The Alexander Kofkin
Faculty of Engineering

N

Distributed Computing with
Signals

of,
Signal, if you can’t
(for the damage )

T -
N AT N e
P VNSRRI P

Ran Gelles, Bar-llan University, Israel ADGA'24, Madrid



What is signaling?
* When messages themselves carry no information — they are the information

* |Information coded by the time, order of arrival

Signaling

Simple

L Fault Tolerance
Communication

Bio-systems, Sensors, Beeping (wireless) “Fully Defective Networks”

Content-Oblivious Computation




Synchronous Signaling

» Santoro and Widmayer 1989 , 1990:

* |n synchronous systems,
messages arrival time carry information

Round 1 2 3 4

info 0 1 1 0

K
K




Time Is not a healer

* |n Asynchronous systems, messages suffer arbitrary delays

 Time cannot be used, and we need to employ other properties

* |s asynchronous computation by signaling (content-oblivious) even possible?

Theorem [Santoro-Widmayer 89]:

No k-agreement is possible in synchronous system (over K,) with

() n/2 messages corrupted per round,
or (i) n-1 messages corrupted per round,



Impossibility of content-oblivious comp. over bridge

Theorem [CensorHillel-Cohen-Gelles-Sela 23]
When nodes must terminate / finalize output and G contains a bridge,
some computation cannot be deterministically simulated over G.

. Consider 2 parties, f(x,y) = (x,V)

 Bob’s actions depend on the count of received messages

» “Upon receiving the k-th message do: (send ..., output ...)”

 Bob’s actions are the same, regardless of Alice’s input

» if on x; Bob outputs (x;, y) after receiving k messages, then on x, he will either output (x;, y),
or never receive k messages == no output.



Impossibility of content-oblivious comp. over bridge

* note, If no termination is required, any computation is possible;:

Alice

« Boboninputy € Z:
e Send y messages to Alice
 Upon receiving the k-th message from Alice, update output to f(k, y)



So... What can be done?

Let’s relax the model and

Assume a Leader




COntent ObliViOUS BFS [Censor-Hillel, Gelles, Hauepler 19]

 Reminder: Distributed Dijkstra
the algorithm works in “phases”, initiated by the leader (root)

o “Explore’:
send message to all neighbours (excl. parent)
once all neighbours Ack, send Ack to parent

* upon receiving “Explore’:
If first time - set sender as parent. Reply with Ack
otherwise -

If from parent: perform Explore
If not parent: return Nack to sender



Content Oblivious BFS

(Example)
P3
N\
D9 O O
Explore
A
Ack l



Content Oblivious BFS

(Example)
P3
/"4\.
po ® ‘¢
Explore Phase 1
—PA . parent(pi) = ¢
Eal LS parent(pz) = 7
ANack o, parent(ps) = ¢



Content Oblivious BFS

(Example)
Explore Phase 1
—A—k—P parent(pi) = r
Eal LS parent(pz) = 7

—I\L@Q&} parent(ps) = r



Content Oblivious BFS

(Example)
P3
/"\o
D9 & .¢
Explore Phase 2
—A—k—P parent(pi) = r
Eal LS parent(pz) = 7

—I\L@Q&} parent(ps) = r



Content Oblivious BFS

(Example)
P3
jK
D9 O O
Explore Phase 2
—A—k—P parent(pi) = r
Eal LS parent(pz) = 7

—I\L@Q&} parent(ps) = r



Content Oblivious BFS

(Example)
Explore Phase 2
_/Ek_b parent(pi) = r
e parent(pz) = ps

3) = T

Nack , parent(

=



Content Oblivious BFS

(Example)
Explore Phase 2
_/Ek_b parent(pi) = r
e parent(pz) = ps

—I\L@Q&} parent(ps) = r



Content Oblivious BFS

“Observations”

 One message is enough for (Explore, Ack)
 How to distinguish Nack/ Ack ?
 \Work sequentially:

* EXxplore one neighbour at a time.
Move on to next neighbour only after Ack

* |f a node gets a message from a non-parent outside an Explore —
sender must be a sibling !



Content Oblivious BFS

(Example)
P3
N\
D9 O O
Explore
A
Ack l



Content Oblivious BFS

(Example)
P3
/ ‘\\>
po @ ¢
Explore Phase 1
—PA . parent(pi) = ¢
Eal LS parent(pz) = 7
ANack o, parent(ps) = ¢



Content Oblivious BFS

(Example)
Explore Phase 1
—>A . parent(pi) = r
Eal LS parent(pz) = 7
LNack,, parent(ps) = 7



Content Oblivious BFS

(Example)
P3
/"4\.
po @ ‘/
Explore Phase 1
—>A . parent(pi) = r
Eal LS parent(pz) = 7
ANack o, parent(ps) = ¢



