CIIs

Smoothed Analysis of Dynamic Networks

Ami Paz — CNRS

Seth Gilbert — National University of Singapore
Uri Meir — Tel-Aviv University
Gregory Schwartzman — Japan Advanced Institute of Science and Technology



Smoothed Analysis

Spielman and Teng "04:
The simplex algorithm
behaves like this
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Smoothed Ana

[Spielman and Teng ‘04]

* A smoothed linear program:

VSIS

A linear program + Gaussian noise
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Main result
The simplex algorithm on a
smoothed linear program
takes polynomial time
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Flooding

* Connected n-node graph (n-unite synchronous network)
* Propagate information to all the network

* Worst-case: O(D) = diameter time
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Dynamic Network

* Links change over time

e Worst case:n — 1time
e evenwithD = 3
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Worst-Case Analysis

Flooding

Time

Worst case: n — 1 time even with D = 3

Our goal: Go beyond the worst-case analysis



Flooding Time

Random dynamic
network

O(logn)

Reality?
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Previous Work

Pivoting rules for the simplex algorithm [Spielman and Teng ‘04]

Dynamic networks [Dinitz, Fineman, Gilbert, Newport '18]
MST in dynamic networks [Chatterjee, Pandurangan, Pham ‘20]
Models of Smoothing in Dynamic Networks [Meir, Paz, Schwartzman ‘20]

Load Balancing in Dynamic Networks [Gilbert, Meir, Paz, Schwartzman 21]



Smoothed Analysis

Adversarial
input
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[Smoothed inputJ

{k random edges
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Integer Noise — Oblivious

[DFGN"18]

* Integer Noise: Pick a random graph with Hamming distance < k Disconnected
Graphs

e Adversary: Gy, Go, ...

Smoothed: Hjp, Hy, ... %Gi

Hl-~ball(Gl-, k) .H.
* Note: Most graphs in ball(G;, k) are at distance Q(k) from G; l
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Integer Noise — Oblivious

[DFGN’18]

Smoothed edges = k edges

Adversary

Smoothed

Time
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Integer Noise - Results

[DFGN"18]

* Flooding in ©(n?/3/k/3) w.h.p.
e Polynomial gap between no noise (k = 0) and minimal noise (k = 1)
* Questions:

1. Gap

2. Adaptive adversary
3. Responsive noise
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Flooding —

Random
Network

O(logn)

Some Results

Oblivious
Adversary

_ n2/3
0 Jc1/3

DFGN’18

Worst
Case

n—1
o

Hardness
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Oblivious Adv. - Upper Bound

e Oblivious adversary, ~k random edges per round

e Fix a source u, arbitrary node v

» Choose r = 8(n?/3/k/3), analyze 3r rounds
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Oblivious Adv. - Upper Bound

* LetS,:nodesinformedinroundsd,...,r
* Each round: at least one new informed node, so |S,| = r

* LetS,:similarly, nodes that will inform v in rounds 2r + 1, ..., 3r
o Again |S,| =
* Depends on obliviousness

rounds
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Oblivious Adv. - Upper Bound

e Roundsr+1,...,2r? [ r = 0(n*3/k'/3) }

e Single round: some edge from S,, X S, appears w.p. kr% /n? (lemma)

* r rounds: edge from S, X S, appearsw.p. 1 — (1 — krz/nz)r >1—n"°¢

e Also for fractional k

rounds

—_—
16




Oblivious Adv. - Upper Bound

e Roundsr+1,...,2r? [ r = 0(n*3/k'/3) }

e Single round: some edge from S,, X S, appears w.p. kr% /n? (lemma)

* r rounds: edge from S, X S, appearsw.p. 1 — (1 — krz/nz)r >1—n"°¢

e Also for fractional k

rounds

—_—
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Oblivious Adv. - Upper Bound

* Flooding after 3r = ©(n?/3/k'/3) rounds w.h.p.
e By a union bound over all nodes

* Note: highly depends on the obliviousness of the adversary
* Otherwise S, cannot be defined

rounds

S S

0 r 2r 3r
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Flooding —

Random
Network

O(logn)

