorithms for triangle finding

Quantum lower bound for computing the diameter (for arbitrary diameter)

Quantum algorithms for cycle detection and girth computation

Quantum algorithms for weighted diameter and radius

Another topic: quantum distributed proof systems 
(Quantum proofs can be much shorter than 

classical proofs!)

[Fraigniaud, LG, Nishimura, Paz DISC’20 (BA), ITCS’21]

[LG, Miyamoto, Nishimura DISC’22 (BA)] Tuesday afternoon
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CONGEST model where quantum bits can be sent instead of usual bits

one quantum bit (qubit) = one quantum particle (e.g., one photon) 
 can be created using a laser and sent using optical fibers
 generalizes the concept of bit (hence quantum distributed 

computing can trivially simulate classical distributed computing)

Quantum CONGEST model

Complexity: the number of rounds needed for the computation

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 synchronous communication between adjacent nodes:         

one message of O(log n) qubits per round 
 each node is a quantum processor (i.e., a quantum computer)

More formally:

Quantum CONGEST model

“classical” means “non-quantum”



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

a

c
b d

e
f

g

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

d(u,v) = distance between u and v



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

a

c
b d

e
f

g D = 4

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

ecc (a) = 3
ecc (b) = 3
ecc (c) = 2
ecc (d) = 3
ecc (e) = 3
ecc (f ) = 4
ecc (g) = 4

d(a,a) = 0
d(a,b) = 2
d(a,c) = 1
d(a,d) = 2
d(a,e) = 2
d(a, f) = 3
d(a,g) = 3



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

 ecc(u) can be computed in O(D) rounds by 
constructing a Breadth-First Search tree rooted at u 

 computing the diameter (i.e., the maximum eccentricity) requires 
Θ(n) rounds even for constant D  
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

In the classical (i.e., non-quantum) CONGEST model:



Computation of the Diameter in the CONGEST model

Classical Quantum ([LG, Magniez, PODC’18]) 

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

Main result: sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

(this algorithm uses O((log n)2) qubits of quantum memory per node)

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Upper Bound

Classical Quantum ([LG, Magniez, PODC’18]) 

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Main result: sublinear-round quantum computation of the diameter whenever D=o(n)
(this algorithm uses O((log n)2) qubits of quantum memory per node)



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: use the technique called “quantum search”



Centralized Quantum Search: Grover’s algorithm

Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ X such that f(x) = 1 

Classically this can be done using 𝑂𝑂(|𝑋𝑋|) calls to the black box 
(“brute force search: try all the elements x”)

There is a quantum centralized algorithm solving 
this problem with 𝑂𝑂( |𝑋𝑋|) calls to the black box

Quantum search
[Grover 96]



Intuition behind Grover’s algorithm

a probability distribution a wave function

𝑝𝑝1

𝑝𝑝𝑚𝑚
𝑝𝑝𝑖𝑖 is the probability to be in state i

with  𝑝𝑝𝑖𝑖 ≥ 0 and ∑𝑖𝑖 𝑝𝑝𝑖𝑖 = 1
𝛼𝛼1

𝛼𝛼𝑚𝑚

α𝑖𝑖 2 is the probability to observe state i

with  α𝑖𝑖 ∈ ℂ and ∑𝑖𝑖 α𝑖𝑖 2 = 1

Description of the system: Description of the system: 

… …

Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ X such that f(x) = 1 

CLASSICAL QUANTUM

Classical sampling strategy:
0
⋮
0
1
0
⋮
0

1/|𝑋𝑋|
⋮

1/|𝑋𝑋|
1/|𝑋𝑋|
1/|𝑋𝑋|
⋮

1/|𝑋𝑋|

Convert                to
x ∈ X such that 

f(x) = 1 

𝑂𝑂(|𝑋𝑋|) calls to the black box are enough 

0
⋮
0
1
0
⋮
0

1/ |𝑋𝑋|
⋮

1/ |𝑋𝑋|
1/ |𝑋𝑋|
1/ |𝑋𝑋|

⋮
1/ |𝑋𝑋|

Convert to
x ∈ X such that 

f(x) = 1 

Grover’s algorithm:

𝑂𝑂( |𝑋𝑋|) calls are enough [Grover 96] 



Centralized Quantum Search: Grover’s algorithm

Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ X such that f(x) = 1 

Classically this can be done using 𝑂𝑂(|𝑋𝑋|) calls to the black box 
(“brute force search: try all the elements x”)

There is a quantum centralized algorithm solving 
this problem with 𝑂𝑂( |𝑋𝑋|) calls to the black box

Quantum search
[Grover 96]

SAT:  given a Boolean formula f of poly size on M variables, find a 
satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)
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Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ X such that f(x) = 1 

There is a quantum centralized algorithm solving 
this problem with 𝑂𝑂( |𝑋𝑋|) calls to the black box