Content Oblivious BFS

(Example)
P3
/ ‘Y‘
po @ ‘/
Explore Phase 1
_bAck parent(pi) = r
e parent(pz) = 7

Nack
WAL AN parent(ps) = r



Content Oblivious BFS

(Example)
P3
/ ‘\\>
D9 O O
Explore Phase 2
—A—k—P parent(pi) = r
Eal LS parent(pz) = 7

—I\L@Q&} parent(ps) = r



Content Oblivious BFS

(Example)
P3
/ K
D9 O O
Explore Phase 2
—A—k—P parent(pi) = r
Eal LS parent(pz) = 7

—I\L@Q&} parent(ps) = r



Content Oblivious BFS

(Example)
This is actually a NACK,
but anyways messages
don't have content!
Explore Phase 2 o
—;\—k—P parent(pi) = r sibling(p1) =
AT parent(ps) = ¢ sibling(p2) =

Nack o, parent(ps) = r  sibling(ps) =



Content Oblivious BFS

(Example)
P3 ° root
/i.
p2 ® * n
Explore Phase 2
_A_k_> parent(p1) = r sibling(p1) =
LSS parent(pe) = ¢ sibling(p2) =

Nack o, parent(ps) =~ sibling(ps) = pi



Content Oblivious BFS
(Example)

o root
/ ‘\>.
P2 ® ® D1
Phase 2
parent(p1) = sibling(p1) =

.
parent(pz) = 7 sibling(po2)
parent(ps) = r sibling(ps)

=

P1



Content Oblivious BFS
(Example)

L
j<\\,. T 00
p2 @ * n
Phase 2
parent(p1) = sibling(p1) =

.
parent(pz) = 7 sibling(p2) =
parent(ps) = r sibling(ps) = p1



Content Oblivious BFS
(Example)

L
f“\\>. T 00
P2 ® ® D1
Phase 2

K
]

parent(p1) = r sibling(

parent(pz) = ps sibling(p2) =
parent(ps) = r sibling(ps) = p1



Content Oblivious BFS
(Example)

Phase 2

parent(p1) = r sibling(
parent(p2) = p3 sibling(p2) =
parent(ps) = r sibling(ps) = p1

K
]



Content Oblivious BFS
(Example)

L
/“\\,. T 00
P2 ® ® D1
Phase 2

P3

K
]

parent(p1) = r sibling(

parent(pz) = ps sibling(p2) =
parent(ps) = r sibling(ps) = p1



Content Oblivious BFS
(Example)

o root
/ P
P2 ® ® D1
Phase 2
parent(p1) = r sibling(p1) = p3
parent(pz) = ps sibling(p2) =
parent(ps) = r sibling(ps) = p1



Content Oblivious BFS

Further Observations

» Requires knowing n = | V| orabound onit (for termination)

* The sequential method performs “controlled DFS”

* Can be modified to obtain a content-oblivious DFS algorithm

« Complexity: O(|V| - |E]|) signals

 Requires a leader ....



Content Oblivious

Leader Election




Content Oblivious Leader Election

 Theorem:
Content-Oblivious Leader Election is possible in

[Frei, Ghazi, Gelles, Nolin, DISC’24]



Content Oblivious Leader Election

* |Leader election on (content-based messages, rings):

* Elect the node with maximal ID
(e.g., send your ID clockwise, O(nz) messages)

* No IDs? Symmetry Braking is Impossible! (’

* |Let’s imitate this protocol using signals:

 Each v sends ID,, many signals clockwise ID=1 - D-3

* |f v receives more than ID,, signals, propagate the rest
(v is not the leader)

Termination!? |D:é



Terminating CO LE

* Note: after previous phase all nodes see exactly max ID clockwise signals!

* The leader is the last to see max ID signals ID=10
(but it does not know whether more signals are yet to come)

« When #signals = ID,, , node v starts the same algorithm

* We did not use the counter-clockwise path! (v
iIn the counter-clockwise direction

= max ID, terminate ID=1

« When #signals -

%4 - ID=3

 When the node with max ID receives max |D
counter-clockwise signals, all other nodes have terminated.

e Complexity: n(2IDpax + 1)

|ID=8



Orienting a ring

 We assumed that the ring is oriented:

 Nodes distinguish the CW and the CCW directions.

 Can we remove this assumption?



Orienting a ring

* Observation: Forwarding a signal goes along the cycle,
even If the ring is un-oriented.

