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On Friday..

Computer repair 
team



The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Careful exponentiation
• Total space



graph with 𝒏 nodes and 𝒎	edges

Massively Parallel Computing (MPC)



Massively Parallel Computing (MPC) Model
[Karloff, Suri, Vassilvitskii SODA’10]

𝑴 machines
𝑺 memory per machine
Total space 𝑴 ⋅ 𝑺

Low-space: 
𝑺 = 𝑶 𝒏𝜹 , 𝟎 ≤ 𝜹 < 𝟏	
No machine ever sees all the nodes!

Linear space: 
𝑺 = /𝑶 𝒏
A sketch fits onto a single machine



MPC vs Message Passing

MPC can simulate 𝑻-rounds 
of message passing as long as 
𝐍𝑻 𝒗 ≤ 𝑺

MPC and Message Passing 
Everyone knows their 
neighbors in the beginning. 
Assume	Δ < 𝑺.



Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇  
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing



Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇  
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing

Communicate in 𝑮𝟐



Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇  
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

MPC vs Message Passing

Δ + 1 -coloring

LOCAL: poly log log 𝑛 rounds [GG’23]

MPC: 𝑂 log log log 𝑛  rounds [CDP’21]



Design pattern: Graph Exponentation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇  
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Global Power: Leader Election
 
Allows probability amplification
  - Run 𝑂(log 𝑛) parallel repetitions
  - Choose the best outcome

Example [KKSS’20, CPD’21]:
Independent sets of size Ω 𝑛/Δ

LOCAL: Ω(log∗ 𝑛) 
MPC: 𝑂 1

MPC vs Message Passing



Global Power: Leader Election
 
Allows probability amplification
  - Run 𝑂(log 𝑛) parallel repetitions
  - Choose the best outcome

Example [KKSS’20, CPD’21]:
Independent sets of size Ω 𝑛/Δ

LOCAL: Ω(log∗ 𝑛) 
MPC: 𝑂 1 !

MPC vs Message Passing



Locality Barrier

Local Algorithm
Runtime 𝑇 𝑛

Locality Barrier
Θ log 𝑇 𝑛

Beyond
o log 𝑇 𝑛

Exponentiation gets 
stuck here!

Locally checkable 
problems?!

Approximation



Locality Barrier

Local Algorithm
Runtime 𝑇 𝑛

Locality Barrier
Θ log 𝑇 𝑛

Beyond
o log 𝑇 𝑛

Locally checkable 
problems?!

Approximation



MIS and Maximal Matching

Maximal Matching

Maximal Independent Set

LOCAL [Gh’16]: O log Δ 	

MPC [GU’19]: *𝑂 log Δ

Locality barrier: Θ log log Δ

??



The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Careful exponentiation
• Total space



2) Can we solve the problem 
with a small part of the input?

1) Can we solve the problem 
efficiently on a sparse graph?

Round Compression and Sparsification



Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in 

𝑇 = 𝑂 log Δ  rounds.
2. Simulate the algorithm on a sparse (low 

degree) subgraph for Ω log Δ  rounds.
3. Repeat 𝑂 log Δ  times.

𝑂(log Δ ⋅ log log Δ) in total.



Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in 

𝑇 = 𝑂 log Δ  rounds.
2. Simulate the algorithm on a sparse (low 

degree) subgraph for Ω log Δ  rounds.
3. Repeat 𝑂 log Δ  times.

Seems like a 
fundamental 
barrier

Black box 
application of 
exponentiation.

𝑂(log Δ ⋅ log log Δ) in total.



Shattering

MIS Sparsification Simplified (a lot):
After 𝑂 log Δ  iterations, the graph 
shatters into 𝑂 log 𝑛  sized components.

MPC: gather the components and simulate 
LOCAL. Black box 

application of 
exponentiation.



Coloring

(𝚫 + 𝟏)-Coloring in MPC [CFGUZ’19, CDP’21]:
Split the graph into low-degree subgraphs with 
disjoint color palettes in 𝑂 1  rounds.

Post-shattering:
Gather the components and simulate LOCAL. Black box 

application of 
exponentiation.



LLL and Friends

Fischer & Ghaffari:
Find a partial solution to LLL in O Δ,  LOCAL 
rounds that shatters the graph.

Post-shattering:
Gather the components and simulate LOCAL. Black box 

application of 
exponentiation.

Efficient in 
sparse graphs.



LLL and Friends

Take home:

A lot of naïve 
exponentiation



The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Careful exponentiation
• Total space



Derandomization Tools

A Toolbox for Derandomization
Goal: Reduce the number of required 
random bits to 𝑂 log 𝑛  per node.

Agree globally and deterministically 
on a common random seed.



