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•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links- each node in V runs the same algorithm
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- graph G = (V , E) with ∣V ∣= n
- E: communication links

• Time is synchronous: nodes alternate
- arbitrary local computation & update of state variables- sending of messages to all neighbors
* no bandwidth constraints

- each node in V runs the same algorithm

• Complexity measure: number of communication rounds

•Unique identifier to nodes in the set 1, . . . ,poly(n)* adversarially chosen
- needed to solve even basic problems (2-coloring a 2-path)
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Locality
Equivalence:
* n is known to the nodes

- design algo B where each node- performs no communication at all- gathers the full input in its radius-T(n) neighborhood

knowledge after 2 rounds of communication

• let A be a T(n)-round LOCAL algorithm

• let B be a “gathering” algorithm with locality T(n)- design algo A where each node- performs T(n) communication rounds- outputs simulating B

- simulates A by locally simulating the T(n) communications rounds

• Locality T = diam(G)+1 is always sufficient to solve any problem

• Complexity measure: number of communication rounds

T = 2
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Locally checkable labeling (LCL) problems
[Naor and Stockmeyer, STOC ’93 & SICOMP ’95]
• Problems whose solutions might be “hard to find” but are “easy to check”
- coloring, maximal independent set, maximal matching, etc.- “analogue” of NP in the distributed setting
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- coloring, maximal independent set, maximal matching, etc.
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- “analogue” of NP in the distributed setting
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Locally checkable labeling (LCL) problems
[Naor and Stockmeyer, STOC ’93 & SICOMP ’95]
• Problems whose solutions might be “hard to find” but are “easy to check”
- coloring, maximal independent set, maximal matching, etc.

• “Easy to check”
- radius r =Θ(1)

- a globally valid iff each node is locally happy- each node can check its solution within its radius-r neighborhood

Leader election: the checking radius should
be r = diam(G)

not an LCL

- “analogue” of NP in the distributed setting
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• “Easy to check”
- radius r =Θ(1)

- a globally valid iff each node is locally happy- each node can check its solution within its radius-r neighborhood

MIS: each node checks if it is in the IS or if it
has a neighbor in the IS

•A lot of literature studying LCLs:

- “analogue” of NP in the distributed setting

- [BFHKLRSU STOC ’16; BHKLOPRSU PODC’17; GKM STOC ’17; GHK FOCS ’18; CP SICOMP ’19; BHKLOS STOC
’18; BBCORS PODC ’19; BBOS PODC ’20; BBHORS JACM ’21; BBCOSS DISC ’22; AELMSS ICALP ’23; etc.]

- classification of LCLs based on complexity (locality)
- e.g.: complexity T(n) in randomized-LOCAL ⟹ O(T(2n2

)) in deterministic-LOCAL [Chang et al., SICOMP ’19]
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Quantum-LOCAL
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measure light cone for
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- quantum states cannot be cloned (no-cloning theorem)- measuring to clone “corrupts” the quantum state

• Still, locality identifies how far nodes need to communicate
•Question: is there any graph problem that admits quantum advantage?
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Quantum-LOCAL
- yes! [Le Gall et al., STACS ’19]- problem with complexity Ω(n) in randomized-LOCAL and O(1) in quantum-LOCAL

•Question: what about problems that actually interest the distributed computing community?

-we do not know!
•What do we know?

- focus on LCLs- input graph degree is bounded by a constant ∆ [Naor and Stockmeyer, SICOMP ’95]

•Question: is there any graph problem that admits quantum advantage?
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Properties of distributed algorithms
• Run a 2-round algorithm A in G



Francesco d’Amore ⋅ Causal Limits of Distributed Computation ⋅ ADGA 2024 9/27

Properties of distributed algorithms

G

• Run a 2-round algorithm A in G

light cone for
the red nodes

- output for the red and blue nodes is determined by their
respective light cones

light cone for
the blue nodes



Francesco d’Amore ⋅ Causal Limits of Distributed Computation ⋅ ADGA 2024 9/27

Properties of distributed algorithms

G

• Run a 2-round algorithm A in G

light cone for
the red nodes

- output for the red and blue nodes is determined by their
respective light cones

light cone for
the blue nodes

•Output distributions for red and blue nodes are independent
- as long as their distance is at least 5



Francesco d’Amore ⋅ Causal Limits of Distributed Computation ⋅ ADGA 2024 9/27

Properties of distributed algorithms
• Run a 2-round algorithm A in G

light cone for
the red nodes

H

- output for the red and blue nodes is determined by their
respective light cones

light cone for
the blue nodes

•Output distributions for red and blue nodes are independent
- as long as their distance is at least 5



Francesco d’Amore ⋅ Causal Limits of Distributed Computation ⋅ ADGA 2024 9/27

Properties of distributed algorithms
• Run a 2-round algorithm A in G

light cone for
the red nodes

H

- output for the red and blue nodes is determined by their
respective light cones

