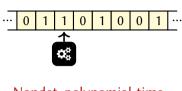
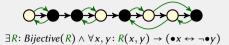
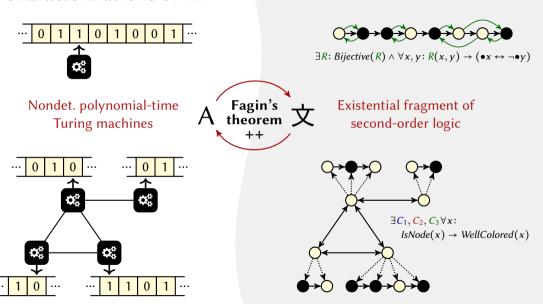

Locality via Alternation?

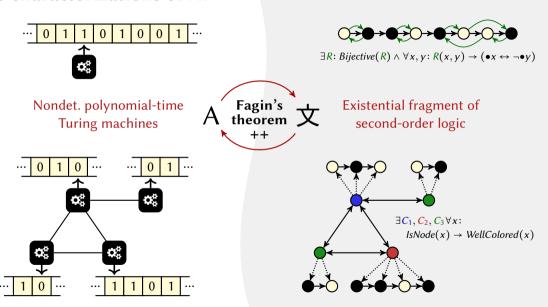
Fabian Reiter

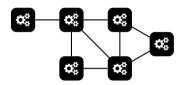

LIGM, Université Gustave Eiffel

ADGA 2024

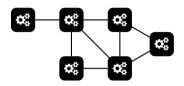





Nondet. polynomial-time
Turing machines

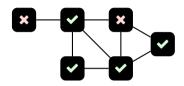


Existential fragment of second-order logic



The LOCAL model

- ▶ Network of nodes with IDs & labels
- Same algorithm on all nodes
- Synchronous communication rounds



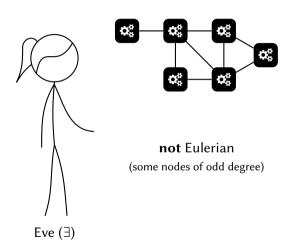
The LOCAL model

- Network of nodes with IDs & labels
- Same algorithm on all nodes
- Synchronous communication rounds

Local distributed decision

Constant number of rounds

not Eulerian (some nodes of odd degree)


The LOCAL model

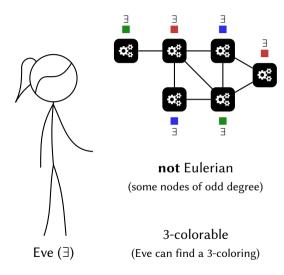
- Network of nodes with IDs & labels
- Same algorithm on all nodes
- Synchronous communication rounds

Local distributed decision

Constant number of rounds

► Graph { accepted unanimously or rejected by veto

The LOCAL model


- Network of nodes with IDs & labels
- Same algorithm on all nodes
- Synchronous communication rounds

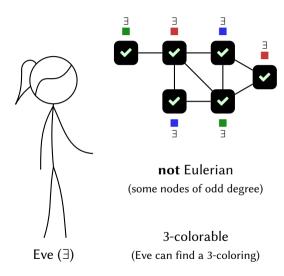
Local distributed decision

- Constant number of rounds
- ► Graph { accepted unanimously or rejected by veto

Nondeterministic extension

Certificates chosen by Eve

The LOCAL model


- Network of nodes with IDs & labels
- Same algorithm on all nodes
- Synchronous communication rounds

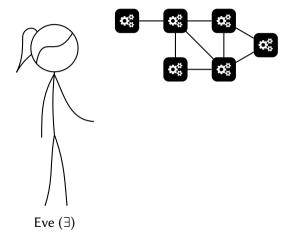
Local distributed decision

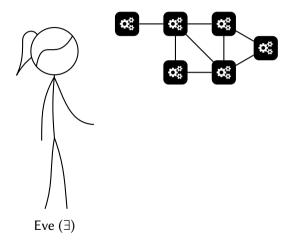
- Constant number of rounds
- ► Graph { accepted unanimously or rejected by veto

Nondeterministic extension

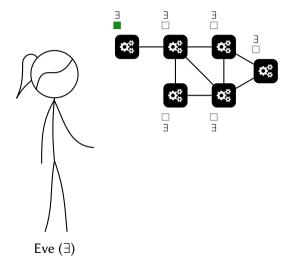
Certificates chosen by Eve

The LOCAL model

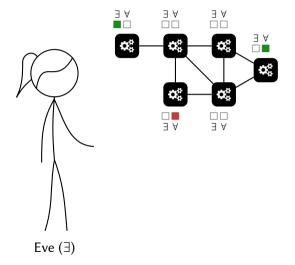

- Network of nodes with IDs & labels
- Same algorithm on all nodes
- Synchronous communication rounds

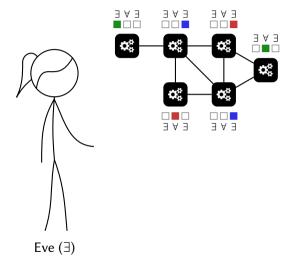

Local distributed decision

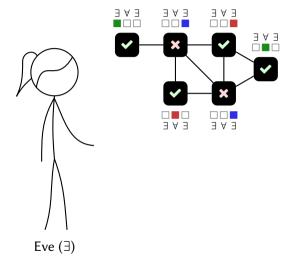
- Constant number of rounds
- ► Graph { accepted unanimously or rejected by veto