Derandomization Tools

A Toolbox for Derandomization                                
1. Conditional expectations
2. Limited independence
3. Pseudorandom generators

MIS:  𝑂(log Δ + log log 𝑛)
Coloring: 𝑂 log log log 𝑛
LLL:  𝑂 poly	Δ + log log log 𝑛

Connected components (CC’21): 
𝑂 log diam + log log 𝑛

All (at least indirectly) employ naïve exponentiation



The Plan
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Naïve Exponentiation – So What?

• Increases total space demand
• Connected components is an exception (linear total space). But it’s “slow”.

• Is it worth improving?
• Linear is prettier (and optimal)
• Wasted potential?!

Symmetry breaking
Pre-shattering: 𝑛-./ -

Post-shattering: 𝑛-.0(-)



Naïve Exponentiation – So What?

Wasted potential?!

Example: MIS

Current SOTA seems fundamentally 
stuck at Θ log Δ .

Some room to improve by smarter 
exploration (exponentiation)?

Need new ideas!

How to change 
the game?



Naïve Exponentiation – So What?

Limit total space 
to linear (tight)?

Locally Checkable Problems:
Almost all approaches rely, to some 
extent, on naïve exponentiation.

Yields overhead in total space.



Naïve Exponentiation – So What?

Ideally:
Avoid exponentiation altogether and beat 
the locality barrier.

At the least:
Come up with new ideas and algorithms. 

Probably:
Learn ways to collect local data fast



The Plan

• MPC intro
• LOCAL VS MPC
• Locality Barrier

• Known Techniques
• Sparsification and round compression
• Derandomization

• New Techniques
• Total space
• Careful exponentiation Locally checkable 

labeling problems



Careful Exponentiation

Solving LCLs with locality 
Θ log∗ 𝑛

In 𝑂 log log∗ 𝑛  rounds of 
MPC with linear total space.

Meets the locality barrier.

Conditionally optimal with 
fine print

Global LCLs in Forests

In 𝑂 log diam  MPC rounds 
with linear total space.

Conditionally optimal



LCLs in the “Tiny” Regime

Theorem [CKP’19]:

Any LCL with deterministic locality 
𝑜 log 𝑛  can be solved with a canonical 
(LOCAL) algorithm in 𝑂 log∗ 𝑛  rounds.

Need a distance-𝑘 coloring

Get it by Δ$-coloring of 𝐺%
Linial: 𝑂 log∗ 𝑛  local rounds



Coloring Pseudo-Forests

𝚫𝟐-coloring of 𝑮𝒌

Since Δ and 𝑘 are constants, can 
reduce to 3-coloring pseudo-forests 
and color reduction.

Important: Focus on MPC 
issues.

A tempting approach:
Gather 𝑂 log∗ 𝑛 -neighborhood
And simulate Linial’s

Requires Ω 𝑛 log∗ 𝑛  total space!



Coloring a Directed Pseudo-Forest
Careful Exploration

Run just one round of Linial’s
 - Turn IDs into log log 𝑛 -bit colors

Collect a vector of size 𝑂(
)

log log 𝑛 ⋅
log∗ 𝑛 = 𝑂(log 𝑛) bits

Total space: 𝑂 𝑛  words.

Issue:
Need to store 𝑂(log∗ 𝑛) machine 
addresses of Ω log 𝑛  bits.



Coloring a Directed Pseudo-Forest
Careful Exploration

Run just one round of Linial’s
 - Turn IDs into log log 𝑛 -bit colors

Collect a vector of size 𝑂(
)

log log 𝑛 ⋅
log∗ 𝑛 = 𝑂(log 𝑛) bits

Only store the address of farthest 
machine, 𝑂(log 𝑛) bits.

Total space: 𝑂 𝑛  words.



LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL 𝑃 with locality 𝑜(log 𝑛), there is an MPC 
algorithm that solves 𝑃 in 𝑂(log log∗ 𝑛) rounds. 

Nice property:
Optimal in terms of 
memory parameters.

Nice property:
Runtime potentially 
optimal. 🤨

Nice property:
Goes beyond naïve 
exponentiation.



Conditional Lower Bounds

Theorem [GKU’19, CPD’21]

Given the connectivity conjecture, 
there is no component-stable 
algorithm that beats 𝑂 log locality

Connectivity Conjecture

It takes Ω log diam  time to 
find connected components.

Component stable

Outputs on different 
components are independent

Open Question

Is there a component unstable 
algorithm that beats the 
locality barrier for a locally 
checkable problem?

Affirmative for approximation.



LCLs in the “Tiny” Regime
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Nice property:
Optimal in terms of 
memory parameters.

Nice property:
Runtime potentially 
optimal. 🤨

Nice property:
Goes beyond naïve 
exponentiation.
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• MPC intro
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• Known Techniques
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• Total space
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labeling problems



Connectivity on Forests

Theorem [BLMOU’23]:
There is an MPC algorithm to find 
the connected components of a 
forest in 𝑂 log diam  rounds.