•Output distributions remains the same if light cone is the same
- non-signaling property
- changes that are beyond 2-hops away do not influence the
output distribution

- also known as causality

light cone for
the blue nodes

•Output distributions for red and blue nodes are independent
- as long as their distance is at least 5
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Abstracting output distributions
•A T-round distributed algorithm yields an output distribution with the following properties:
- outputs of subsets of nodes at distance more than 2T are independent
- non-signaling beyond distance T
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Abstracting output distributions
•A T-round distributed algorithm yields an output distribution with the following properties:
- outputs of subsets of nodes at distance more than 2T are independent

• Then we can just think about output distributions!
- non-signaling beyond distance T

- computational models that produce directly distributions with the aforementioned properties
bounded-

dependence
model

non-signaling
LOCAL

locality T =

independence at distance 2T +1 plus
non-signaling beyond distance T

locality T =

non-signaling beyond distance T

* finitely-dependent distributions if T = O(1)
[Holroyd and Liggett, Forum of Mathematics, Pi ’14] [Gavoille et al., DISC ’09][Arfaoui and Fraigniaud, PODC ’12 & SIGACT News ’14][Akbari et al., 2024]
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Relations among models

deterministic
LOCAL

randomized
LOCAL

• X → Y means that locality T in X becomes locality O(T) in Y
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Relations among models

deterministic
LOCAL

randomized
LOCAL

quantum
LOCAL

bounded-
dependence

model

randomized
LOCAL + shared
randomness

quantum
LOCAL + shared
quantum state

non-signaling
LOCAL

• X → Y means that locality T in X becomes locality O(T) in Y

• Is it possible to “sandwich” quantum-LOCAL between weaker and stronger models?
- yes!
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Some results: non-signaling LOCAL model
• T-round algorithm in non-signaling LOCAL:
- assigns to each input a distribution over output labelings
- non-signaling beyond distance T

G

light cone for
the red nodes
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Some results: non-signaling LOCAL model
• T-round algorithm in non-signaling LOCAL:
- assigns to each input a distribution over output labelings
- non-signaling beyond distance T

light cone for
the red nodes

H• Propagation arguments based on indistinguishability hold!
[Gavoille et al., DISC ’09]

radius T = ⌈n−2
4 ⌉−1

- example: 2-coloring cycles is hard (T =Θ(n))* some care is needed
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Some results: non-signaling LOCAL model
•Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC ’24]
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•Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC ’24]
• Example: 3-coloring √

n×
√

n grids is hard (T =Θ(√n))

- by contradiction: algorithm A with locality T ≤ ⌊
√

n−2
4 ⌋ that 3-colors grids

G

- find graph H that locally is like a grid but chromatic number X (H)≥ 4

H: odd quadrangulation
of Klein–bottle

- locally grid-like, X (H)= 4
[Mohar et al., Combinatorica ’13]

H

- failure with prob. 1 overall ⟹ failure with prob. 1
4 in at least one of the regions

in G failure with prob. 1
4- exploit non-signaling principle
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Some results: non-signaling LOCAL model
•Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al., STOC ’24]
• Example: 3-coloring √

n×
√

n grids is hard (T =Θ(√n))

- by contradiction: algorithm A with locality T ≤ ⌊
√

n−2
4 ⌋ that 3-colors grids

G

- find graph H that locally is like a grid but chromatic number X (H)≥ 4

• Boosting failure prob. is also possible

H: odd quadrangulation
of Klein–bottle

- locally grid-like, X (H)= 4
[Mohar et al., Combinatorica ’13]

H

- failure with prob. 1 overall ⟹ failure with prob. 1
4 in at least one of the regions

in G failure with prob. 1
4- exploit non-signaling principle

non-signaling
principle
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- revisitation of [Linial, FOCS ’87]’s lower bound

•Grid coloring: 3-coloring grids of size n1×n2 has complexity Ω(min{n1, n2}) [Coiteux-Roy et al., STOC ’24]

- makes use of a “cheating graph” from [Bogdanov, ’13]

- no quantum advantage if high degree

- no quantum advantage

Graph-existential lower bound arguments based on indistinguishability

What about other known lower bounds? E.g., 3-coloring cycles has complexity Θ(log⋆ n) [Linial, FOCS ’87]

- makes use of odd quadrangulations of Klein-bottles [Mohar et al., Combinatorica ’13]
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Some results: bounded-dependence model
• Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity T =Θ(log⋆ n)
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Some results: bounded-dependence model
• Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity T =Θ(log⋆ n)

- [Holroyd and Liggett, Forum of Mathematics, Pi ’14]- [Holroyd et al., Electronic Communications in Probability ’18]
• Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality T = o(log⋆ n)?
- major open question

• Is there any hope to rule out quantum advantage for LCLs of complexity Θ(log⋆ n) in classical LOCAL?
- no!
* using stronger models
- For any LCL Π on bounded degree graphs, there is a finitely-dependent distribution (T = O(1)) solving Π- [Akbari et al., 2024]