U4

* Orienting a ring: send your ID to CW (propagate surplus),
convert if you see more signals in the other direction

e Can achieve both Leader Election and Orientation at the same time



Content Oblivious Ring Orientation

 Theorem:
Content-Oblivious Ring Orientation (+Leader Election) is possible in Rings

[Frei, Ghazi, Gelles, Nolin, DISC’24]

e Complexity: n(2I1Dax + 1)
 Non-terminating! But reaching quiescence

* We suspect this task does not have a terminating algorithm,
without further assumptions



Content Oblivious

General Compilers




Content-Oblivious Computation

Theorem:;:
Any communication protocol 11 can be simulated over any 2-edge connected
network G, in a content-oblivious way

with poly(n) overhead per bit of II, assuming a “root”

[Censor-Hillel, Cohen, Gelles, Sela, 23]



Idea: two channels

« Assume we have two channels:

» DATA channel -
Unary encoding of the information
(1 message per symbol)

 END channel -
marks the end of the transmission
(a single message)

» Each message must be acknowledged
otherwise, END might be wrong

- END also changes parties’ roles

Alice

DATA

Channel Channel




Content-oblivious comm. In simple cycles

» Extension to a cycle is possible as long as
there Is a single sender

Sender

DATA

END “Channel”

“Channel”

» Nodes relay any received message

» |Information is carried out by direction:
» Clockwise: DATA

« CounterClockwise: END
» Overhead: O(n) per (unary) symbol




Communication over a Fully-Defective Cycle

- What if another node wishes to speak? ‘ -

» TOKEN exchange mechanism:

- after an END message, meaning of
messages changes:

» Clockwise: request for token
» CounterClockwise: TOKEN



Communication over a Fully-Defective Cycle

Token Mechanism

« Request (REQ): ‘S d

» Nodes request token asynchronously -

» Invariant: every node must send 1 REQ and
receive 1 REQ before continuing

* Once the current sender sent and received REQ,
it releases the token (TOK)

« |f TOK reaches node that wants the token, it
becomes the new sender,

» sender initiates communication (sends DATA)
(triggers other to quit TOKEN phase)



The General Case

« How to communicate over arbitrary 2-edge connected graphs?




The General Case

« How to communicate over arbitrary 2-edge connected graphs?

* Combining non-disjoint cycles?

 When d gets a message,

e e where should it propagate it to?

 How to construct the cycles?




The General Case

A Robbins Cycle

e Theorem [Robbins’39]

every 2-edge-connected graph is orientable:

there exists a way to orient all the edges so that the
Q e yielded directed graph is strongly connected.

6 Now use the
Cycle protocol




The General Case

Constructing a Robbins Cycle

 But, how can we construct this orientation (content-obliviously)?

 Ear-Decomposition Theorem [Whitney’32]:
any 2-edge-connected graph can be decomposed into

G=CyUE,UE,U--UE,
with
C, being a simple cycle and
E; being a simple path whose endpoints belongto C,U £, U --- U E;_,




Content-Oblivious Robbins Cycle Const.

Theorem:
Suppose one of the nodes is

Then, there exists a content-oblivious Robbins-Cycle construction algorithm
(via ear-decomposition)

[Censor-Hillel, Cohen, Gelles, Sela, Dist. Comp’23]

. Complexity: O(n®)



Ear decomposition

Constructing C,

* [he construction begins at a designated node root

 Nodes propagate a token‘ iIn a DFS-like manner:

* forward the token to an unused edge

* if no unused edge or if reached u # root twice
-> send token back to parent (“retract”)

» until the token reaches root again

» Non-retracted edges form the cycle C,,
Since 2-edge connected, root will be reached again



Ear decomposition

Constructing E,
 (,is a simple cycle,
its nodes can run the Cycle communication protocol

e [fSOmeu & CO has unexplored edges, it requests to be the
next root (root,)

» Begin a new DFS-exploration (on E \ C;)
until hitting a node already on the cycle

e (U E, form a (non-simple) cycle C; :
(root — root; — v — root)

» The decomposition then recurses on E \ C;



Summary
and Open Questions



Summary

 Content Oblivious Computation
* means of communication in networks of “simple” devices

» fault tolerance towards potential content corruption / noise

« Some tasks can be done, under different assumptions

« BFS/DFS (leader, knowledge of n)
* LE (ring topology)
* general communication (2-edge connectivity, leader)

* |n non 2-edge-connected networks, impossibility result if nodes give output



Open Questions

 What are the minimal assumptions for content-oblivious computation?
e assumptions for termination?

* weaker notions of termination? (e.g., stabilization, finalizing outputs)

 Can we deal with insertions and deletions of signals?

e even a tiny amount?



Open Questions

» Efficiency and Overhead?
. BFS O(n°)

e Leader Election O(n max ID)
lower bound Q(n log(max ID/n)). Can we show Q(n?) ?

Diniz,Moran,Rajsbaum ’07]
Frei, Ghazi, Gelles, Nolin '24]

. General Compiler =~ O(n®) + O(n° - CCaly)



Thanks to my co-authors!!
b N\ N

l o A

TECHNION

u Israel Institute
of Technology

" ICISPA

v, \\ HELMHOLTZ CENTER FOR
/I\ INFORMATION SECURITY

Fabian Frei Ahmed Ghazi Alexandre Nolin



