Causal Limits of Distributed Computation

Francesco d'Amore

Based on joint works with A. Akbari, X. Coiteux-Roy, R. Gajjala, F. Kuhn, F. Le Gall, H. Lievonen, D. Melnyk, A Modanese, S. Pai, M. Renou, V. Rozhoň, G. Schmid, and J. Suomela.

ADGA - DISC

28 October 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

MUR FARE 2020 - Project PAReCoDi

Table of content

1. Intro

- The LOCAL model of computation
- Locally checkable labeling (LCL) problems

2. Quantum and causality-based models

- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds

3. Locality-based models

- The online-LOCAL model
- Relation with causality-based models
- Simulation in weaker models

$\mathbf{4}.\ \mathbf{Conclusions}\ \mathbf{and}\ \mathbf{open}\ \mathbf{problems}$

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Table of content

1. Intro

- The LOCAL model of computation
- Locally checkable labeling (LCL) problems
- 2. Quantum and causality-based models
- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds
- 3. Locality-based models
- The online-LOCAL model
- Relation with causality-based models
- Simulation in weaker models
- 4. Conclusions and open problems

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Linial, FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - -graph G = (V, E) with |V| = n
 - E: communication links
 - each node in \boldsymbol{V} runs the same algorithm

[Linial, FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - -graph G = (V, E) with |V| = n
 - E: communication links
 - each node in \boldsymbol{V} runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Linial, FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - -graph G = (V, E) with |V| = n
 - E: communication links
 - each node in \boldsymbol{V} runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifier to nodes in the set 1,..., poly(n)
 - * adversarially chosen
 - needed to solve even basic problems (2-coloring a 2-path)

[Linial, FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - -graph G = (V, E) with |V| = n
 - E: communication links
 - each node in \boldsymbol{V} runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifier to nodes in the set 1,..., poly(n)
 - * adversarially chosen
 - needed to solve even basic problems (2-coloring a 2-path)

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Linial, FOCS '87 & SICOMP '92]

- **Distributed network** of *n* processors/nodes
 - -graph G = (V, E) with |V| = n
 - E: communication links
 - each node in \boldsymbol{V} runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifier to nodes in the set 1,..., poly(n)
 - * adversarially chosen
 - needed to solve even basic problems (2-coloring a 2-path)
- **Complexity measure**: number of communication rounds

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Locality

• **Complexity measure**: number of communication rounds

Equivalence:

 * *n* is known to the nodes

Locality

• **Complexity measure**: number of communication rounds

Equivalence:

- * *n* is known to the nodes
- let A be a T(n)-round LOCAL algorithm

Locality

• **Complexity measure**: number of communication rounds

Equivalence:

- * *n* is known to the nodes
- let A be a T(n)-round LOCAL algorithm
 - design algo *B* where each node
 - performs no communication at all
 - gathers the full input in its radius-T(n) neighborhood
 - simulates A by locally simulating the T(n) communications rounds

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

knowledge after 2 rounds of communication

- Locality
- **Complexity measure**: number of communication rounds

Equivalence:

- * *n* is known to the nodes
- let A be a T(n)-round LOCAL algorithm
 - design algo *B* where each node
 - performs no communication at all
 - gathers the full input in its radius-T(n) neighborhood
 - simulates A by locally simulating the T(n) communications rounds
- let B be a "gathering" algorithm with locality T(n)
 - design algo A where each node
 - performs T(n) communication rounds
 - outputs simulating **B**

knowledge after 2 rounds of communication

• **Complexity measure**: number of communication rounds

Equivalence:

- * *n* is known to the nodes
- let A be a T(n)-round LOCAL algorithm
 - design algo *B* where each node
 - performs no communication at all
 - gathers the full input in its radius-T(n) neighborhood
 - simulates A by locally simulating the T(n) communications rounds
- let B be a "gathering" algorithm with locality T(n)
 - design algo A where each node
 - performs T(n) communication rounds
 - outputs simulating **B**
- Locality $T = \operatorname{diam}(G) + 1$ is always sufficient to solve any problem