Quantum search
[Grover 96]

SAT:  given a Boolean formula f of poly size on M variables, find a 
satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)

X = set of all possible assignments                  |X| = 2M

Black box: computes f(x) from x                     poly(M) time 

Classically this can be done using 𝑂𝑂(|𝑋𝑋|) calls to the black box 
(“brute force search: try all the elements x”)



Centralized Quantum Search: Grover’s algorithm

Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ X such that f(x) = 1 

There is a quantum centralized algorithm solving 
this problem with 𝑂𝑂( |𝑋𝑋|) calls to the black box

Quantum search
[Grover 96]

SAT:  given a Boolean formula f of poly size on M variables, find a 
satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)

X = set of all possible assignments                  |X| = 2M

Black box: computes f(x) from x                     poly(M) time 
Quantum search solves SAT in O(2M/2 x poly(M)) time 

Classically this can be done using 𝑂𝑂(|𝑋𝑋|) calls to the black box 
(“brute force search: try all the elements x”)



Quantum Distributed Computation of the Diameter

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: use the technique called “quantum search”

u f(u)



Quantum Distributed Computation of the Diameter

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally runs this centralized quantum algorithm for search, 

in which each call to the black box is implemented by executing the 
standard O(D)-round classical algorithm computing the eccentricity



Quantum Distributed Computation of the Diameter

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity With further work, the complexity 
can be reduced to 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally runs this centralized quantum algorithm for search, 

in which each call to the black box is implemented by executing the 
standard O(D)-round classical algorithm computing the eccentricity



The Upper Bound

Classical Quantum ([LG, Magniez, PODC’18]) 

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)



Lower Bounds

 reduce DISJ to the distributed computation of diameter [Frischknecht+12]

classical lower bound

 the (two-party) communication complexity of DISJn is Ω(n) bits [Kalyanasundaram+92]

unconditional quantum lower bound
 same reduction from DISJ to the distributed computation of diameter 
 the (two-party) communication complexity of DISJn is Ω( 𝑛𝑛) qubits [Razborov03]

Classical Quantum [LG, Magniez PODC’18]

Exact computation (upper  bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]
�Ω( 𝑛𝑛𝑛𝑛) [conditional]

via two-party communication complexity of the disjointness function (DISJ)

conditional quantum lower bound
 Claim: if the quantum distributed algorithm for diameter uses few quantum memory

per node, then the reduction can be adjusted to give a two-party protocol for DISJ 
using few messages (idea: send communication in batches) 

 the (two-party) r-message quantum communication complexity of DISJn is
Ω( 𝑛𝑛/𝑟𝑟 + 𝑟𝑟 ) qubits [Braverman+15]

Improvement [Magniez, Nayak ICALP’20]
�Ω( 𝑛𝑛 + 𝑛𝑛1/3𝑛𝑛2/3)    [unconditional]



Summary on the Quantum CONGEST

“Recipe” to build a quantum distributed algorithm 
(even without knowing anything about quantum computation):

If you need to find a good element among 𝑁𝑁 candidates and have a 
𝑟𝑟-round procedure to check if an element is good, there is a 
𝑂𝑂 𝑟𝑟 𝑁𝑁 -round quantum algorithm for this search problem.

Useful for problems in distributed computing where the bottleneck is a search problem

“Distributed Quantum Search”

CONGEST model where quantum bits can be sent instead of usual bits

Quantum CONGEST model

[LG, Magniez
PODC’18]

The diameter of the network can be computed in 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 
in the quantum CONGEST model, but requires Θ(𝑛𝑛) rounds in 
the classical CONGEST model.

~



Summary on the Quantum CONGEST

CONGEST model where quantum bits can be sent instead of usual bits

Quantum CONGEST model

[LG, Magniez
PODC’18]

The diameter of the network can be computed in 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 
in the quantum CONGEST model, but requires Θ(𝑛𝑛) rounds in 
the classical CONGEST model.

~

[Censor-Hillel, Fischer, LG, Leitersdorf, Oshman ITCS’22]

[de Vos, van Apeldoorn PODC’22]

[Wu, Yao PODC’22]

Quantum algorithms for clique detection using nested distributed quantum search
(for triangle detection: O(n1/5) rounds in the quantum setting).

Quantum algorithms for cycle detection 
and girth computation using a more 
general framework for distributed 
quantum search using parallel queries

Quantum algorithms for weighted diameter and radius using distributed quantum search

Classical 
Algorithm

x1
f(x1),…, f(xm)

xm

…

[Izumi, LG, Magniez STACS’20]

Quantum algorithms for triangle finding using distributed quantum search
(quantum: O(n1/4) rounds, classical: O(n1/3) rounds [Chang and Saranurak PODC’19]).~            ~            

~            
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Quantum distributed computing: Recent Works

CONGEST model where quantum bits can be sent instead of usual bits

Quantum CONGEST model

LOCAL model where quantum bits can be sent instead of usual bits
Quantum LOCAL model

[LG, Magniez
PODC’18]

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model (when the diameter is constant)
but requires Θ(𝑛𝑛) rounds in the classical CONGEST model.

