Distributed Computing with Signals

Ran Gelles, Bar-Ilan University, Israel

or, Signal, if you can't (for the damaged)

What is signaling?

- Information coded by the **time**, **order** of arrival

Bio-systems, Sensors, Beeping (wireless)

Content-Oblivious Computation

Synchronous Signaling

- Santoro and Widmayer 1989, 1990:
 - In synchronous systems,

Time is not a healer

- In Asynchronous systems, messages suffer arbitrary delays
- Time cannot be used, and we need to employ other properties

Theorem [Santoro-Widmayer 89]: No k-agreement is possible in synchronous system (over K_n) with (i) n/2 messages corrupted per round, if nodes always transmit or (ii) n-1 messages corrupted per round, or inserted

Is asynchronous computation by signaling (content-oblivious) even possible?

Impossibility of content-oblivious comp. over bridge

Theorem [CensorHillel-Cohen-Gelles-Sela 23]: When nodes must terminate / finalize output and G contains a bridge, some computation cannot be deterministically simulated over G.

• Consider 2 parties, f(x, y) = (x, y)

- Bob's actions depend on the <u>count</u> of received messages
 - "Upon receiving the k-th message do: (send ..., output ...)"
- Bob's actions are the same, regardless of Alice's input
 - or never receive k messages == no output.

• if on x_1 Bob outputs (x_1, y) after receiving k messages, then on x_2 he will either output (x_1, y) ,

Impossibility of content-oblivious comp. over bridge

note, if no termination is required, any computation is possible:

- Bob on input $y \in \mathbb{Z}$:
 - Send y messages to Alice

• Upon receiving the k-th message from Alice, update output to f(k, y)

So... What can be done?

Let's relax the model and

Assume a Leader

Content Oblivious BFS

- **Reminder**: Distributed Dijkstra the algorithm works in "phases", initiated by the leader (root)
 - "*Explore*": send message to all neighbours (excl. parent) once all neighbours **Ack**, send **Ack** to parent
 - upon receiving "Explore": if first time - set sender as parent. Reply with Ack otherwise -

if from parent: perform **Explore** if not parent: return *Nack* to sender

Phase 1 $parent(p_1) = ?$ $parent(p_2) = ?$ $parent(p_3) = ?$

 $\frac{\text{Phase 1}}{\text{parent}(p_1) = r}$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase 2 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase 2 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase 2 $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

Phase 2 $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

Content Oblivious BFS "Observations"

- One message is enough for (*Explore, Ack*)
- How to distinguish *Nack / Ack ?*
- Work sequentially:
 - Explore one neighbour at a time. Move on to next neighbour only after **Ack**
 - If a node gets a message from a non-parent outside an **Explore** sender must be a sibling !

Phase 1 $parent(p_1) = ?$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

 $\frac{\text{Phase } 2}{\text{parent}(p_1) = r}$ $parent(p_2) = ?$ $parent(p_3) = r$

 $\frac{\text{Phase } 2}{\text{parent}(p_1) = r}$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase 2 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$


```
sibling(p_1) =
sibling(p_2) =
sibling(p_3) = p_1
```


Phase 2 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

 $sibling(p_1) =$ $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase 2 $parent(p_2) = ?$ $parent(p_3) = r$

 $parent(p_1) = r$ $sibling(p_1) =$ sibling $(p_2) =$ $sibling(p_3) = p_1$

Phase 2 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase 2 $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

 $sibling(p_1) =$ sibling $(p_2) =$ sibling $(p_3) = p_1$

Phase 2 $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

sibling $(p_1) =$ sibling $(p_2) =$ $sibling(p_3) = p_1$

Phase 2 $parent(p_2) = p_3$ $parent(p_3) = r$


```
parent(p_1) = r sibling(p_1) = p_3
                    sibling(p_2) =
                    sibling(p_3) = p_1
```


Phase 2 $parent(p_2) = p_3$ $parent(p_3) = r$


```
parent(p_1) = r sibling(p_1) = p_3
                    sibling(p_2) =
                    sibling(p_3) = p_1
```

Content Oblivious BFS Further Observations

- Requires knowing n = |V| or a bound on it (for termination)
- The sequential method performs "controlled DFS"
 - Can be modified to obtain a content-oblivious DFS algorithm
- Complexity: $O(|V| \cdot |E|)$ signals
- Requires a leader

Content Oblivious Leader Election

Content Oblivious Leader Election

• Theorem: Content-Oblivious Leader Election is possible in Rings

[Frei, Ghazi, Gelles, Nolin, DISC'24]

Content Oblivious Leader Election

- Leader election on (content-based messages, rings):
 - Elect the node with maximal ID (e.g., send your ID clockwise, $O(n^2)$ messages)
 - No IDs? Symmetry Braking is Impossible!
- Let's imitate this protocol using signals:
 - Each v sends ID_v many signals **clockwise**
 - If v receives more than ID_v signals, propagate the rest (*v* is not the leader)

Termination!?

ID=10

Terminating CO LE

- Note: after previous phase all nodes see exactly max ID clockwise signals!
- The leader is the last to see max ID signals (but it does not know whether more signals are yet to come)
- We did not use the **counter-clockwise** path!
 - When #signals = ID_v, node v starts the same algorithm in the **counter-clockwise** direction
 - When #signals_{*CCW*} = max ID, terminate
- When the node with max ID receives max ID counter-clockwise signals, all other nodes have terminated.
- Complexity: $n(2ID_{max} + 1)$

Orienting a ring

- We assumed that the ring is oriented:
 - Nodes distinguish the CW and the CCW directions.

