Symmetry Breaking in
Massive Graphs

Jara Uitto, Aalto University

ADGA 2023
' ' i '
wl A [5] [

B i

] [~ [®] [\

On Friday..

Computer repair
team

The Plan

* MPC intro
* LOCAL VS MPC
* Locality Barrier

* Known Techniques

 Sparsification and round compression
* Derandomization

* New Techniques
e Careful exponentiation
» Total space

/M |

—~ B

Massively Parallel Computing (MPC)

graph with n nodes and m edges

Massively Parallel Computing (MPC) Model

[Karloff, Suri, Vassilvitskii SODA’10]
(o]
O/f W M machines

° S memory per machine
Total space M - §

L Linear space:

S =0(n)
- A sketch fits onto a single machine

° Low-space:

$=0(n°),0<6<1
No machine ever sees all the nodes!

MPC vs Message Passing

MPC and Message Passing
Everyone knows their
neighbors in the beginning.
Assume A < §.

MPC can simulate T-rounds
of message passing as long as

N'(v) <S

MPC vs Message Passing

Design pattern: Graph Exponentation

Collect the T-hop neighborhoods in O(log T)
rounds.

Simulate the LOCAL algorithm.

MPC vs Message Passing

Design pattern: Graph Exponentation

Collect the T-hop neighborhoods in O(log T)
rounds.

Simulate the LOCAL algorithm.

Communicate in G2

MPC vs Message Passing

Design pattern: Graph Exponentation

Collect the T-hop neighborhoods in O(log T)
rounds.

Simulate the LOCAL algorithm.

(A + 1)-coloring

LOCAL: poly loglogn rounds [GG’23]

MPC: O (logloglogn) rounds [CDP’21]

MPC vs Message Passing

Design pattern: Graph Exponentation

Collect the T-hop neighborhoods in O(log T)
rounds.

Simulate the LOCAL algorithm.

Still restricted by locality!

(A + 1)-coloring

LOCAL: polyloglogn rounds [GG’23]

MPC: O(logloglogn) rounds [CDP’21]

MPC vs Message Passing

Global Power: Leader Election

Allows probability amplification
- Run O (log n) parallel repetitions
- Choose the best outcome

Example [KKSS’20, CPD’21]:
Independent sets of size Q(n/A)

MPC vs Message Passing

Global Power: Leader Election

Allows probability amplification
- Run O(logn) parallel repetitions
- Choose the best outcome

Example [KKSS’20, CPD’21]:
Independent sets of size Q(n/A)

LOCAL:Q(log™ n)
MPC: O(1)!

Locality Barrier

Exponentiation gets

stuck here!
Local Algorithm Locality Barrier Beyond
Runtime T'(n) > 0ogT(n)) » o(logT(n))
Locally checkable Approximation

problems?!

Locality Barrier

Local Algorithm Locality Barrier
Runtime T'(n) > 0ogT(n))

Y

Locally checkable
problems?!

MIS and Maximal Matching

LOCAL [Gh’16]: O(logA) m

5 Maximal Matching
MPC[GU'19]: O(./logA)

27 pvE] Yo

Locality barrier: ©(loglogA)

Maximal Independent Set

The Plan

* Known Techniques
 Sparsification and round compression
* Derandomization

* New Techniques
e Careful exponentiation
» Total space

/M |

—~ B

Round Compression and Sparsification

2) Can we solve the problem 1) Can we solve the problem
with a small part of the input? efficiently on a sparse graph?

Round Compression and Sparsification

MIS Sparsification Simplified (a lot):

1. Consider Ghaffari’s algorithm that runs in
T = O(log A) rounds.

2. Simulate the algorithm on a sparse (low

degree) subgraph for Q(w/log A) rounds.

3. Repeat 0(,/log A) times.

O(logA -loglog A) in total.

Round Compression and Sparsification

MIS Sparsification Simplified (a lot):

1.

Consider Ghaffari’s algorithm that runs in
T = O(log A) rounds.
Simulate the algorithm on a sparse (low

degree) subgraph for Q(,/log A) rounds.

Repeat 0(,/log A) times.

A

Seems like a

fundamental
barrier

O(logA -loglog A) in total.

Black box
application of
exponentiation.

Shattering

MIS Sparsification Simplified (a lot):

After 0(1/10g A) iterations, the graph
shatters into O(logn) sized components.

MPC: gather the components and simulate
LOCAL. \\ Black box

application of
exponentiation.

Coloring

(A + 1)-Coloring in MPC [CFGUZ’19, CDP’21]:
Split the graph into low-degree subgraphs with
disjoint color palettes in O(1) rounds.