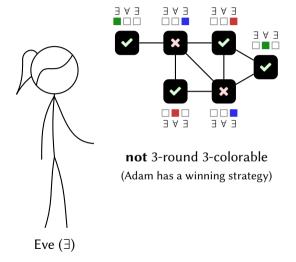

Nondeterministic extension

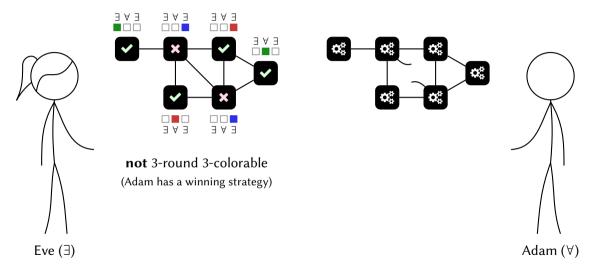
Certificates chosen by Eve

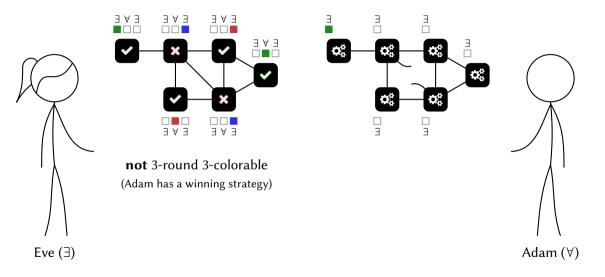


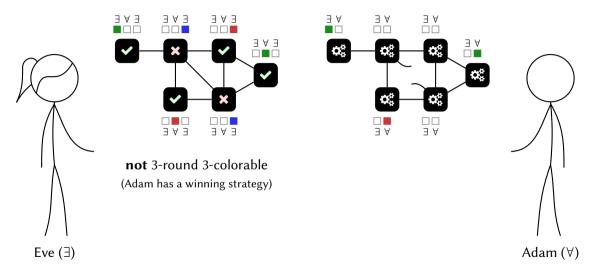


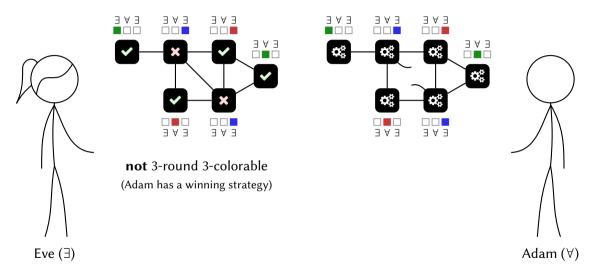


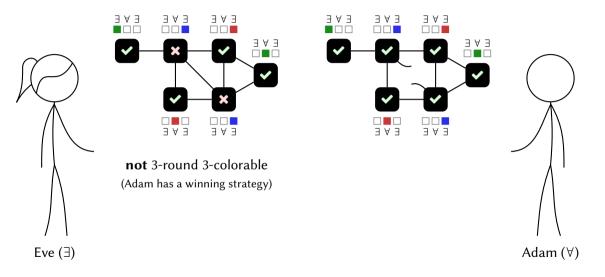


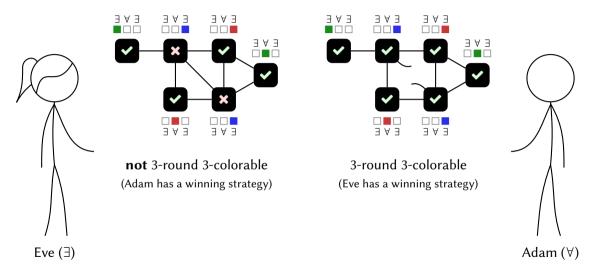


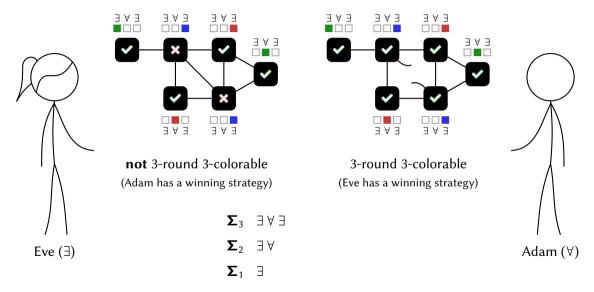


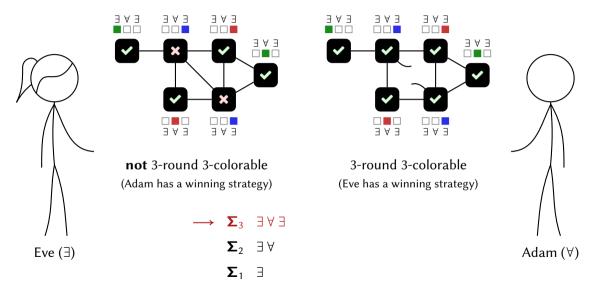


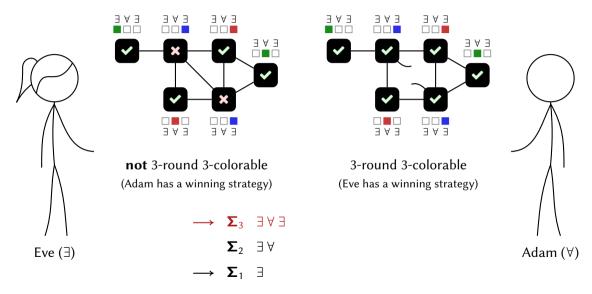


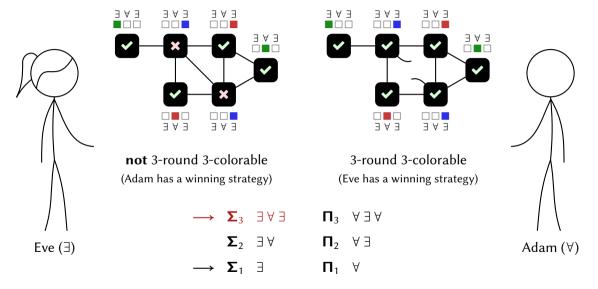


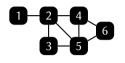




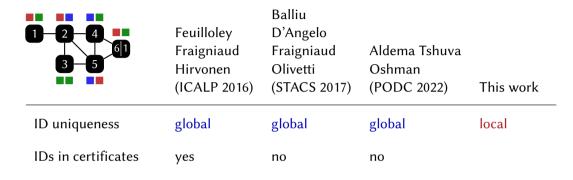








Feuilloley Fraigniaud Hirvonen (ICALP 2016) Balliu D'Angelo Fraigniaud Olivetti


(STACS 2017)

Aldema Tshuva Oshman (PODC 2022)

This work

1 2 4 61 3 5	Feuilloley Fraigniaud Hirvonen (ICALP 2016)	Balliu D'Angelo Fraigniaud Olivetti (STACS 2017)	Aldema Tshuva Oshman (PODC 2022)	This work
ID uniqueness	global	global	global	local
IDs in certificates	yes	no	no	(yes)

1 2 4 61 3 5	Feuilloley Fraigniaud Hirvonen (ICALP 2016)	Balliu D'Angelo Fraigniaud Olivetti (STACS 2017)	Aldema Tshuva Oshman (PODC 2022)	This work
ID uniqueness	global	global	global	local
IDs in certificates	yes	no	no	(yes)
Certificate size	$O(\log n)$	unbounded	poly <i>n</i>	

n: number of nodes

Related work

1 2 4 61 3 5	Feuilloley Fraigniaud Hirvonen (ICALP 2016)	Balliu D'Angelo Fraigniaud Olivetti (STACS 2017)	Aldema Tshuva Oshman (PODC 2022)	This work
ID uniqueness	global	global	global	local
