
Distributed Computing with
Signals

Ran Gelles, Bar-Ilan University, Israel ADGA’24, Madrid

or,
Signal, if you can’t  
(for the damaged)

What is signaling?
• When messages themselves carry no information — they are the information

• Information coded by the time, order of arrival

Signaling

Simple
Communication Fault Tolerance

Bio-systems, Sensors, Beeping (wireless) “Fully Defective Networks”””

Content-Oblivious Computation

• Santoro and Widmayer 1989 , 1990:

• In synchronous systems,  
messages arrival time carry information

Synchronous Signaling

0 1 1 0

Round

info

1 2 3 4

1 2 3 4 5 6 7 8

Time is not a healer

• In Asynchronous systems, messages suffer arbitrary delays

• Time cannot be used, and we need to employ other properties

• Is asynchronous computation by signaling (content-oblivious) even possible?

Theorem [Santoro-Widmayer 89]:  
No k-agreement is possible in synchronous system (over) with  
 (i) n/2 messages corrupted per round, if nodes always transmit 
or (ii) n-1 messages corrupted per round, or inserted

Kn

Impossibility of content-oblivious comp. over bridge

• Consider 2 parties,

• Bob’s actions depend on the count of received messages

• “Upon receiving the -th message do: (send …, output …)”

• Bob’s actions are the same, regardless of Alice’s input

• if on Bob outputs after receiving messages, then on he will either output ,

or never receive messages == no output.

f(x, y) = (x, y)

k

x1 (x1, y) k x2 (x1, y)
k

Alice Bob

Theorem [CensorHillel-Cohen-Gelles-Sela 23]:  
When nodes must terminate / finalize output and contains a bridge,  
some computation cannot be deterministically simulated over .

G
G

x y

Impossibility of content-oblivious comp. over bridge

• note, if no termination is required, any computation is possible:

• Bob on input :

• Send messages to Alice

• Upon receiving the -th message from Alice, update output to

y ∈ ℤ
y

k f(k, y)

Alice Bob

So… What can be done?

Let’s relax the model and

Assume a Leader

Content Oblivious BFS

• Reminder: Distributed Dijkstra  
the algorithm works in “phases”, initiated by the leader (root)

• “Explore”:  
send message to all neighbours (excl. parent)  
once all neighbours Ack, send Ack to parent

• upon receiving “Explore”: 
if first time - set sender as parent. Reply with Ack  
otherwise - 
 if from parent: perform Explore 
 if not parent: return Nack to sender

[Censor-Hillel, Gelles, Hauepler 19] 

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

p1p2

p3 root

Explore
Ack
Nack

Phase 1
parent(p1) = ?
parent(p2) = ?
parent(p3) = ?

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 1
parent(p1) = r
parent(p2) = ?
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = p3
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = p3
parent(p3) = r

Content Oblivious BFS
(Example)

Content Oblivious BFS
“Observations”

• One message is enough for (Explore, Ack)

• How to distinguish Nack / Ack ?

• Work sequentially:

• Explore one neighbour at a time.  
Move on to next neighbour only after Ack

• If a node gets a message from a non-parent outside an Explore –  
sender must be a sibling !

p1p2

p3 root

Explore
Ack
Nack

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 1
parent(p1) = ?
parent(p2) = ?
parent(p3) = ?

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 1
parent(p1) = r
parent(p2) = ?
parent(p3) = ?

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 1
parent(p1) = r
parent(p2) = ?
parent(p3) = ?

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 1
parent(p1) = r
parent(p2) = ?
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2

This is actually a NACK,
but anyways messages

don’t have content!

parent(p1) = r
parent(p2) = ?
parent(p3) = r

sibling(p1) =
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Explore
Ack
Nack

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

sibling(p1) =
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

sibling(p1) =
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Phase 2
parent(p1) = r
parent(p2) = ?
parent(p3) = r

sibling(p1) =
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Phase 2
parent(p1) = r
parent(p2) = p3
parent(p3) = r

sibling(p1) =
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Phase 2
parent(p1) = r
parent(p2) = p3
parent(p3) = r

sibling(p1) =
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Phase 2
parent(p1) = r
parent(p2) = p3
parent(p3) = r

sibling(p1) = p3
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

p1p2

p3 root

Phase 2
parent(p1) = r
parent(p2) = p3
parent(p3) = r

sibling(p1) = p3
sibling(p2) =
sibling(p3) = p1

Content Oblivious BFS
(Example)

Content Oblivious BFS
Further Observations

• Requires knowing or a bound on it (for termination)

• The sequential method performs “controlled DFS”

• Can be modified to obtain a content-oblivious DFS algorithm

• Complexity: signals 

• Requires a leader ….

n = |V |

O(|V | ⋅ |E |)

Content Oblivious
Leader Election

Content Oblivious Leader Election

• Theorem:  
Content-Oblivious Leader Election is possible in Rings

[Frei, Ghazi, Gelles, Nolin, DISC’24] 

Content Oblivious Leader Election

• Leader election on (content-based messages, rings):

• Elect the node with maximal ID 
(e.g., send your ID clockwise, messages)

• No IDs? Symmetry Braking is Impossible!

• Let’s imitate this protocol using signals:

• Each sends many signals clockwise

• If receives more than signals, propagate the rest  
(is not the leader)

O(n2)

v IDv

v IDv
v

Termination!?

ID=10

ID=3

ID=8

ID=1

Terminating CO LE

• Note: after previous phase all nodes see exactly clockwise signals!

• The leader is the last to see signals 
(but it does not know whether more signals are yet to come)

• We did not use the counter-clockwise path!

• When , node starts the same algorithm  
in the counter-clockwise direction

• When , terminate

• When the node with receives  
counter-clockwise signals, all other nodes have terminated.

