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The LOCAL model

[Linial, FOCS '87 & SICOMP '92] ®
e Distributed network of n processors/nodes .\./’
-graph G = (V,E) with |V | =n

- E: communication links
- each node in V runs the same algorithm
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Locality

o Complexity measure: number of communication rounds

Equivalence:
*n is known to the nodes

e let A be a T'(n)-round LOCAL algorithm

- design algo B where each node
- performs no communication at all
- gathers the full input in its radius-T'(n) neighborhood
- simulates A by locally simulating the T'(n) communications rounds

knowledge after 2 rounds of communication
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Locality

o Complexity measure: number of communication rounds

Equivalence:
*n is known to the nodes

e let A be a T'(n)-round LOCAL algorithm

- design algo B where each node
- performs no communication at all
- gathers the full input in its radius-T'(n) neighborhood
- simulates A by locally simulating the T'(n) communications rounds

e let B be a “gathering” algorithm with locality T'(n)
- design algo A where each node
- performs T'(n) communication rounds
- outputs simulating B

knowledge after 2 rounds of communication

e Locality T =diam(G) + 1 is always sufficient to solve any problem
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Locally checkable labeling (LCL) problems

[Naor and Stockmeyer, STOC '93 & SICOMP '95] .\:/’

e Problems whose solutions might be “hard to find” but are “easy to check”

- “analogue” of NP in the distributed setting
- coloring, maximal independent set, maximal matching, etc.
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Locally checkable labeling (LCL) problems

0\:/0

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

e Problems whose solutions might be “hard to find” but are “easy to check”

- “analogue” of NP in the distributed setting
- coloring, maximal independent set, maximal matching, etc.

o “Easy to check”

- radius r = ©(1)
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

3-coloring: the blue node checks if its color
Is different from those of its neighbors

valid LCL
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Locally checkable labeling (LCL) problems

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

N\ L
AN

e Problems whose solutions might be “hard to find” but are “easy to check”

- "analogue” of NP in the distributed setting

- coloring, maximal independent set, maximal matching, etc. \ /
« “Easy to check” T / e —

- radius r = ©(1) // \\

- a globally valid iff each node is locally happy

- each node can check its solution within its radius-r neighborhood //\ . /\\

Leader election: the checking radius should
be r =diam(G)

not an LCL

Francesco d’Amore - Causal Limits of Distributed Computation - ADGA 2024 5/27



Locally checkable labeling (LCL) problems

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

e Problems whose solutions might be “hard to find” but are “easy to check” \‘;#

- "analogue” of NP in the distributed setting

- coloring, maximal independent set, maximal matching, etc. ‘.\\
o
o

o “Easy to check”
- radius r = ©(1)

- each node can check its solution within its radius-r neighborhood ././l

- a globally valid iff each node is locally happy

|

MIS: each node checks if itis in the IS or if it
has a neighbor in the IS

Francesco d’Amore - Causal Limits of Distributed Computation - ADGA 2024 5/27



Locally checkable labeling (LCL) problems

[Naor and Stockmeyer, STOC '93 & SICOMP '95]

e Problems whose solutions might be “hard to find” but are “easy to check” \‘;#

- "analogue” of NP in the distributed setting

- coloring, maximal independent set, maximal matching, etc. ‘.\\
o
o

o “Easy to check”
- radius r = ©(1)

- each node can check its solution within its radius-r neighborhood ././l

- a globally valid iff each node is locally happy

|

MIS: each node checks if itis in the IS or if it
- classification of LCLs based on complexity (locality) has a neighbor in the IS

2
- e.g.: complexity T'(n) in randomized-LOCAL = O(T(2" )) in deterministic-LOCAL [Chang et al., SICOMP '19]
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MIS: each node checks if itis in the IS or if it
- classification of LCLs based on complexity (locality) has a neighbor in the IS