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Locality

knowledge after 2 rounds of communication

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

• "Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

• "Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

3-coloring: the blue node checks if its color is different from those of its neighbors

valid LCL

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

• "Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

MIS: each node checks if it is in the IS or if it has a neighbor in the IS

valid LCL

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

• "Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

Leader election: the checking radius should be r = diam(G)

not an LCL

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

• "Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

MIS: each node checks if it is in the IS or if it has a neighbor in the IS

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check'
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

"Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy
- A lot of literature studying LCLs:
 - classification of LCLs based on complexity (locality)
 - e.g.: complexity T(n) in randomized-LOCAL $\implies O(T(2^{n}))$ in deterministic-LOCAL [Chang et al., SICOMP '19]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

MIS: each node checks if it is in the IS or if it has a neighbor in the IS

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

• "Easy to check"

- radius $r = \Theta(1)$

- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy
- A lot of literature studying LCLs:
 - classification of LCLs based on complexity (locality)
 - e.g.: complexity T(n) in randomized-LOCAL $\implies O(T(2^{n}))$ in deterministic-LOCAL [Chang et al., SICOMP '19]
 - [BFHKLRSU STOC '16; BHKLOPRSU PODC'17; GKM STOC '17; GHK FOCS '18; CP SICOMP '19; BHKLOS STOC '18; BBCORS PODC '19; BBOS PODC '20; BBHORS JACM '21; BBCOSS DISC '22; AELMSS ICALP '23; etc.]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

MIS: each node checks if it is in the IS or if it has a neighbor in the IS

Table of content

1. **Intro**

- The LOCAL model of computation
- Locally checkable labeling (LCL) problems

2. Quantum and causality-based models

- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds
- 3. Locality-based models
- The online-LOCAL model
- Relation with causality-based models
- Simulation in weaker models
- 4. Conclusions and open problems

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Gavoille et al., DISC '09]

- **Distributed system** of *n* quantum processors/nodes
 - quantum computation
 - quantum communication (qubits)
 - output: measurement of qubits

local computation

round 1: communication

local computation

round 2: communication

local computation

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Gavoille et al., DISC '09]

- **Distributed system** of *n* quantum processors/nodes
 - quantum computation
 - quantum communication (qubits)
 - output: measurement of qubits
- **Complexity measure**: number of communication rounds local computation

round 2: communication

local computation

local computation

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Gavoille et al., DISC '09]

• **Distributed system** of *n* quantum processors/nodes local computation - quantum computation - quantum communication (qubits) round 1: communication - output: measurement of qubits • **Complexity measure**: number of communication rounds local computation • Gathering algorithms are weaker! round 2: communication - measuring to clone "corrupts" the quantum state - quantum states cannot be *cloned* (no-cloning theorem) local computation

[Gavoille et al., DISC '09]

• **Distributed system** of *n* quantum processors/nodes local computation - quantum computation - quantum communication (qubits) round 1: communication - output: measurement of qubits • **Complexity measure**: number of communication rounds local computation • Gathering algorithms are weaker! round 2: communication - measuring to clone "corrupts" the quantum state - quantum states cannot be *cloned* (no-cloning theorem) local computation • Still, locality identifies how *far* nodes need to communicate

local computation

local computation

local computation

round 1: communication

[Gavoille et al., DISC '09]

- **Distributed system** of *n* quantum processors/nodes
 - quantum computation
 - quantum communication (qubits)
 - output: measurement of qubits
- **Complexity measure**: number of communication rounds
- Gathering algorithms are weaker!
 - measuring to clone "corrupts" the quantum state
 - quantum states cannot be *cloned* (no-cloning theorem)
- Still, locality identifies how *far* nodes need to communicate
- **Question**: is there any graph problem that admits quantum advantage?