Post-shattering:

Gather the components and simulate LOCAL. «__ Black box

™~ application of
exponentiation.

LLL and Friends

Efficient in

Fischer & Ghaffari: / sparse graphs.

Find a partial solution to LLL in O(A%) LOCAL
rounds that shatters the graph.

Post-shattering:

Gather the components and simulate LOCAL. « Black box

\ application of

exponentiation.

LLL and Friends

Take home:

A lot of naive
exponentiation

The Plan

* Known Techniques

* Derandomization

* New Techniques
e Careful exponentiation
» Total space

/M |

—~ B

Derandomization Tools

A Toolbox for Derandomization
Goal: Reduce the number of required
random bits to O(logn) per node.

Agree globally and deterministically
on a common random seed. *

Derandomization Tools

A Toolbox for Derandomization
1. Conditional expectations

2. Limited independence

3. Pseudorandom generators

:
¢

All (at least indirectly) employ naive exponentiation

MIS:
Coloring:
LLL:

O(log A + loglogn)
O(logloglogn)
O(poly A + logloglogn)

Connected components (CC’21):
O(logdiam + loglogn)

The Plan

* New Techniques
» Total space
e Careful exponentiation

/M |

—~ B

Naive Exponentiation — So What?

* Increases total space demand

* Connected components is an exception (linear total space). But it’s “slow”.

* Is it worth improving?
* Linear is prettier (and optimal)
* Wasted potential?!

Symmetry breaking
Pre-shattering: n1+¢(@)

Post-shattering: n1+°(1)

Naive Exponentiation — So What?

Wasted potential?!

Example: MIS

; |
Current SOTA seems fundamentally Need new ideas!

stuck at @(\/ log A)-) How to change
the game?

Some room to improve by smarter

exploration (exponentiation)?

Naive Exponentiation — So What?

Locally Checkable Problems:

Almost all approaches rely, to some
extent, on naive exponentiation.

Limit total space
to linear (tight)?

Yields overhead in total space.

Naive Exponentiation — So What?

Ideally:
Avoid exponentiation altogether and beat
the locality barrier.

At the least:
Come up with new ideas and algorithms.

Probably:
Learn ways to collect local data fast

The Plan

* New Techniques

e Careful exponentiation

—~ B

Locally checkable
labeling problems

Careful Exponentiation

Solving LCLs with locality Global LCLs in Forests
O(log* n)

In O (log diam) MPC rounds
In 0(loglog™ n) rounds of with linear total space.
MPC with linear total space. X

|

Meets the locality barrier.

Conditionally optimal

Conditionally optimal with
fine print

LCLs in the “Tiny” Regime

Theorem [CKP’19]:

Any LCL with deterministic locality
o(logn) can be solved with a canonical
(LOCAL) algorithm in O(log™ n) rounds.

1

Need a distance-k coloring

Get it by A%-coloring of G
Linial: O(log™ n) local rounds

Coloring Pseudo-Forests

A2-coloring of G¥

Since A and k are constants, can
reduce to 3-coloring pseudo-forests

and color reduction.
A

Important: Focus on MPC
issues.

A tempting approach:

Gather O(log* n)-neighborhood
And simulate Linial’s

O—R—0—0——IGF—IC——202 -~ 2O

Requires (n log™* n) total space!

O——3——30—I———3G—IO—30—D -~ —2p
N

eGP -~ D

Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial’s
- Turn IDs into log log n -bit colors

Collect a vector of size O(loglogn -

log*n) = 0(logn) bits

Total space: O(n) words.

Issue:
Need to store O(log™ n) machine
addresses of Q(log n) bits.

=

I —IO——20D -~

Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial’s
- Turn IDs into log log n -bit colors

Collect a vector of size O(loglogn -

log*n) = 0(logn) bits

Only store the address of farthest
machine, O(logn) bits.

Total space: O(n) words.

i

O—F—0—I0——IF—PO—=20> -~~~ —p

» » ’

Wz—?&-——w-';j\w —— D
-~ —_— —~ —

’ f

LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL P with locality o(logn), there is an MPC
algorithm that solves P in O (loglog™ n) rounds.

_— T

Nice property:
Optimal in terms of
memory parameters.

Nice property:
Goes beyond naive
exponentiation.

Nice property:
Runtime potentially

Ca)

optimal. \“_)

Conditional Lower Bounds

Theorem [GKU’19, CPD’21]

Given the connectivity conjecture,
there is no component-stable

algorithm that beats O (log locality)

A

Open Question

Is there a component unstable
algorithm that beats the
locality barrier for a locally
checkable problem?

Affirmative for approximation.

Connectivity Conjecture

It takes Q(log diam) time to
find connected components.