2
- e.g.: complexity T'(n) in randomized-LOCAL = O(T(2" )) in deterministic-LOCAL [Chang et al., SICOMP '19]

- [BFHKLRSU STOC '16; BHKLOPRSU PODC'17; GKM STOC "17; GHK FOCS '18; CP SICOMP "19; BHKLOS STOC
'18; BBCORS PODC '19; BBOS PODC '20; BBHORS JACM '21; BBCOSS DISC '22; AELMSS ICALP '23; etc.]

e A lot of literature studying LClLs:
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Quantum-LOCAL

|(Gavoille et al., DISC '09]

e Distributed system of n quantum processors/nodes

- quantum computation
- guantum communication (qubits)
- output: measurement of qubits
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Quantum-LOCAL

|(Gavoille et al., DISC '09]

e Distributed system of n quantum processors/nodes

local computation |

- quantum computation

- quantum communication (qubits) L
round 1: communication

- output: measurement of qubits

o Complexity measure: number of communication rounds

local computation |

e Gathering algorithms are weaker!

round 2: communication

- measuring to clone “corrupts” the quantum state

- guantum states cannot be cloned (no-cloning theorem)

local computation

measure
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o Complexity measure: number of communication rounds local computation

e Gathering algorithms are weaker!

, . : round 2: communicationé
- measuring to clone “corrupts” the quantum state -

- guantum states cannot be cloned (no-cloning theorem)

local computation
e Still, locality identifies how far nodes need to communicate |

e Question: is there any graph problem that admits guantum advantage?
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Quantum-LOCAL

e Question: is there any graph problem that admits quantum advantage?

-yves! [Le Gall et al., STACS "19]
- problem with complexity Q(n) in randomized-LOCAL and O(1) in quantum-LOCAL
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Quantum-LOCAL

e Question: is there any graph problem that admits quantum advantage?

-yves! [Le Gall et al., STACS "19]
- problem with complexity Q(n) in randomized-LOCAL and O(1) in quantum-LOCAL

e Question: what about problems that actually interest the distributed computing community?

-we do not know!

e \What do we know?

- focus on LCLs
- input graph degree is bounded by a constant A [Naor and Stockmeyer, SICOMP '95]
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Properties of distributed algorithms

o —0 0 0 0 0 O
e Run a 2-round algorithm A Iin G
®oe—90 O o0 0 o0 o
O—O0 0 0 0 0 0
o—90 0 0 0 0 °
®oe—90 O o0 0 o0 o
o—O0 0 0 0 0 0
o—90 0 0 0 0 ©°
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Properties of distributed algorithms

light cone for . ‘ ‘

 Run a 2-round algorithm A in G the blue nodes

- output for the red and blue nodes is determined by their
respective light cones

light cone for
the red nodes
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Properties of distributed algorithms

light cone for . ‘ ‘

e Run a 2-round algorithm A Iin G the blue nodes '
- output for the red and blue nodes is determined by their . O ®
respective light cones
*o—0 9
e Output distributions for red and blue nodes are independent
H
- as long as their distance is at least 5 .

e Output distributions remains the same if light cone is the same

- non-signaling property

- changes that are beyond 2-hops away do not influence the ® ® ®
output distribution
- also known as causality N A—— ®— ‘ -----  S— | a—

light cone for
the red nodes
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Abstracting output distributions

e A T-round distributed algorithm vields an output distribution with the following properties:
- outputs of subsets of nodes at distance more than 2T are independent

- non-signaling beyond distance T
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- outputs of subsets of nodes at distance more than 2T are independent
- non-signaling beyond distance T

e Then we can just think about output distributions!

- computational models that produce directly distributions with the aforementioned properties
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Abstracting output distributions

e A T-round distributed algorithm vields an output distribution with the following properties:
- outputs of subsets of nodes at distance more than 2T are independent
- non-signaling beyond distance T

e Then we can just think about output distributions!