There is a computational problem that can be solved in 2 rounds in 
the quantum LOCAL model but requires Θ(n) rounds classically.

[LG, Nishimura, 
Rosmanis
STACS’19]

CONGEST-CLIQUE model where quantum bits can be sent instead of usual bits

Quantum CONGEST-CLIQUE model

The All-Pairs Shortest Path problem can be solved faster in the 
quantum CONGEST-CLIQUE model (quantum: O(n1/4) rounds, 
classical: O(n1/3) rounds [Censor-Hillel et al. PODC’15]). 

[LG, Izumi 
PODC’19]

~

~            
~            

quantum distributed search

quantum distributed search

completely different technique



Quantum LOCAL model

Complexity: the number of rounds needed for the computation

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 synchronous communication between adjacent nodes:         

one message of O(log n) qubits per round 
 each node is a quantum processor (i.e., a quantum computer)

Quantum CONGEST model

Complexity: the number of rounds needed for the computation

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 synchronous communication between adjacent nodes:         

one message of arbitrary length per round 
 each node is a quantum processor (i.e., a quantum computer)

Quantum LOCAL model

Messages can now have arbitrary length



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

multiple of 3

Each node will output one bit

[LG, Rosmanis and Nishimura 2018]

n=18
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n=18

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four  bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

(parity of the outputs of the nodes of even index on the left)

(parity of the outputs of all the nodes of odd index)

Each node will output one bit



Each node will output one bit

Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input
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n=18

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that outputs the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

1. Each node creates 1 qubit

.

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four  bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

2. Each node makes its qubit interact with its two neighbors (2 rounds)
3. Each non-corner node makes a “standard measurement” to its qubit, and outputs 

the bit corresponding to the measurement outcome
4. Each corner node makes a “standard measurement” to its qubit if its input bit is 0, 

or makes a “projective measurement” to its qubit if its input bit is 1, and outputs 
the bit corresponding to the measurement outcome
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𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that outputs the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

Claim 2: In the LOCAL model, any classical algorithm that outputs the same 
distribution must use at least n/6 rounds.

 In any classical protocol using less than n/6 rounds: 
𝑚𝑚𝑅𝑅 is an affine function of b1 and b2
𝑚𝑚𝐵𝐵 is an affine function of b2 and b3
𝑚𝑚𝐿𝐿 is an affine function of b1 and b3
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 is an affine function of b1, b2 and b3

 Such functions cannot satisfy all the linear conditions of 
Claim 1

.

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12
(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)



Quantum LOCAL model: Summary

LOCAL model where quantum bits can be sent instead of usual bits
Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in 
the quantum LOCAL model but requires Θ(n) rounds classically.

[LG, Nishimura, 
Rosmanis
STACS’19]

 Huge separation (2 rounds quantumly vs. Θ(𝑛𝑛) rounds classically),

 This significantly improves the only known previous separation            
“1 round quantumly vs. 2 rounds classically” from [Gavoille, Kosowski, 
Markiewicz DISC’09]

 Unfortunately, this separation is for a very artificial problem      
(as the separation in [Gavoille, Kosowski, Markiewicz DISC’09])

 This separation is another example of quantum non-locality
(phenomenon where “quantum correlations are highly non-local”) 

Aspect  Clauser Zeilinger
Nobel Prize in Physics（2022）

experimental 
verification (1980s)

ghosty action 
at distance



Conclusions and Open Problems
 In the CONGEST and CONGEST-CLIQUE models, several important graph-

theoretic problems can be solved faster using quantum distributed 
algorithms: diameter, clique detection, cycle detection, computing the girth… 

 In the LOCAL model, quantum distributed algorithms can also be faster for 
some (artificial) computational tasks 

Open problems:
 Find other applications of quantum distributed algorithms in the 

CONGEST or CONGEST-CLIQUE models

 Find one interesting application of quantum distributed algorithms in 
the LOCAL model

 Consider other models (e.g., asynchronous computation, faulty 
communication,..) in the quantum setting

• Other applications of the “distributed quantum search” recipe
• New techniques (e.g., quantum walks)

• What is the quantum complexity of 3-coloring on the ring? Can we prove an 
Ω(log*n) lower bound? (Already asked in [Arfaoui and Fraigniaud ACM SIGACT News’14 ]) 

• Can we get a quantum advantage for a locally-checkable problem (LCP)?

[LG and Rosmanis, in preparation]
On a ring, one round is not enough for 3-coloring.

quantum distributed search

quantum non-locality
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