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al., STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al., STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL
- **Question**: what about problems that actually interest the distributed computing community?

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al., STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL
- **Question**: what about problems that actually interest the distributed computing community?
 - we do not know!

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al., STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL
- **Question**: what about problems that actually interest the distributed computing community?
 - we do not know!
- What do we know?
 - focus on LCLs
 - input graph degree is bounded by a constant Δ [Naor and Stockmeyer, SICOMP '95]

• Run a 2-round algorithm A in G

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Run a 2-round algorithm A in G

- light cone for the blue nodes
- output for the red and blue nodes is determined by their respective light cones
- Output distributions for red and blue nodes are independent *G*
 - as long as their distance is at least 5

light cone for

the blue nodes

- Run a 2-round algorithm A in G
 - output for the red and blue nodes is determined by their respective light cones
- Output distributions for red and blue nodes are *independent*
 - as long as their distance is at least 5

light cone for the blue nodes • **Run** a 2-round algorithm A in G - output for the red and blue nodes is determined by their respective light cones • Output distributions for red and blue nodes are independent H- as long as their distance is at least 5 • Output distributions remains the same if light cone is the same - non-signaling property - changes that are beyond 2-hops away do not influence the output distribution - also known as causality

Abstracting output distributions

- A *T*-round distributed algorithm yields an **output distribution** with the following **properties**:
 - outputs of subsets of nodes at distance more than 2T are independent
 - non-signaling beyond distance T

Abstracting output distributions

- A T-round distributed algorithm yields an **output distribution** with the following **properties**:
 - outputs of subsets of nodes at distance more than 2T are independent
 - non-signaling beyond distance T
- Then we can just think about output distributions!
 - computational models that produce directly distributions with the aforementioned properties

Abstracting output distributions

- A T-round distributed algorithm yields an **output distribution** with the following **properties**:
 - outputs of subsets of nodes at distance more than 2T are independent
 - non-signaling beyond distance T
- Then we can just think about output distributions!
 - computational models that produce directly distributions with the aforementioned properties

non-signaling LOCAL

locality T =non-signaling beyond distance T

[Gavoille et al., DISC '09] [Arfaoui and Fraigniaud, PODC '12 & SIGACT News '14]

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

boundeddependence model

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

boundeddependence model

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

boundeddependence model

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

• $X \to Y$ means that locality T in X becomes locality O(T) in Y

• Is it possible to **"sandwich" quantum-LOCAL** between weaker and stronger models?

• $X \to Y$ means that locality T in X becomes locality O(T) in Y

• Is it possible to **"sandwich" quantum-LOCAL** between weaker and stronger models? - yes!

- *T*-round algorithm in non-signaling LOCAL:
 - assigns to each input a distribution over output labelings
 - non-signaling beyond distance T

light cone for the red nodes

- *T*-round algorithm in non-signaling LOCAL:
 - assigns to each input a distribution over output labelings
 - non-signaling beyond distance T

light cone for the red nodes

- *T*-round **algorithm** in **non-signaling LOCAL**:
 - assigns to each input a distribution over output labelings
 - non-signaling beyond distance T

[Gavoille et al., DISC '09]

- Propagation arguments based on indistinguishability hold!
 - * some care is needed

light cone for the red nodes

H

- *T*-round algorithm in non-signaling LOCAL:
 - assigns to each input a distribution over output labelings
 - non-signaling beyond distance T
- [Gavoille et al., DISC '09]
- Propagation arguments based on indistinguishability hold!
 - * some care is needed
 - example: **2-coloring cycles** is hard $(T = \Theta(n))$

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

light cone for the red nodes

• Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]
- Example: **3-coloring** $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]
- Example: **3-coloring** $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]
- Example: **3-coloring** $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm \mathcal{A} with locality $T \leq \lfloor \frac{\sqrt{n-2}}{4} \rfloor$ that 3-colors grids