Almost directly yields an algorithm 
to solve all LCLs on forests

Conditionally optimal

In terms of memory

Holds for component 
unstable algorithms!

🤨



Finding Leaves

To solve LCLs, need 
to find leaves from 
all but one branch.

Naïve 
exponentiation can 
lead to storing 𝑇-

𝑇!



Finding Leaves

To solve LCLs, need 
to find leaves from 
all but one branch.

Naïve 
exponentiation can 
lead to storing 𝑇-

𝑇!

𝐍𝑻 𝒗 > 𝑺



Finding Leaves

To solve LCLs, need 
to find leaves from 
all but one branch.

Naïve 
exponentiation can 
lead to storing 𝑇-

𝑇!

Solve subtrees first



Finding Leaves

To solve LCLs, need 
to find leaves from 
all but one branch.

Key idea: 
Balanced exploration

𝑇! 𝑇"

𝑇#

Adversary cannot hide 
leaves to a certain branch



Connectivity on Forests

Theorem [BLMOU’23]:
Connected components of a forest 
in 𝑂 log diam  rounds.

Almost directly yields an algorithm 
to solve all LCLs on forests

Nice property:
Other connectivity 
results have a 
dependency on 𝑛

Nice property:
Global LCLs are hard 
regardless of 
component-stability



Chicken vs Egg

Is there a difference between (?)
1. First creating a smart subgraph 

and doing naïve exponentiation

2. Smart exponentiation on the 
input graph



Conclusion

Graph exponentiation,
a necessary evil?

Conditionally optimal 
algorithms

Thank you!
More on Thursday 
by Rustam



The Plan

• Known techniques:
• sampling + solve locally (this is essentially linear space)

• If I mention this, I should advertise our ruling set talk)
• Sample and gather by Shreyas (pretty much round compression??)

• sparsification
• Round compression + graph exponentiation

• Deterministic random bits
• Conditional expectations (check references)
• Annoying O(1) algorithm for large independent sets
• PRGs (check references)

• Shattering
• Used in combination with round compression of LOCAL
• post shattering is usually expensive



Where total space is needed

• Finding an MIS of size Ω 𝑛/Δ takes  Ω(log∗ 𝑛) in LOCAL and 𝑂(1) in low-
space MPC.

• Kawarabayashi, Khoury, Schild, and Schwartzman [KKSS’20]
• Czumaj, Davies, Parter [CDP’21]

• Derandomization tools for MIS, LLL, etc with 𝑛"#$(") total space [CDP’21]
• 𝑜 1 contains collecting a ball of Δ! + poly log log 𝑛 radius.
• log Δ + log log log 𝑛 time for large Δ with 𝑛"#$ " total space

• All randomized algorithms can be derandomized with polynomial number 
of machines
• Probability boosting (need to be able to verify correctness)
• Since success probability is high enough, there is a correct seed (Proof 6.1)



Connectivity

• Randomized algorithms by Andoni, Stein, Song, Wang, Zhong [ASSWZ’18] 
and Behnezhad, Dhulipala, Esfandiari, Łącki, Mirrokni [BDELM’19] do 
connectivity in 𝑂 log𝐷 time for dense graphs.
• Need Ω log log 𝑛 for sparse graph. Needed in order to get concentration.
• The same bound holds for deterministic algorithms Coy, Czumaj [CC’22]. They use 

derandomization and hence, at least indirectly, inherently require Ω log log 𝑛 .
• Actually, one can shrink the graph by a poly log 𝑛 factor in 𝑂 log log 𝑛

rounds which “gives more total space”
• Nothing wrong with this, but surpassing this bound requires new ideas
• Explicit disclaimer that I am not saying that this approach cannot lead anywhere

• Sparse graphs are hard?!
• Can we get 𝑂 log𝐷 in sparse graphs? Topic for another talk?



Locally Checkable Labelings

• Revisit the LOCAL algorithms for LCLs
• On forests

• Tiny regime: Θ log∗ 𝑛
• Mid regime: Θ log 𝑛
• High regime: Θ 𝑛"/'

• Connectivity result gives 𝑂 log𝐷 for forests
• Leader election
• Even stronger results through the hierarchical clustering: solve dynamic 

programming
• How does all of this relate to the LLL (+ other) results by CDP?

• At least all LCLs do not satisfy any of the LLL criteria



Thinking Inside the Box

Pointer hopping:
Tiny regime of LCLs

Careful exponentiation:
High regime of LCLs



Solving the Tiny Regime

• LOCAL reduction to coloring a directed pseudo-forest



Forest Connectivity

• All LCLs in 𝑂 log𝐷 rounds.
• Careful/balanced exponentiation