IDs in certificates	yes	no	no	(yes)
Certificate size	$O(\log n)$	unbounded	poly <i>n</i>	$poly N_r(v) $

n: number of nodes

 $|N_r(v)|$: size of node v's r-neighborhood

Related work

1 2 4 61 3 5	Feuilloley Fraigniaud Hirvonen (ICALP 2016)	Balliu D'Angelo Fraigniaud Olivetti (STACS 2017)	Aldema Tshuva Oshman (PODC 2022)	This work
ID uniqueness	global	global	global	local
IDs in certificates	yes	no	no	(yes)
Certificate size	$O(\log n)$	unbounded	poly <i>n</i>	$poly \left \mathcal{N}_r(v) \right $
Computation time	unbounded	unbounded	poly <i>n</i>	$poly N_r(v) $

n: number of nodes

 $|N_r(v)|$: size of node v's r-neighborhood

Using logic and automata theory

The LOCAL model

- + locally unique IDs
- + local-polynomial bounds

Using logic and automata theory

Monadic second-order logic (MSO)

- ► Yields an infinite hierarchy on grids [1].
- ► Satisfies a locality property [2].

The LOCAL model

- + locally unique IDs
- + local-polynomial bounds

- [1] Matz, Schweikardt, Thomas (2002)
- [2] Giammarresi, Restivo, Seibert, Thomas (1996)

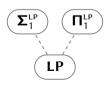
Using logic and automata theory

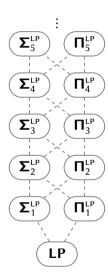
Monadic second-order logic (MSO)

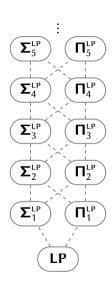
- ► Yields an infinite hierarchy on grids [1].
- ► Satisfies a locality property [2].

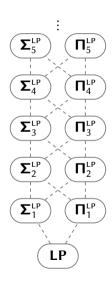
Finite-state automata

- ▶ Satisfy a pumping lemma [3].
- ► Are equivalent to MSO on words [4].