Component stable

Outputs on different
components are independent

LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL P with locality o(logn), there is an MPC
algorithm that solves P in O (loglog™ n) rounds.

_— T

Nice property:
Optimal in terms of
memory parameters.

Nice property:
Goes beyond naive
exponentiation.

Nice property:
Runtime potentially

Ca)

optimal. \“_)

The Plan

* New Techniques

e Careful exponentiation

Locally checkable
labeling problems

Connectivity on Forests

Theorem [BLMOU’23]:
There is an MPC algorithm to find Conditionally optimal
the connected components of a
forest in O(log diam) rounds. In terms of memory

‘ Holds for component
Almost directly yields an algorithm unstable algorithms! -

to solve all LCLs on forests g

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Naive
exponentiation can
lead to storing T;

U

TN

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Naive
exponentiation can
lead to storing T;

Finding Leaves

To solve LCLs, need
to find leaves from
all but one branch.

Naive
exponentiation can
lead to storing T;

Solve subtrees first

Finding Leaves

To solve LCLs, need TZ
to find leaves from U

all but one branch.

Key idea: .

Balanced exploration T3 \

Adversary cannot hide
leaves to a certain branch

Connectivity on Forests

Theorem [BLMOU’23]:
Connected components of a forest
in O (log diam) rounds.

A

Nice property:
Global LCLs are hard
regardless of
component-stability

Almost directly yields an algorithm
to solve all LCLs on forests

Nice property:
Other connectivity
results have a
dependency onn

Chicken vs Egg

Is there a difference between (?)
1. First creating a smart subgraph
and doing naive exponentiation

2. Smart exponentiation on the
input graph

Conclusion Conditionally optimal

algorithms

Graph exponentiation,

U
a necessary evil? M Kz\

Thank you!
More on Thursday

by Rustam m

“——Q" - g

The Plan

* Known techniques:

* sampling + solve locally (this is essentially linear space)
* If | mention this, | should advertise our ruling set talk)
* Sample and gather by Shreyas (pretty much round compression??)
* sparsification
* Round compression + graph exponentiation
* Deterministic random bits
* Conditional expectations (check references)
* Annoying O(1) algorithm for large independent sets
* PRGs (check references)
e Shattering

e Used in combination with round compression of LOCAL
e post shattering is usually expensive

Where total space is needed

* Finding an MIS of size 1(n/A) takes ((log*n) in LOCAL and O(1) in low-
space MPC.

» Kawarabayashi, Khoury, Schild, and Schwartzman [KKSS'20]
e Czumaj, Davies, Parter [CDP’21]

« Derandomization tools for MIS, LLL, etc with n17°(1) total space [CDP’21]

* 0(1) contains collecting a ball of A2 + polyloglogn radius.
* log A + logloglogn time for large A with n* (1 total space

e All randomized algorithms can be derandomized with polynomial number
of machines
* Probability boosting (need to be able to verify correctness)
 Since success probability is high enough, there is a correct seed (Proof 6.1)

Connectivity

 Randomized algorithms by Andoni, Stein, Song, Wang, Zhong [ASSWZ'18]
and Behnezhad, Dhulipala, Esfandiari, tgcki, Mirrokni [BDELM’19] do
connectivity in O(log D) time for dense graphs.

* Need Q(loglogn) for sparse graph. Needed in order to get concentration.

 The same bound holds for deterministic algorithms Coy, Czumaj [CC’22]. They use
derandomization and hence, at least indirectly, inherently require Q(loglogn).

* Actually, one can shrink the graph by a poly logn factor in O(loglogn)
rounds which “gives more total space”
* Nothing wrong with this, but surpassing this bound requires new ideas
* Explicit disclaimer that | am not saying that this approach cannot lead anywhere

e Sparse graphs are hard?!
* Can we get O(log D) in sparse graphs? Topic for another talk?

Locally Checkable Labelings

* Revisit the LOCAL algorithms for LCLs

* On forests
* Tiny regime: ©(log* n)
* Mid regime: O@(logn)
* High regime: O(n'/k)
* Connectivity result gives O (log D) for forests

* Leader election

* Even stronger results through the hierarchical clustering: solve dynamic
programming

 How does all of this relate to the LLL (+ other) results by CDP?
e At least all LCLs do not satisfy any of the LLL criteria

Thinking Inside the Box

Pointer hopping:
Tiny regime of LCLs

Careful exponentiation:
High regime of LCLs

Solving the Tiny Regime

* LOCAL reduction to coloring a directed pseudo-forest

Forest Connectivity

* All LCLs in O(log D) rounds.
* Careful/balanced exponentiation