- no! There is a finitely-dependent distribution that 3-colors paths and cycles (T = O(1))
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Finitely-dependent distributions for O(log⋆n)-LCLs
•We build on the 3-coloring distributions for paths and cycles
- [Holroyd and Liggett, Forum of Mathematics, Pi ’14]- [Holroyd et al., Electronic Communications in Probability ’18]

• Inspired by (∆+1)-coloring [Goldberg et al., SICOMP ’88; Panconesi and Rizzi, Dist. Comp. ’01]
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Finitely-dependent distributions for O(log⋆n)-LCLs
•We build on the 3-coloring distributions for paths and cycles
- [Holroyd and Liggett, Forum of Mathematics, Pi ’14]- [Holroyd et al., Electronic Communications in Probability ’18]

• Inspired by (∆+1)-coloring [Goldberg et al., SICOMP ’88; Panconesi and Rizzi, Dist. Comp. ’01]
• Fact: O(log⋆ n)-round LOCAL algorithm = find distance-k coloring (O(log⋆ n)) + O(1)-round LOCAL algorithm
- [Folklore] distance-2 3-coloring

+ constant-round LOCAL algorithm
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Finitely-dependent distance-k coloring
- a rooted pseduforoest can be decomposed in node-disjoint paths and cycles

• Step 1: finitely-dependent 3-coloring of rooted pseudoforests

rooted pseudotree
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Finitely-dependent distance-k coloring

• Step 2: finitely-dependent (∆+1)-coloring of bounded-degree graphs
- a rooted pseduforoest can be decomposed in node-disjoint paths and cycles

• Step 1: finitely-dependent 3-coloring of rooted pseudoforests

- a graph can be decomposed in edge-disjoint rooted pseudoforests

rooted pseudotree
• Step 3: apply the (∆+1)-coloring in Gk to get distance-k coloring
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Step 1: finitely-dependent coloring of rooted pseudotree
• Each node u colors u.a.r. its in-degree neighbors with colors in [indeg(u)]
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Step 2: finitely-dependent coloring of bounded-degree graph
rooted pseudotree

bounded-degree graph and random port-numbering
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Other locality-based models
sequential-
LOCAL

(SLOCAL)
• Similar to LOCAL, but sequential

- adversary picks a node (each node only once)- the algorithm gets access to radius-T neighborhood
Locality T

[Ghaffari et al., STOC ’17]
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Other locality-based models
sequential-
LOCAL

(SLOCAL)
online-
LOCAL

• Similar to LOCAL, but sequential

- adversary picks a node (each node only once)- the algorithm gets access to radius-T neighborhood
Locality T

• Similar to sequential-LOCAL, but centralized

- the algorithm gets access to radius-T neighborhood* plus keeps memory of everything seen so far

Locality T

[Ghaffari et al., STOC ’17] [Akbari et al., ICALP ’23]

• There are also the natural extension to randomness:
- adversary is oblivious and source of randomess is “infinite” for each node

- adversary picks a node (each node only once)
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Full landscape of models

deterministic
LOCAL

randomized
LOCAL

quantum
LOCAL

bounded-
dependence

model

randomized
LOCAL + shared
randomness

quantum
LOCAL + shared
quantum state

non-signaling
LOCAL

• X → Y means that locality T in X becomes locality O(T) in Y
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LOCAL
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LOCAL

[Ghaffari et al., STOC ’17]

[Akbari et al., 2024]

[Akbari et al., 2024]
on rooted trees

o(log loglog n)→ O(1)

[Folklore]
O(1)→ O(log⋆ n)
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[Akbari et al., 2024]
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o(log loglog n)→ O(1)
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LOCAL
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LOCAL

bounded-
dependence

model
[Chang et al., SICOMP ’19]

≈ in the O(log⋆ n) region
[Akbari et al., 2024]

O(log⋆ n)→ O(1)

[Folklore]
O(1)→ O(log⋆ n)

deterministic
LOCAL

non-signaling
LOCAL

[Akbari et al., 2024]

deterministic
LOCAL

on rooted trees
o(log loglog n)→ O(log⋆ n)

•Quantum-LOCAL O(log⋆n)→ O(log⋆n) in LOCAL in rooted trees
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on rooted trees

o(log loglog n)→ O(1)
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online-
LOCAL

•Main differences to overcome:
- global memory vs local memory
- randomized vs deterministic
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From component-wise to SLOCAL

- commit at the leader nodes

• Third, fill the gaps
- guarantees from “component-wise”

• First, create decomposition with trees of size O(T)

• Second, use component-wise algorithm of locality T

Idea: compose many SLOCAL algorithms

- time O(T)

- each cluster doable with locality O(T)

•Overall time O(T)

- each cluster doable with locality O(T)
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