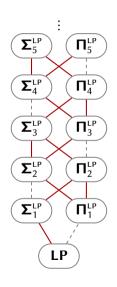

The LOCAL model


- + locally unique IDs
- + local-polynomial bounds


- [1] Matz, Schweikardt, Thomas (2002)
- [2] Giammarresi, Restivo, Seibert, Thomas (1996)
- [3] Rabin, Scott (1959) & Bar-Hillel, Perles, Shamir (1961)
- [4] Büchi (1960) & Elgot (1961) & Trakhtenbrot (1962)



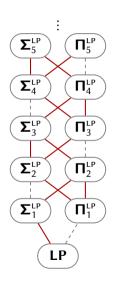
Connection to classical complexity:


$$\mathbf{\Sigma}_{\ell}^{\mathsf{P}} = \mathbf{\Sigma}_{\ell}^{\mathsf{LP}}\big|_{\mathsf{NODE}}$$
 $\mathbf{\Pi}_{\ell}^{\mathsf{P}} = \mathbf{\Pi}_{\ell}^{\mathsf{LP}}\big|_{\mathsf{NODE}}$

Connection to classical complexity:

$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP}|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP}|_{NODE}$

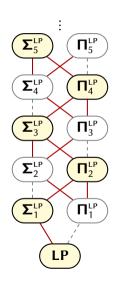
$$\mathbf{P} = \mathbf{LP}\big|_{\mathsf{NODE}} \qquad \qquad \mathbf{NP} = \mathbf{\Sigma}_1^{\mathsf{LP}}\big|_{\mathsf{NODE}}$$


Connection to classical complexity:

$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP}|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP}|_{NODE}$

In particular:

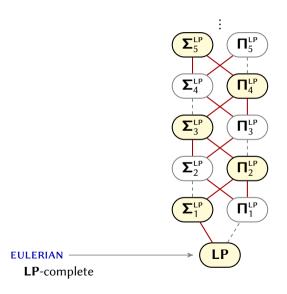
$$\mathbf{P} = \mathbf{LP}\big|_{\mathsf{NODE}} \qquad \qquad \mathbf{NP} = \mathbf{\Sigma}_1^{\mathsf{LP}}\big|_{\mathsf{NODE}}$$


THEOREM: — Strict inclusions

Connection to classical complexity:

$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP}|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP}|_{NODE}$

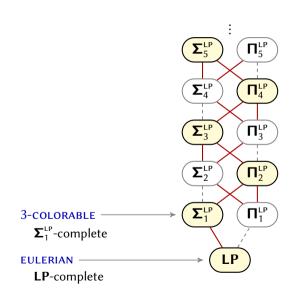
$$\mathbf{P} = \mathbf{LP}\big|_{\mathsf{NODE}} \qquad \qquad \mathbf{NP} = \mathbf{\Sigma}_1^{\mathsf{LP}}\big|_{\mathsf{NODE}}$$



Connection to classical complexity:

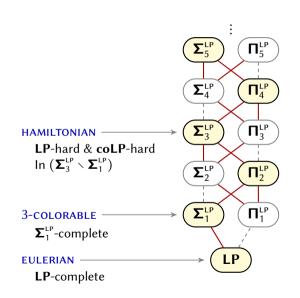
$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP}|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP}|_{NODE}$

$$\mathbf{P} = \mathbf{LP}\big|_{\mathsf{NODE}} \qquad \qquad \mathbf{NP} = \mathbf{\Sigma}_1^{\mathsf{LP}}\big|_{\mathsf{NODE}}$$


Theorem: — Strict inclusions Equalities iff
$$P = NP$$

Connection to classical complexity:

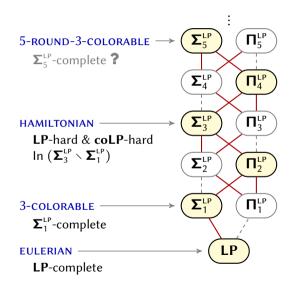
$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP} \big|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP} \big|_{NODE}$


$$\mathbf{P} = \mathbf{LP}|_{\text{NODE}}$$
 $\mathbf{NP} = \mathbf{\Sigma}_{1}^{\text{LP}}|_{\text{NODE}}$

Connection to classical complexity:

$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP}|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP}|_{NODE}$

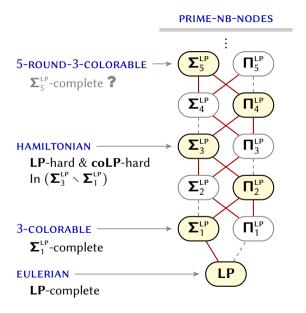
$$\mathbf{P} = \mathbf{LP}|_{\text{NODE}}$$
 $\mathbf{NP} = \mathbf{\Sigma}_{1}^{\text{LP}}|_{\text{NODE}}$



Connection to classical complexity:

$$\mathbf{\Sigma}_{\ell}^{\mathsf{P}} = \mathbf{\Sigma}_{\ell}^{\mathsf{LP}} \big|_{\mathsf{NODE}}$$
 $\mathbf{\Pi}_{\ell}^{\mathsf{P}} = \mathbf{\Pi}_{\ell}^{\mathsf{LP}} \big|_{\mathsf{NODE}}$

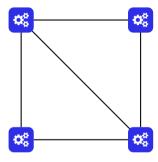
$$\mathbf{P} = \mathbf{LP}|_{\text{NODE}}$$
 $\mathbf{NP} = \mathbf{\Sigma}_{1}^{\text{LP}}|_{\text{NODE}}$