- computational models that produce directly distributions with the aforementioned properties

ﬁ bounded- W ﬁ W

dependence | non-signaling
LOCAL
. model y L y
locality T' = locality T' =
independence at distance 2T + 1 plus non-signaling beyond distance T
non-signaling beyond distance T
[Holroyd and Liggett, Forum of Mathematics, Pi '14] [Gavoille et al., DISC '09]

|[Akbari et al., 2024] * finitely-dependent distributions if T=0(1)  [Arfaoui and Fraigniaud, PODC "12 & SIGACT News '14]
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Relations among models

e X —» Y means that locality T in X becomes locality O(T') inY

~

_

~

deterministic

LOCAL

)

e |s it possible to “sandwich” quantum-LOCAL between weaker and stronger models?

Francesco d’Amore - Causal Limits of Distributed Computation - ADGA 2024

& B

randomized

LOCAL

>

_ v,

Frandomizedﬂ

LOCAL + shared

& R

guantum

LOCAL

randomness
_ y

F bounded- w

» dependence

_ J

y
f quantum ﬂ

» LOCAL + shared

L model y

y

- B

non-signaling
LOCAL

uantum state

_ .

_ J

11/27



Relations among models
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Some results: non-signaling LOCAL model

e T-round algorithm in non-signaling LOCAL.: ® ® ¢ ®
- assigns to each input a distribution over output labelings
o—90 0 0 ©
- non-signaling beyond distance T
O—0 0 0 ©
G - |
*—0 000
e o o o o
o o o
o0 0 0 ‘ _____ \ — —

light cone for
the red nodes
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Some results: non-signaling LOCAL model

e T-round algorithm in non-signaling LOCAL.:
- assigns to each input a distribution over output labelings

- non-signaling beyond distance T

|Gavoille et al., DISC '09]
e Propagation arguments based on indistinguishability hold!

*some care is needed
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Some results: non-signaling LOCAL model

e T-round algorithm in non-signaling LOCAL.:
- assigns to each input a distribution over output labelings
- non-signaling beyond distance T

|Gavoille et al., DISC '09]
e Propagation arguments based on indistinguishability hold!

* some care is needed
- example: 2-coloring cycles is hard (T = O(n))
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Some results: non-signaling LOCAL model

o Graph-existential lower bound arguments based on indistinguishability hold! |Coiteux-Roy et al., STOC '24]
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Some results: non-signaling LOCAL model

o Graph-existential lower bound arguments based on indistinguishability hold! |Coiteux-Roy et al., STOC '24]
e Example: 3-coloring \/n X \/n grids is hard (T' = ©(y/n))
- find graph H that locally is like a grid but chromatic number X(H) > 4

A 5:.;‘-.'.'.'.'.'.'.'.'. A
H: odd quadrangulation . 9o 6666 0 6
of Klein-bottle . 9006060900
- locally grid-like, X(H) = 4 . R AR AR AR AR dh dih g
[Mohar et al., Combinatorica '13] ’ B dD A AR AR AR dh ¢
. O—0 0 0 0 0 0 0
. O —0 0 0 0 0 0 ¢
. o—0 00 0 0 0 °
o > 6 0 0 66 0 0 o

.......................................................................
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Some results: non-signaling LOCAL model

o Graph-existential lower bound arguments based on indistinguishability hold! |Coiteux-Roy et al., STOC '24]

e Example: 3-coloring \/n X \/n grids is hard (T' = ©(y/n))

- find graph H that locally is like a grid but chromatic number X(H) > 4
- by contradiction: algorithm A with locality T < |
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e Boosting failure prob. is also possible
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Some results: non-signaling LOCAL model

Graph-existential lower bound arguments based on indistinguishability

3 -1
e Graph coloring: c-coloring y-chromatic graphs has complexity (H)(nl/ %—1J) [Coiteux-Roy et al., STOC '24]