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]
- Example: **3-coloring** $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm \mathcal{A} with locality $T \leq \lfloor \frac{\sqrt{n-2}}{4} \rfloor$ that 3-colors grids
 - failure with prob. 1 overall \implies failure with prob. $\frac{1}{4}$ in at least one of the regions

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]
- Example: **3-coloring** $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm \mathcal{A} with locality $T \leq \lfloor \frac{\sqrt{n-2}}{4} \rfloor$ that 3-colors grids
 - failure with prob. 1 overall \implies failure with prob. $\frac{1}{4}$ in at least one of the regions
 - exploit non-signaling principle

H: odd quadrangulation of Klein-bottle

- locally grid-like, $\mathcal{X}(H) = 4$ [Mohar et al., Combinatorica '13]

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC '24]
- Example: **3-coloring** $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm \mathcal{A} with locality $T \leq \lfloor \frac{\sqrt{n-2}}{4} \rfloor$ that 3-colors grids
 - failure with prob. 1 overall \implies failure with prob. $\frac{1}{4}$ in at least one of the regions

H

- exploit non-signaling principle

H: odd quadrangulation of Klein-bottle

- locally grid-like, $\mathcal{X}(H) = 4$ [Mohar et al., Combinatorica '13]

• Boosting failure prob. is also possible

Graph-existential lower bound arguments based on indistinguishability

- **Graph coloring**: *c*-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al., STOC '24]
 - makes use of a "cheating graph" from [Bogdanov, '13]
 - upper bound in deterministic LOCAL, lower bound in non-signaling LOCAL
 - no quantum advantage

Graph-existential lower bound arguments based on indistinguishability

- **Graph coloring**: *c*-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al., STOC '24]
 - makes use of a "cheating graph" from [Bogdanov, '13]
 - upper bound in deterministic LOCAL, lower bound in non-signaling LOCAL
 - no quantum advantage
- **Tree coloring**: c-coloring trees has complexity $\Omega(\log_c n)$ [Coiteux-Roy et al., STOC '24]
 - revisitation of [Linial, FOCS '87]'s lower bound
 - no quantum advantage if high degree

Graph-existential lower bound arguments based on indistinguishability

- Graph coloring: *c*-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al., STOC '24]
 - makes use of a "cheating graph" from [Bogdanov, '13]
 - upper bound in deterministic LOCAL, lower bound in non-signaling LOCAL
 - no quantum advantage
- **Tree coloring**: c-coloring trees has complexity $\Omega(\log_c n)$ [Coiteux-Roy et al., STOC '24]
 - revisitation of [Linial, FOCS '87]'s lower bound
 - no quantum advantage if high degree
- Grid coloring: 3-coloring grids of size $n_1 \times n_2$ has complexity $\Omega(\min\{n_1, n_2\})$ [Coiteux-Roy et al., STOC '24]
 - makes use of odd quadrangulations of Klein-bottles [Mohar et al., Combinatorica '13]
 - no quantum advantage

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Graph-existential lower bound arguments based on indistinguishability

- Graph coloring: *c*-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al., STOC '24]
 - makes use of a "cheating graph" from [Bogdanov, '13]
 - upper bound in deterministic LOCAL, lower bound in non-signaling LOCAL
 - no quantum advantage
- **Tree coloring**: c-coloring trees has complexity $\Omega(\log_c n)$ [Coiteux-Roy et al., STOC '24]
 - revisitation of [Linial, FOCS '87]'s lower bound
 - no quantum advantage if high degree
- Grid coloring: 3-coloring grids of size $n_1 \times n_2$ has complexity $\Omega(\min\{n_1, n_2\})$ [Coiteux-Roy et al., STOC '24]
 - makes use of odd quadrangulations of Klein-bottles [Mohar et al., Combinatorica '13]
 - no quantum advantage

