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Rosetta stone are complexity classes of Locally Checkable
Labeling (LCL) problems.



▶ some of the areas can be seen as a model for solving LCL
problems,

▶ Circle-squaring problem of Tarski as a motivation for
Measurable combinatorics and an illustrative example of the
connections



Tarski’s circle-squaring problem (1925):

Let D be a disc of unit area and S be a square of unit area in R2.
Are D and S equidecomposable using rigid motions of R2?

S = A1 ⊔ · · · ⊔ Ak and D = (γ1 · A1) ⊔ · · · ⊔ (γk · Ak),

where γ1, . . . , γk is a tuple of rigid motions of R2.



Couple of immediate questions:

What is the motivation behind this problem?

What is the connection with distributed computing?

What is the connection with combinatorics?
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Original motivation from foundations of measure theory:

▶ Lebesgue measure (1901) not defined on all subsets of Rd ,
Vitali sets (1905),

▶ is there a finitely additive invariant measure defined on all
subsets of Rd ,

▶ Banach-Tarski paradox (1924), amenability,

▶ if Tarski’s problem has positive answer, then µ(D) = µ(S) for
every finitely additive invariant measure µ defined on all
subsets of R2.
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Equidecompositions↭ Perfect matchings

Recall that our goal is to get

S = A1 ⊔ · · · ⊔ Ak and D = (γ1 · A1) ⊔ · · · ⊔ (γk · Ak).

Suppose that someone smart gives us a tuple of rigid motions
(γ1, . . . , γk) with the promise that they work for the circle-squaring
problem.

How to find the decompositions? How to interpret this promise?
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Equidecompositions↭ Perfect matchings

Define a bipartite graph H with vertex set D ⊔ S such that

(x , y) ∈ D× S is an edge if there is 1 ≤ i ≤ k such that γi · x = y .
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Equidecompositions↭ Perfect matchings

Observation. Finding equidecomposition using the tuple
(γ1, . . . , γk) is equivalent with finding a perfect matching in H.

If M is a perfect matching define

Ai = {x ∈ D : (x , γi · x) ∈ M}.

If D = A1 ⊔ · · · ⊔ Ak is the decomposition, define

M =
m⋃
i=1

{(x , γi · x) ∈ H : x ∈ Ai}.
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Trick of Laczkovich

In general, it is hard to control properties of the bipartite graph H
for a given tuple (γ1, . . . , γk), in this case, Hall’s condition.

Theorem (Laczkovich 1990). D and S are equidecomposable using
translations only.
The number of pieces in the proof is around 1040, but people believe it should be around 20.

Laczkovich modifies the problem to a special instance of a Locally
Checkable Labeling (LCL) problem (with inputs) in Z2.
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Constructible solutions

Algorithmic solutions of the equivalent problem in Z2 ⇒
constructible pieces in the equidecomposition.

Theorem (Grabowski–Máthé–Pikhurko 2017). D and S are
equidecomposable with Lebesgue measurable pieces using
translations only.

Theorem (Marks–Unger 2017). D and S are equidecomposable
with Borel measurable pieces using translations only.

Theorem (Máthé–Noel–Pikhurko 2022). D and S are
equidecomposable with Jordan measurable pieces using
translations only.

The number of pieces in the proof is around 10200, but people believe it should be around 20.



Trick of Laczkovich

Let [0, α)× [0, α) be a large enough torus that contain disjoint
fixed copies of D and S.



Trick of Laczkovich

Translation of [0, α)× [0, α) by a vector v ∈ R2 works as in the
SNAKE game.



Localizing the problem
Fix two random translations v and w , and consider any
x ∈ [0, α)× [0, α).

There is a correspondence between Z2 and the orbit

{n · v +m · w + x : (n,m) ∈ Z2}.



Localizing the problem

Moreover, we can mark when we hit D and S.

⇝ Z2 with input labels.



Localizing the problem

Theorem (Laczkovich). For every x , the inputs of D and S are
equidisitrbuted in Z2.



Localizing the problem

To solve Tarski’s problem it is enough to find a pairing between
these inputs of uniformly bounded distance in the graph, say
m ∈ N.

Then taking all the elements of the form γ = av + bw , where
|a|, |b| ≤ m is the desired “smart” tuple of rigid motions.



Localizing the problem

Producing a pairing between these inputs by an efficient local
algorithm impacts the definability/measurability of the final pieces.



Tarski’s problem

▶ problem in measure theory and geometry,

▶ dynamical interpretation using an action of Z2 on a torus

▶ localization to LCL problem on orbits

▶ local algorithms solving this problem ⇝ measurable solutions.



Measurable combinatorics

Systematic study of combinatorial questions on graphs that come,
and are motivated by problems, from dynamics using localization
and local algorithms/rules.

For example, measurable actions of free group on two generators,
F2 ↷ (X , µ)

correspond to combinatorics on regular trees.



Measurable combinatorics

Systematic study of combinatorial questions on graphs that come,
and are motivated by problems, from dynamics using localization
and local algorithms/rules.

For example, measurable actions of free group on two generators,
F2 ↷ (X , µ)

correspond to combinatorics on regular trees.



Connections
Theorem (Bernshteyn 2023). Efficient local algorithms give
automatically the existence of measurable solutions.

Theorem Measurable construction can be used in the design of
fast distributed algorithms.
▶ (Bernshteyn) Vizing’s edge coloring based on augmenting chain

technique of G.–Pikhurko developed for measurable edge colorings,

▶ (Brandt–Chang–Grunau-G.–Rozhoň–Vidnyánszky) lower bound
method in the LOCAL model based on Marks’ games method
developed for proving non-existence of Borel measurable vertex
colorings.

Theorem Sometimes the setups are completely equivalent.
▶ (Bernshteyn, Brandt–Chang–Grunau-G.–Rozhoň–Vidnyánszky)

O(log∗(n)) regime in the deterministic LOCAL model and the
existence of continuous colorings,

▶ (Brandt–Chang–Grunau-G.–Rozhoň–Vidnyánszky) O(log(n)) regime
in the deterministic LOCAL model for regular trees and the
existence of Baire measurable colorings.
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Rosetta stone on grid graphs (G.-Rozhoň)



Finitary factor of iid model of distributed computing
(Holroyd–Schramm–Wilson)

A version of a randomized LOCAL model, where the algorithm
does not have access to the size of the graph.

Number of rounds at each vertex is a random variable that is
almost surely finite. Complexity measured by the tail decay of this
variable.

The complexity hierarchy strictly extends the one from the
randomized LOCAL model.

Usually run on an infinite transtive graph (e.g. grids, regular trees, Cayely graphs).

Open problem: Study the complexity hierarchy of LCL problems
in this setup.

Happy to explain more during the week.
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Thank you!