Theorem: — Strict inclusions --- Equalities iff
$$P = NP$$

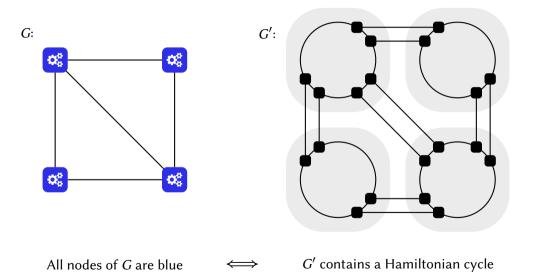
Connection to classical complexity:

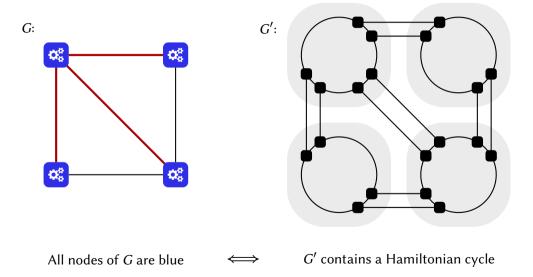
$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP}|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP}|_{NODE}$

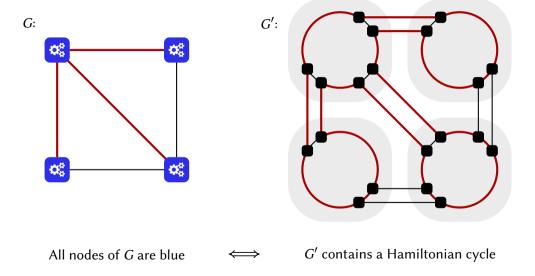
$$\mathbf{P} = \mathbf{LP}|_{\text{NODE}}$$
 $\mathbf{NP} = \mathbf{\Sigma}_{1}^{\text{LP}}|_{\text{NODE}}$

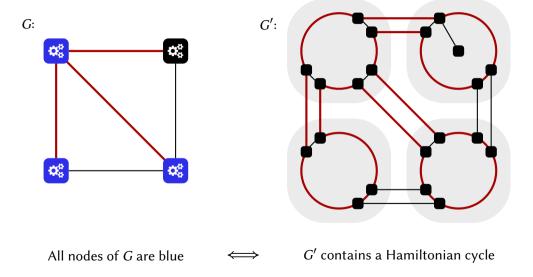

Connection to classical complexity:

$$\Sigma_{\ell}^{P} = \Sigma_{\ell}^{LP} \big|_{NODE}$$
 $\Pi_{\ell}^{P} = \Pi_{\ell}^{LP} \big|_{NODE}$

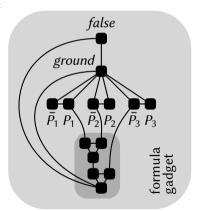

$$\mathbf{P} = \mathbf{LP}|_{\text{NODE}}$$
 $\mathbf{NP} = \mathbf{\Sigma}_{1}^{\text{LP}}|_{\text{NODE}}$


Theorem: — Strict inclusions
--- Equalities iff
$$P = NP$$

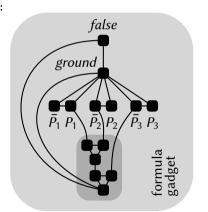


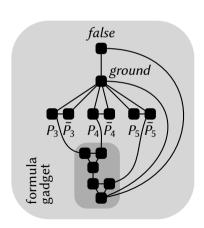


All nodes of G are blue



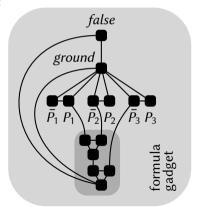
G is satisfiable \iff *G'* is 3-colorable