What about other known lower bounds? E.g., 3-coloring cycles has complexity $\Theta(\log^* n)$ [Linial, FOCS '87]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett, Forum of Mathematics, Pi '14]
 - [Holroyd et al., Electronic Communications in Probability '18]

complexity $T = \Theta(\log^* n)$ D(1)

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett, Forum of Mathematics, Pi '14]
 - [Holroyd et al., Electronic Communications in Probability '18]
- Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality $T = o(\log^* n)$?
 - major open question

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett, Forum of Mathematics, Pi '14]
 - [Holroyd et al., Electronic Communications in Probability '18]
- Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality $T = o(\log^* n)$?
 - major open question
- Is there any hope to rule out quantum advantage for LCLs of complexity $\Theta(\log^* n)$ in classical LOCAL? * using stronger models

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett, Forum of Mathematics, Pi '14]
 - [Holroyd et al., Electronic Communications in Probability '18]
- Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality $T = o(\log^* n)$?
 - major open question
- Is there any hope to rule out quantum advantage for LCLs of complexity $\Theta(\log^* n)$ in classical LOCAL? * using stronger models
 - no!
 - For any LCL Π on bounded degree graphs, there is a finitely-dependent distribution (T = O(1)) solving Π
 - [Akbari et al., 2024]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Finitely-dependent distributions for $O(\log^* n)$ -LCLs

• We build on the 3-coloring distributions for paths and cycles

- [Holroyd and Liggett, Forum of Mathematics, Pi '14]
- [Holroyd et al., Electronic Communications in Probability '18]
- Inspired by $(\Delta + 1)$ -coloring [Goldberg et al., SICOMP '88; Panconesi and Rizzi, Dist. Comp. '01]

Finitely-dependent distributions for $O(\log^* n)$ -LCLs

- We build on the 3-coloring distributions for paths and cycles
 - [Holroyd and Liggett, Forum of Mathematics, Pi '14]
 - [Holroyd et al., Electronic Communications in Probability '18]
- Inspired by $(\Delta + 1)$ -coloring [Goldberg et al., SICOMP '88; Panconesi and Rizzi, Dist. Comp. '01]
- Fact: $O(\log^* n)$ -round LOCAL algorithm = find distance-k coloring $(O(\log^* n)) + O(1)$ -round LOCAL algorithm - [Folklore]

Finitely-dependent distributions for $O(\log^* n)$ -LCLs

- We build on the 3-coloring distributions for paths and cycles
 - [Holroyd and Liggett, Forum of Mathematics, Pi '14]
 - [Holroyd et al., Electronic Communications in Probability '18]
- Inspired by $(\Delta + 1)$ -coloring [Goldberg et al., SICOMP '88; Panconesi and Rizzi, Dist. Comp. '01]
- Fact: $O(\log^* n)$ -round LOCAL algorithm = find distance-k coloring $(O(\log^* n)) + O(1)$ -round LOCAL algorithm
 - [Folklore]

distance-2 3-coloring

+ constant-round LOCAL algorithm

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Finitely-dependent distance-k coloring

- **Step 1**: finitely-dependent 3-coloring of rooted pseudoforests
 - a rooted pseduforoest can be decomposed in node-disjoint paths and cycles

Finitely-dependent distance-k coloring

- **Step 1**: finitely-dependent 3-coloring of rooted pseudoforests
 - a rooted pseduforoest can be decomposed in node-disjoint paths and cycles
- Step 2: finitely-dependent $(\Delta + 1)$ -coloring of bounded-degree graphs
 - a graph can be decomposed in edge-disjoint rooted pseudoforests