- makes use of a “‘cheating graph” from [Bogdanov, '13]
- upper bound in deterministic LOCAL, lower bound in non-signaling LOCAL
- N0 quantum advantage
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Some results: non-signaling LOCAL model

Graph-existential lower bound arguments based on indistinguishability

3 -1
e Graph coloring: c-coloring y-chromatic graphs has complexity @(nl/L%—lj) [Coiteux-Roy et al., STOC '24]

- makes use of a “‘cheating graph” from [Bogdanov, '13]
- upper bound in deterministic LOCAL, lower bound in non-signaling LOCAL
- N0 quantum advantage

e Tree coloring: c-coloring trees has complexity Q(log.n) [Coiteux-Roy et al., STOC '24]

- revisitation of [Linial, FOCS '87]’s lower bound
- N0 quantum advantage if high degree

e Grid coloring: 3-coloring grids of size ny X ny has complexity Q(min{ny,ny}) [Coiteux-Roy et al., STOC '24]

- makes use of odd quadrangulations of Klein-bottles [Mohar et al., Combinatorica '13]
- N0 quantum advantage

What about other known lower bounds? E.g., 3-coloring cycles has complexity ©(log™ n) [Linial, FOCS '87]
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Some results: bounded-dependence model

e Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity T = ©(log™ n)
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Some results: bounded-dependence model

e Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity T = ©(log™ n)

-no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
- [Holroyd and Liggett, Forum of Mathematics, Pi '14]
- [Holroyd et al., Electronic Communications in Probability '18]
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e |s there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality T = o(log” n)?
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Some results: bounded-dependence model

e Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity T = ©(log™ n)

-no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
- [Holroyd and Liggett, Forum of Mathematics, Pi '14]
- [Holroyd et al., Electronic Communications in Probability '18]

e |s there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality 7' = o(log* n)?

- major open question

e |s there any hope to rule out quantum advantage for LCLs of complexity ©(log™ ) in classical LOCAL?
* using stronger models

- No!
- For any LCL IT on bounded degree graphs, there is a finitely-dependent distribution (T = O(1)) solving T1
- [Akbari et al., 2024]
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Finitely-dependent distributions for O(log™ n)-LCLs

e \We build on the 3-coloring distributions for paths and cycles

- [Holroyd and Liggett, Forum of Mathematics, Pi '14]
- [Holroyd et al., Electronic Communications in Probability '18]

e Inspired by (A + 1)-coloring [Goldberg et al., SICOMP '88; Panconesi and Rizzi, Dist. Comp. '01]
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e Inspired by (A + 1)-coloring [Goldberg et al., SICOMP '88; Panconesi and Rizzi, Dist. Comp. '01]

e Fact: O(log™ n)-round LOCAL algorithm = find distance-% coloring (O(log™ n)) + O(1)-round LOCAL algorithm
- [Folklore]
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Finitely-dependent distributions for O(log™ n)-LCLs

e \We build on the 3-coloring distributions for paths and cycles

- [Holroyd and Liggett, Forum of Mathematics, Pi '14]
- [Holroyd et al., Electronic Communications in Probability '18]

e Inspired by (A + 1)-coloring [Goldberg et al., SICOMP '88; Panconesi and Rizzi, Dist. Comp. '01]

e Fact: O(log™ n)-round LOCAL algorithm = find distance-% coloring (O(log™ n)) + O(1)-round LOCAL algorithm
- [Folklore]

distance-2 3-coloring

+ constant-round LOCAL algorithm
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Finitely-dependent distance-£& coloring

e Step 1: finitely-dependent 3-coloring of rooted pseudoforests

- a rooted pseduforoest can be decomposed in node-disjoint paths and cycles

rooted pseudotree

A
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Finitely-dependent distance-£& coloring

e Step 1: finitely-dependent 3-coloring of rooted pseudoforests

- a rooted pseduforoest can be decomposed in node-disjoint paths and cycles

e Step 2: finitely-dependent (A + 1)-coloring of bounded-degree graphs

- a graph can be decomposed in edge-disjoint rooted pseudoforests

e Step 3: apply the (A +1)-coloring in G" to get distance-& coloring

rooted pseudotree

o—

A
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Step 1: finitely-dependent coloring of rooted pseudotree

e Each node u colors u.a.r. its in-degree neighbors with colors in [indeg(u) ]