Can we remove this assumption?

Orienting a ring

 Observation: Forwarding a signal goes along the cycle, even if the ring is un-oriented.

- Orienting a ring: send your ID to CW (propagate surplus), convert if you see more signals in the other direction
- Can achieve both Leader Election and Orientation at the same time

Content Oblivious Ring Orientation

Theorem:

- Complexity: $n(2ID_{max} + 1)$
- Non-terminating! But reaching quiescence
 - We suspect this task does not have a terminating algorithm, without further assumptions

Content-Oblivious Ring Orientation (+Leader Election) is possible in Rings

[Frei, Ghazi, Gelles, Nolin, DISC'24]

Content Oblivious General Compilers

Content-Oblivious Computation

Theorem:

Any communication protocol Π can be simulated over any 2-edge connected network G, in a content-oblivious way

with poly(n) overhead per bit of Π , assuming a "root"

[Censor-Hillel, Cohen, Gelles, Sela, 23]

Idea: two channels

- Assume we have two channels:
 - DATA channel -Unary encoding of the information (1 message per symbol)
 - END channel marks the end of the transmission (a single message)
- Each message must be acknowledged otherwise, END might be wrong
- END also changes parties' roles

Content-oblivious comm. in simple cycles

- Extension to a cycle is possible as long as there is a single sender
 - Nodes relay any received message
 - Information is carried out by direction:
 - Clockwise: DATA
 - CounterClockwise: END
- Overhead: O(n) per (unary) symbol

Communication over a Fully-Defective Cycle

- What if another node wishes to speak?
- TOKEN exchange mechanism:
 - after an END message, meaning of messages changes:
 - Clockwise: request for token
 - CounterClockwise: TOKEN

Communication over a Fully-Defective Cycle Token Mechanism

- Request (REQ):
 - Nodes request token asynchronously
 - Invariant: every node must send 1 REQ and receive 1 REQ before continuing
- Once the current sender sent and received REQ, it releases the token (TOK)
 - If TOK reaches node that wants the token, it becomes the new sender,
- sender initiates communication (sends DATA) (triggers other to quit TOKEN phase)

The General Case

How to communicate over arbitrary 2-edge connected graphs?

The General Case

How to communicate over arbitrary 2-edge connected graphs?

- Combining non-disjoint cycles?
 - When d gets a message, where should it propagate it to?
- How to construct the cycles?

The General Case A Robbins Cycle

• **Theorem** [Robbins'39]

- every 2-edge-connected graph is orientable:
- there exists a way to orient all the edges so that the yielded directed graph is strongly connected.

The General Case Constructing a Robbins Cycle

- But, how can we construct this orientation (content-obliviously)? \bullet
- Ear-Decomposition Theorem [Whitney'32]: any 2-edge-connected graph can be decomposed into

$$G = C_0 \cup E_1 \cup E_2 \cup \cdots$$

with

- being a simple <u>cycle</u> and

 $\cdot \cup E_k$

being a simple path whose endpoints belong to $C_0 \cup E_1 \cup \cdots \cup E_{i-1}$

Content-Oblivious Robbins Cycle Const.

Theorem:

Suppose one of the nodes is a designated root. Then, there exists a content-oblivious Robbins-Cycle construction algorithm (via ear-decomposition)

• Complexity: $O(n^8)$

[Censor-Hillel, Cohen, Gelles, Sela, Dist.Comp'23]

Ear decomposition Constructing C₀

- The construction begins at a designated node root
- Nodes propagate a token in a DFS-like manner:
 - forward the token to an unused edge
 - if no unused edge **or** if reached $u \neq root$ twice -> send token back to parent ("retract")
 - until the token reaches root again
- Non-retracted edges form the cycle C_0 Since 2-edge connected, root will be reached again

Ear decomposition **Constructing** E_1

- C_0 is a simple cycle, its nodes can run the Cycle communication protocol
- If some $u \in C_0$ has unexplored edges, it requests to be the next root ($root_1$)
 - Begin a new DFS-exploration (on $E \setminus$ until hitting a node already on the cycle
 - $C_0 \cup E_1$ form a (non-simple) cycle C_1 : (root \rightarrow root₁ \rightarrow $v \rightarrow$ root)
- The decomposition then recurses on $E \setminus C_1$

$$\sim C_0$$
)

Summary and Open Questions

Summary

Content Oblivious Computation

- means of communication in networks of "simple" devices
- fault tolerance towards potential content corruption / noise
- Some tasks can be done, under different assumptions
 - BFS/DFS (leader, knowledge of *n*)
 - LE (ring topology)
 - general communication (2-edge connectivity, leader)
 - In non 2-edge-connected networks, impossibility result if nodes give output

Open Questions

- What are the minimal assumptions for content-oblivious computation?
 - assumptions for termination?
- Can we deal with insertions and deletions of signals?
 - even a tiny amount?

• weaker notions of termination? (e.g., stabilization, finalizing outputs)

Open Questions

- Efficiency and Overhead?
 - BFS $O(n^3)$
 - Leader Election $O(n \max ID)$ lower bound $\Omega(n \log(\max ID/n))$. Can we show $\Omega(n^2)$?

• General Compiler $\approx O(n^8) + O(n^3 \cdot CC_{Alg})$

[Diniz, Moran, Rajsbaum '07] [Frei, Ghazi, Gelles, Nolin '24]

Keren Censor-Hillel

Shir Cohen

Fabian Frei

Ahmed Ghazi

Thanks to my co-authors!!

Gal Sela

Alexandre Nolin

CISPA HELMHOLTZ CENTER FOR INFORMATION SECURITY