Finitely-dependent distance-k coloring

- **Step 1**: finitely-dependent 3-coloring of rooted pseudoforests
 - a rooted pseduforoest can be decomposed in node-disjoint paths and cycles
- Step 2: finitely-dependent $(\Delta + 1)$ -coloring of bounded-degree graphs - a graph can be decomposed in edge-disjoint rooted pseudoforests
- Step 3: apply the $(\Delta + 1)$ -coloring in G^k to get distance-k coloring

rooted pseudotree

Step 1: finitely-dependent coloring of rooted pseudotree

• Each node *u* colors u.a.r. its in-degree neighbors with colors in [indeg(*u*)]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Step 1: finitely-dependent coloring of rooted pseudotree

• Each node u colors u.a.r. its in-degree neighbors with colors in [indeg(u)]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Step 1: finitely-dependent coloring of rooted pseudotree

• Each node u colors u.a.r. its in-degree neighbors with colors in [indeg(u)]

Step 2: finitely-dependent coloring of bounded-degree graph

rooted pseudotree

bounded-degree graph and random port-numbering

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Step 2: finitely-dependent coloring of bounded-degree graph

Table of content

1. **Intro**

- The LOCAL model of computation
- Locally checkable labeling (LCL) problems
- 2. Quantum and causality-based models
- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds

3. Locality-based models

- The online-LOCAL model
- Relation with causality-based models
- Simulation in weaker models
- 4. Conclusions and open problems

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Other locality-based models

• Similar to LOCAL, but sequential

Locality T

- adversary picks a node (each node only once)
- the algorithm gets access to radius-T neighborhood

[Ghaffari et al., STOC '17]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Other locality-based models

- Similar to LOCAL, but sequential Locality T
 - adversary picks a node (each node only once)
 - the algorithm gets access to radius-T neighborhood

[Ghaffari et al., STOC '17]

- Locality T

 - [Akbari et al., ICALP '23]

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Similar to sequential-LOCAL, but **centralized**

- adversary picks a node (each node only once) - the algorithm gets access to radius-T neighborhood * plus keeps memory of everything seen so far

Other locality-based models

- Similar to LOCAL, but sequential Locality T
 - adversary picks a node (each node only once)
 - the algorithm gets access to radius-T neighborhood
- [Ghaffari et al., STOC '17]

- Locality T

 - [Akbari et al., ICALP '23]

- There are also the natural **extension to randomness**:
 - adversary is oblivious and source of randomess is "infinite" for each node

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Similar to sequential-LOCAL, but **centralized**

- adversary picks a node (each node only once) - the algorithm gets access to radius-T neighborhood * plus keeps memory of everything seen so far

• $X \rightarrow Y$ means that locality T in X becomes locality O(T) in Y

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Quantum-LOCAL $O(log^*n) \rightarrow O(log^*n)$ in LOCAL in **rooted trees**

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

- Main differences to overcome:
 - global memory vs local memory
 - randomized vs deterministic

randomized online-LOCAL

[Akbari et al., 2024]

on rooted trees $o(\log \log \log n) \rightarrow O(1)$

- Main differences to overcome:
 - global memory vs local memory
 - randomized vs deterministic

- Step 1: derandomize
 - T(n)-round randomized online-LOCAL $\implies T(2^{O(2^{n^2})})$ -round deterministic online-LOCAL
 - while so, we obtain "component-wise" algorithms (memory only in the current connected component)

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Akbari et al., 2024]

on rooted trees $o(\log \log \log n) \rightarrow O(1)$

online-LOCAL connected component)

- Main differences to overcome:
 - global memory vs local memory
 - randomized vs deterministic

randomized online-LOCAL

- **Step 1**: derandomize
 - T(n)-round randomized online-LOCAL $\implies T(2^{O(2^{n^2})})$ -round deterministic online-LOCAL - while so, we obtain "component-wise" algorithms (memory only in the current connected component)
- **Step 2**: from component-wise online-LOCAL algorithms to SLOCAL in rooted trees
 - possible without loosing locality by "splitting" the tree in "subtrees" of small size