Some Results

Oblivious
Adversary

_ n2/3
0 Jc1/3

DFGN’18

Worst
Case

n—1
o

Hardness
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Flooding — Some Results

Random Targeted Noise Oblivious Adaptive Targeted Noise  Worst
Network p = O( /1Ogn) Adversary  Adversary D = Q(logn) Case

k

New DFGN’18 New New

2/3
O(logn) o(n¢) 0 <%> QO (E) Q(n) n—1

Hardness
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Flooding — Some Results

Oblivious Adaptive
Adversary Adversary

_[n?/3 n
N\ “(E)
O » O O »

DFGN’18 New

Hardness
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Flooding — Some Results

Targeted Noise Targeted Noise
D = o(,/logn) D = Q(logn)
o(n¢) Q(n)
O O O O O O

New New

Hardness
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Flooding — Some Results

Random Targeted Noise Oblivious Adaptive Targeted Noise  Worst
Network p = O( /1Ogn) Adversary  Adversary D = Q(logn) Case

2/3
O(logn) o(n¢) 0 <%> QO (E) Q(n) n—1

k
New DFGN’18 New New
4 N\ Hardness

Landscape of
smoothing models
and complexities

\_ J
MPS’20 23




Adaptive Adv. - Upper Bound

[MPS’20]
e Adaptive adversary:
* Picks a graph
e ~k edges perturbed at random

e Sees the perturbed edges
Adversary

Smoothed



Adaptive Adv. - Upper Bound

e Chooser =0 (n/ﬁ), analyze 2r rounds

e Let S,: nodesinformedinrounds,..,r;|S,| =1

rounds
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Adaptive Adv. - Upper Bound

e Roundsr + 1, ..., 2r, [
T =

* Single round: edge from S, to v w.p. kr/n* (lemma)

6 (n/Vk) }

* r rounds: edge from S, tovw.p. 1 — (1 — kr/nz)r >1—n"°¢

rounds

0 r 2r 26



Adaptive Adv. - Upper Bound

e Flooding after 2r = 0 (n/\/E) rounds w.h.p.

e Exists lower bound: Q(n/k)
 Cannot improve the dependence onn

rounds
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Targeted Noise

[MPS’20]

* Targeted Noise:
* Adaptive/oblivious adversary
* Each change happensw.p.1 —¢€

Adversary

Smoothed



Targeted Noise - Upper Bound

e Small diameter

 Consider a shortest (u, v)-path P,
* |Pwl =D
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Targeted Noise - Upper Bound

* In D rounds
* Each e € P,, existsin all D rounds w.p. .Q.(ED)

* PB,, existsin all D rounds w.p. Q (Epz)

* |n which case v is informed
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Targeted Noise - Upper Bound

e After tD rounds

N
* Anode vis uninformed w.p. O (1—ED )

e Sett =0 (E_DZ logn)

* All nodes informed in tD rounds w.h.p.

* ForD =o0 (,/logn), tD = 0(n5) for any constant 0

31



Targeted Noise - Lower Bound

0 logn 2logn 3logn 4logn 5logn 6logn 7logn

8logn

9logn
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Targeted Noise - Lower Bound

2logn 3logn 4logn

7logn

5logn

6logn
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Targeted Noise - Lower Bound

Flooding takes n — 1 rounds

w.h.p.
\ y,




Bounds on Flooding Time

Model Upper Bound Lower Bound Ref.
oot e (oo | amntontor
namptive advereary L 0/KY) e/ NEw
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Distributed Load Balancing

[GMPS'21]
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Local Load Balancing

* Dynamic networks: Getting constant T is impossible!
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Local Load Balancing

* Worst case: Getting constant T is impossible!

_ 2
* Smoothed dynamic networks: Balancing in O (%10g%)
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Conclusion & Open Problems

Conclusion

* Many models of smoothing

* Have to choose a model by the concrete system

Open problems
* Beyond flooding and load balancing

* Application-driven models of smoothing

Thank you
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