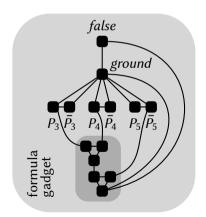

 $G: P_1 \vee \bar{P_2} \vee \bar{P_3}$

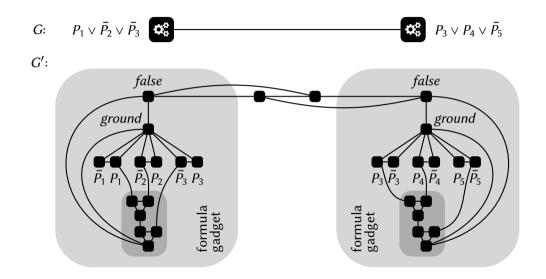


G is satisfiable $\iff G'$ is 3-colorable

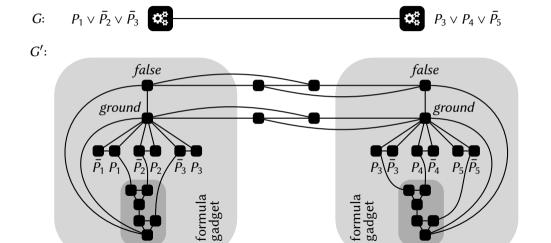
 $G: P_1 \vee \bar{P}_2 \vee \bar{P}_3$


 $P_3 \vee P_4 \vee \bar{P}_5$

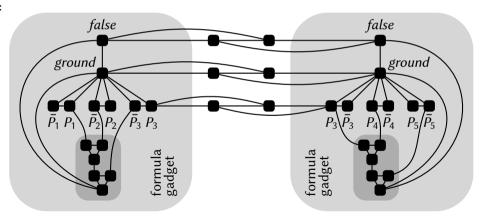



G is satisfiable \iff *G'* is 3-colorable

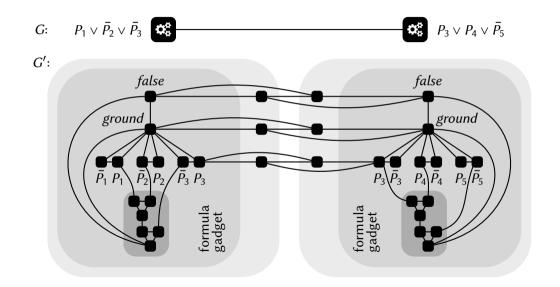
 $G: P_1 \vee \bar{P}_2 \vee \bar{P}_3$ $P_3 \vee P_4 \vee \bar{P}_5$

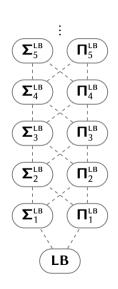


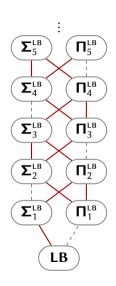
G is satisfiable $\iff G'$ is 3-colorable



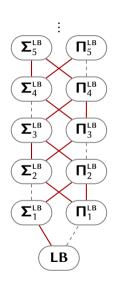
G is satisfiable $\iff G'$ is 3-colorable



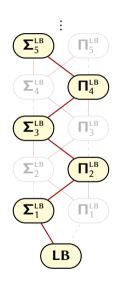

G is satisfiable $\iff G'$ is 3-colorable



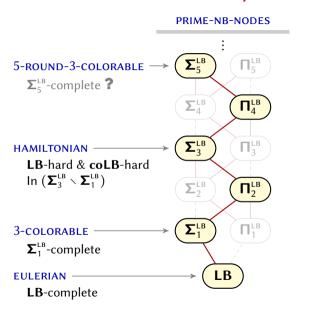
G is satisfiable \iff *G'* is 3-colorable



LP-hierarchy → **LB**-hierarchy polynomial bounds arbitrary **b**ounds

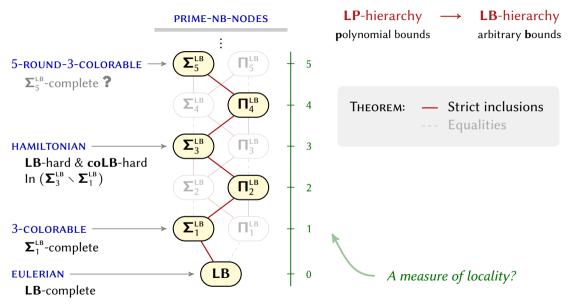

LP-hierarchy → **LB**-hierarchy polynomial bounds arbitrary **b**ounds

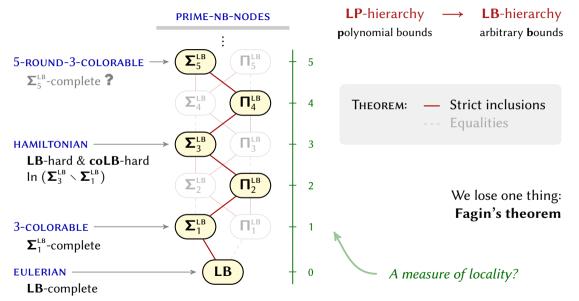
THEOREM: — Strict inclusions


LP-hierarchy → **LB**-hierarchy polynomial bounds arbitrary bounds

THEOREM: — Strict inclusions
--- Equalities

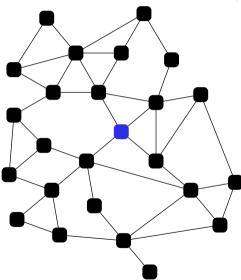
LP-hierarchy → **LB**-hierarchy polynomial bounds arbitrary bounds

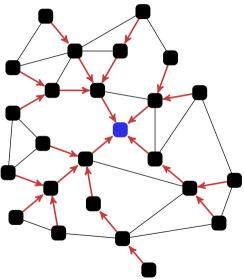

THEOREM: — Strict inclusions
--- Equalities

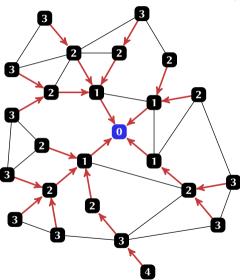

LP-hierarchy → **LB**-hierarchy polynomial bounds arbitrary bounds

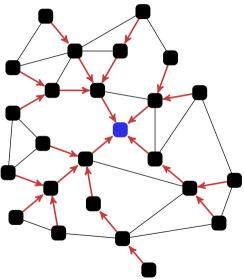
THEOREM: — Strict inclusions
--- Equalities

The local-bounded hierarchy



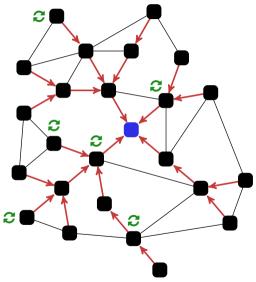

The local-bounded hierarchy

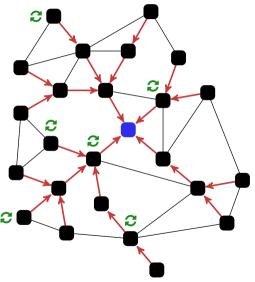



To prove the existence of a **blue node** :

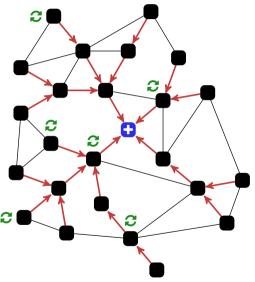
1. Eve chooses a **spanning tree** ↑ rooted at ■.