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Akbari et al., 2024]

on rooted trees $o(\log \log \log n) \rightarrow O(1)$

- Main differences to overcome:
 - global memory vs local memory
 - randomized vs deterministic

randomized online-LOCAL

- **Step 1**: derandomize
 - T(n)-round randomized online-LOCAL $\implies T(2^{O(2^{n^2})})$ -round deterministic online-LOCAL - while so, we obtain "component-wise" algorithms (memory only in the current connected component)
- **Step 2**: from component-wise online-LOCAL algorithms to SLOCAL in rooted trees
 - possible without loosing locality by "splitting" the tree in "subtrees" of small size
- Step 3: from $o(\log n) \approx O(1)$ in rooted trees in SLOCAL

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Akbari et al., 2024]

on rooted trees $o(\log \log \log n) \rightarrow O(1)$

- Main differences to overcome:
 - global memory vs local memory
 - randomized vs deterministic

randomized online-LOCAL

• **Step 1**: derandomize

- T(n)-round randomized online-LOCAL $\implies T(2^{O(2^{n^2})})$ -round deterministic online-LOCAL - while so, we obtain "component-wise" algorithms (memory only in the current connected component)

- Step 2: from component-wise online-LOCAL algorithms to SLOCAL in rooted trees
 - possible without loosing locality by "splitting" the tree in "subtrees" of small size
- Step 3: from $o(\log n) \approx O(1)$ in rooted trees in SLOCAL

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

[Akbari et al., 2024]

on rooted trees $o(\log \log \log n) \rightarrow O(1)$

Idea: compose many SLOCAL algorithms

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Idea: compose many SLOCAL algorithms

- **First**, create decomposition with trees of size O(T)
 - time O(T)

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

Idea: compose many SLOCAL algorithms

- **First**, create decomposition with trees of size O(T)
 - time O(T)

Idea: compose many SLOCAL algorithms

- **First**, create decomposition with trees of size O(T)
 - time O(T)
- **Second**, use component-wise algorithm of locality T
 - commit at the leader nodes
 - each cluster doable with locality O(T)

Idea: compose many SLOCAL algorithms

- **First**, create decomposition with trees of size O(T)
 - time O(T)
- Second, use component-wise algorithm of locality T
 - commit at the leader nodes
 - each cluster doable with locality O(T)
- **Third**, fill the gaps
 - guarantees from "component-wise"
 - each cluster doable with locality O(T)

From component-wise to SLOCAL

Idea: compose many SLOCAL algorithms

- **First**, create decomposition with trees of size O(T)
 - time O(T)
- Second, use component-wise algorithm of locality T
 - commit at the leader nodes
 - each cluster doable with locality O(T)
- **Third**, fill the gaps
 - guarantees from "component-wise"
 - each cluster doable with locality O(T)
- Overall time O(T)

Table of content

1. **Intro**

- The LOCAL model of computation
- Locally checkable labeling (LCL) problems
- 2. Quantum and causality-based models
- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds
- 3. Locality-based models
- The online-LOCAL model
- Relation with causality-based models
- Simulation in weaker models

$\mathbf{4}.$ Conclusions and open problems

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
- Randomized online-LOCAL to sequential-LOCAL: **what** happens in unrooted trees?
 - [Dhar et al., '24]: super-logarithmic region
 - other topologies?

• Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models

• Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models

• How to create bounded-dependence or non-signaling distributions that do not rely on [Holroyd et al., Forum of Mathematics, Pi '14]?

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models

- How to create bounded-dependence or non-signaling distributions that do not rely on [Holroyd et al., Forum of Mathematics, Pi '14]?
- How to get lower bounds directly in quantum-LOCAL?

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

• Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models

- How to create bounded-dependence or non-signaling distributions that do not rely on [Holroyd et al., Forum of Mathematics, Pi '14]?
- How to get lower bounds directly in quantum-LOCAL?

Francesco d'Amore · Causal Limits of Distributed Computation · ADGA 2024

THANKS! QUESTIONS?