(r—=

SO
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e Each node u colors u.a.r. its in-degree neighbors with colors in [indeg(u) ]
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Step 1: finitely-dependent coloring of rooted pseudotree

e Each node u colors u.a.r. its in-degree neighbors with colors in [indeg(u) ]
.\‘Q
‘H\
h "\_‘ ' ® o o%,
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Step 2: finitely-dependent coloring of bounded-degree graph

rooted pseudotree

bounded-degree graph and random port-numbering
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Step 2: finitely-dependent coloring of bounded-degree graph

rooted pseudotree
>: 7 ;: E @
@
Hy
(1) (2)
GQ
©, (&)
H;

bounded-degree graph and random port-numbering

Francesco d’Amore - Causal Limits of Distributed Computation - ADGA 2024 19/27



Table of content

3. Locality-based models

e The online-LOCAL model

e Relation with causality-based models

e Simulation In weaker models
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Other locality-based models

Fsequential—ﬂ

LOCAL
(SLOCAL)
_

J

e Similar to LOCAL, but sequential
Locality T

- adversary picks a node (each node only once)
- the algorithm gets access to radius-T neighborhood

|(Ghaffari et al., STOC "17]
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e Similar to LOCAL, but sequential e Similar to sequential-LOCAL, but centralized

Locality T Locality T

- adversary picks a node (each node only once) - adversary picks a node (each node only once)

- the algorithm gets access to radius-T neighborhood - the algorithm gets access to radius-T neighborhood

* plus keeps memory of everything seen so far

|Ghaffari et al.,, STOC ’17] |[Akbari et al., ICALP '23]

Francesco d’Amore - Causal Limits of Distributed Computation - ADGA 2024 21/27



Other locality-based models

Fsequential—ﬂ ﬁ ﬂ

o
(SLOCAL)
_ ), u )

e Similar to LOCAL, but sequential e Similar to sequential-LOCAL, but centralized

Locality T Locality T

- adversary picks a node (each node only once) - adversary picks a node (each node only once)

- the algorithm gets access to radius-T neighborhood - the algorithm gets access to radius-T neighborhood

* plus keeps memory of everything seen so far

|Ghaffari et al.,, STOC ’17] |[Akbari et al., ICALP '23]

e There are also the natural extension to randomness:

- adversary is oblivious and source of randomess is “infinite” for each node
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e X —» Y means that locality T in X becomes locality O(T) i
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Full landscape of models
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[Folklore]
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Full landscape of models
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Focus on the implications
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[Akbari et al., 2024]
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Focus on the implications
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[Akbari et al., 2024] [Akbari et al., 2024]

on rooted trees
o(logloglogn) — O(1)
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Focus on the implications
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Focus on the implications
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[Chang et al., SICOMP '19]

~ in the O(log* n) region
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Focus on the implications
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[Chang et al., SICOMP '19] |Akbari et al., 2024] on rooted trees

. . o(logloglogn) — O(log™ n)
~ in the O(log™ n) region O(log™ n) - O(1)

e Quantum-LOCAL O(log*n) — O(log™n) in LOCAL in rooted trees
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From randomized online-LOCAL to sequential-LOCAL
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From component-wise to SLOCAL

Idea: compose many SLOCAL algorithms

e First, create decomposition with trees of size O(T)

- time O(T)

e Second, use component-wise algorithm of locality T
- commit at the leader nodes
- each cluster doable with locality O(T) C/

e Third, fill the gaps

- guarantees from “component-wise”

- each cluster doable with locality O(T)

e Overall time O(T)
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