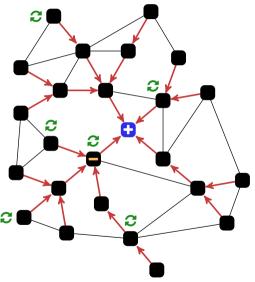
To prove the existence of a **blue node** :

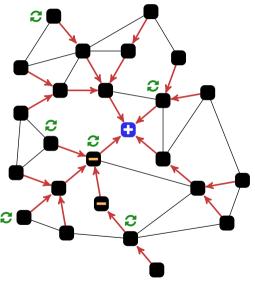

1. Eve chooses a **spanning tree** ↑ rooted at ...

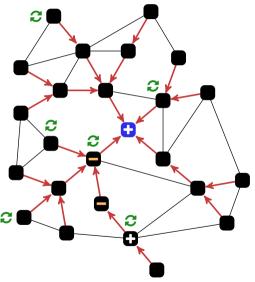

To prove the existence of a **blue node** :

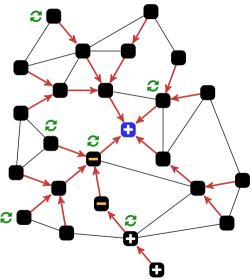
1. Eve chooses a **spanning tree** ↑ rooted at ■.

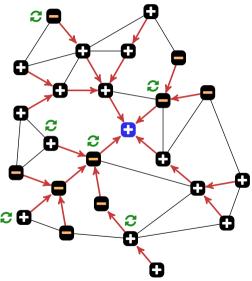

SOME-NODE-BLUE $\in \mathbf{\Sigma}_3^{LB}$

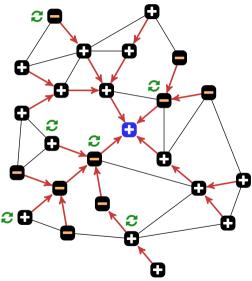

- **1.** Eve chooses a **spanning tree** ↑ rooted at **.**
- **2.** Adam chooses a set of **flipping nodes 2**.

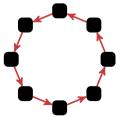

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **−** so that:
 - ▶ **I** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

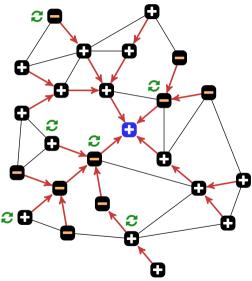

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.


- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **−** so that:
 - ▶ **I** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

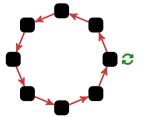

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **−** so that:
 - ▶ **I** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

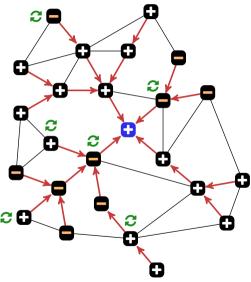

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **−** so that:
 - ▶ is charged ★.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

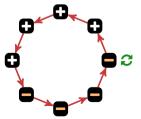

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **−** so that:
 - ▶ **I** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

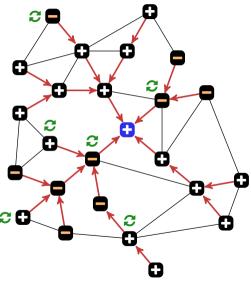


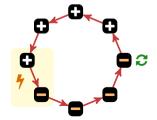
- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- **2.** Adam chooses a set of **flipping nodes 2**.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **I** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

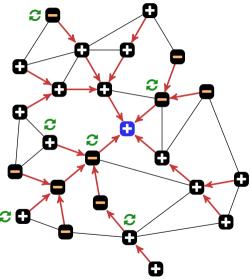


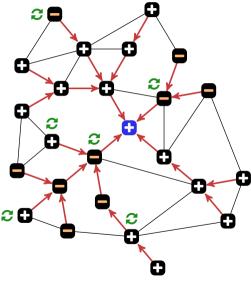

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- 3. Eve charges nodes either + or so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - Flipping nodes receive the opposite charge.

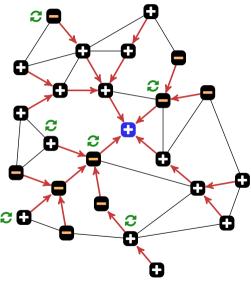



- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - ▶ Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.



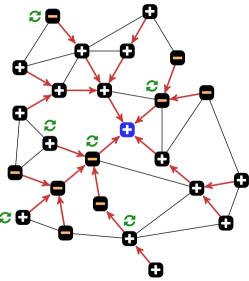

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- 3. Eve charges nodes either + or so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.


- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.


To prove that there is **exactly one :**

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - ▶ Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

To prove that there is **exactly one :**

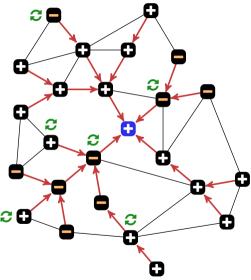

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- 3. Eve charges nodes either + or so that:
 - ▶ **o** is charged **+**.
 - ▶ Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.

To prove that there is **exactly one :**

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - Flipping nodes receive the opposite charge.

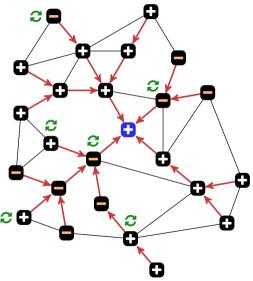
To prove that there is **exactly one :**

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- 3. Eve charges nodes either + or so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - Flipping nodes receive the opposite charge.



To prove that there is **exactly one :**

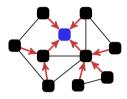
- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - Flipping nodes receive the opposite charge.

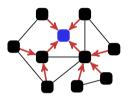


To prove that there is **exactly one :**

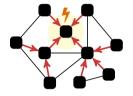
- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- 3. Eve charges nodes either + or so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - Flipping nodes receive the opposite charge.

To prove that there is **exactly one :**

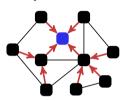

- 1. Eve chooses a **spanning tree** ↑ rooted at ■.
- 2. Adam chooses a set of flipping nodes 2.
- **3.** Eve **charges nodes** either **+** or **-** so that:
 - ▶ **o** is charged **+**.
 - Normal nodes inherit their parent's charge.
 - ▶ Flipping nodes receive the opposite charge.



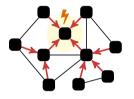
With a **spanning tree**, Eve can prove many things:


UNIQUE-BLUE-NODE

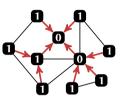
UNIQUE-BLUE-NODE

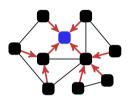


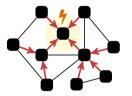
Any property in coLB

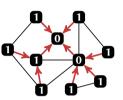


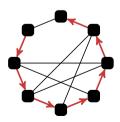
Properties in \Sigma_3^{LB}

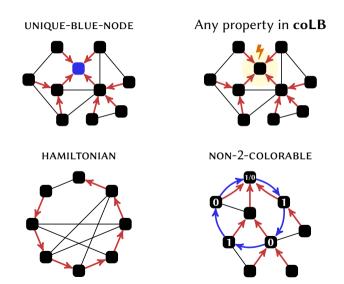

UNIQUE-BLUE-NODE

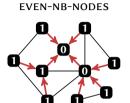

Any property in coLB

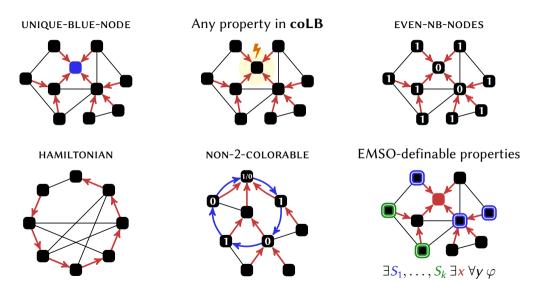

EVEN-NB-NODES

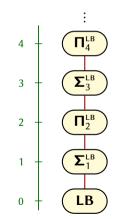

UNIQUE-BLUE-NODE

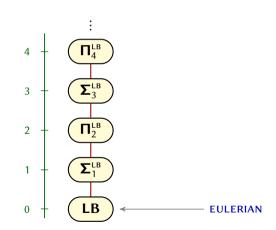

Any property in coLB

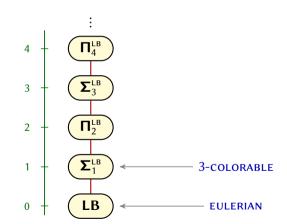

EVEN-NB-NODES

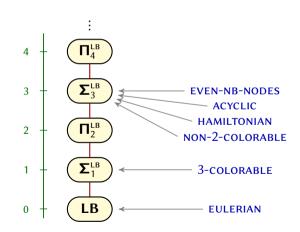


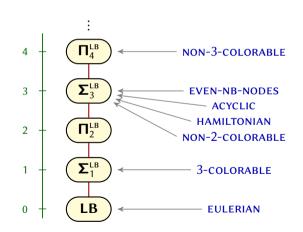

HAMILTONIAN

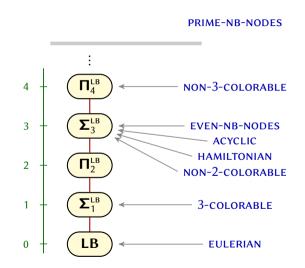


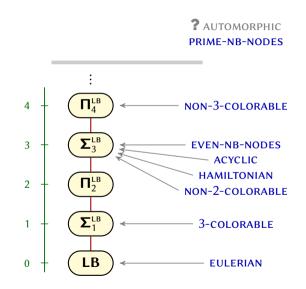



Measuring locality?




Measuring locality?




Measuring locality?