• Complexity:  

max ID

max ID

#signals = IDv v

#signalsCCW = max ID

max ID max ID

n(2IDmax + 1)

ID=10

ID=3

ID=8

ID=1

Orienting a ring

• We assumed that the ring is oriented:

• Nodes distinguish the CW and the CCW directions.

• Can we remove this assumption?

v1

01

v5

0
1

v4

01

v3

01

v20
1

v1

01

v5

0
1

v4

01

v3

01

v20
1

Orienting a ring

• Observation: Forwarding a signal goes along the cycle,  
even if the ring is un-oriented.

• Orienting a ring: send your ID to CW (propagate surplus),  
convert if you see more signals in the other direction

• Can achieve both Leader Election and Orientation at the same time

v1

01

v5

0
1

v4

01

v3

01

v20
1

v1

01

v5

0
1

v4

01

v3

01

v20
1

Content Oblivious Ring Orientation

• Theorem:  
Content-Oblivious Ring Orientation (+Leader Election) is possible in Rings

• Complexity:
• Non-terminating! But reaching quiescence

n(2IDmax + 1)
[Frei, Ghazi, Gelles, Nolin, DISC’24] 

• We suspect this task does not have a terminating algorithm,  
without further assumptions

Content Oblivious
General Compilers

Content-Oblivious Computation

Theorem:  
Any communication protocol can be simulated over any 2-edge connected
network , in a content-oblivious way 
 
with overhead per bit of , assuming a “root” 

Π
G

poly(n) Π

[Censor-Hillel, Cohen, Gelles, Sela, 23] 

• Assume we have two channels:

• DATA channel - 
Unary encoding of the information
(1 message per symbol)

• END channel -  
marks the end of the transmission
(a single message)

• Each message must be acknowledged
otherwise, END might be wrong

• END also changes parties’ roles

Idea: two channels

Alice

Bob

DATA

Channel

END

Channel

• Extension to a cycle is possible as long as
there is a single sender

• Nodes relay any received message

• Information is carried out by direction:

• Clockwise: DATA

• CounterClockwise: END

• Overhead: O(n) per (unary) symbol

Content-oblivious comm. in simple cycles

Sender

p2

DATA

“Channel”

p1
p3

END

“Channel”

• What if another node wishes to speak?

• TOKEN exchange mechanism:

• after an END message, meaning of

messages changes:

• Clockwise: request for token

• CounterClockwise: TOKEN

Communication over a Fully-Defective Cycle

Sender

p2

p1
p3

• Request (REQ):

• Nodes request token asynchronously

• Invariant: every node must send 1 REQ and

receive 1 REQ before continuing

• Once the current sender sent and received REQ,

it releases the token (TOK)

• If TOK reaches node that wants the token, it

becomes the new sender,

• sender initiates communication (sends DATA)  

(triggers other to quit TOKEN phase)

Communication over a Fully-Defective Cycle

Sender

p2

p1
p3

Token Mechanism

REQ

REQ

REQ

REQ

The General Case

• How to communicate over arbitrary 2-edge connected graphs?

a

b

c

d

e

The General Case

• How to communicate over arbitrary 2-edge connected graphs?

• Combining non-disjoint cycles?

• When d gets a message,  
 where should it propagate it to?

• How to construct the cycles?
a

b

c

d

e

The General Case
A Robbins Cycle

• Theorem [Robbins’39] 
 
every 2-edge-connected graph is orientable: 
 
there exists a way to orient all the edges so that the
yielded directed graph is strongly connected.a

b

c

d

e

a

b

c

d

e

Now use the
Cycle protocol

…

The General Case

• But, how can we construct this orientation (content-obliviously)?

• Ear-Decomposition Theorem [Whitney’32]:  
any 2-edge-connected graph can be decomposed into  
 
  
with 

 being a simple cycle and 
 being a simple path whose endpoints belong to

G = C0 ∪ E1 ∪ E2 ∪ ⋯ ∪ Ek

C0
Ei C0 ∪ E1 ∪ ⋯ ∪ Ei−1

Constructing a Robbins Cycle

Content-Oblivious Robbins Cycle Const.

Theorem:  
Suppose one of the nodes is a designated root.  
Then, there exists a content-oblivious Robbins-Cycle construction algorithm 
(via ear-decomposition)

[Censor-Hillel, Cohen, Gelles, Sela, Dist.Comp’23] 

• Complexity: O(n8)

Ear decomposition
Constructing C0

• The construction begins at a designated node

• Nodes propagate a token in a DFS-like manner:

• forward the token to an unused edge

• if no unused edge or if reached twice 
-> send token back to parent (“retract”)

• until the token reaches again

• Non-retracted edges form the cycle  
Since 2-edge connected, will be reached again

root

u ≠ root

root

C0
root

C0

Ear decomposition
Constructing E1

• is a simple cycle,  
its nodes can run the Cycle communication protocol

• If some has unexplored edges, it requests to be the
next root ()

• Begin a new DFS-exploration (on)  
until hitting a node already on the cycle

• form a (non-simple) cycle : 
()

• The decomposition then recurses on

C0

u ∈ C0
root1

E ∖ C0

C0 ∪ E1 C1
root → root1 → v → root

E ∖ C1

C0

E1

root

root1

v

Summary
 and Open Questions

Summary

• Content Oblivious Computation

• means of communication in networks of “simple” devices

• fault tolerance towards potential content corruption / noise  

• Some tasks can be done, under different assumptions

• BFS/DFS (leader, knowledge of)

• LE (ring topology)

• general communication (2-edge connectivity, leader)

• In non 2-edge-connected networks, impossibility result if nodes give output

n

Open Questions

• What are the minimal assumptions for content-oblivious computation?

• assumptions for termination?

• weaker notions of termination? (e.g., stabilization, finalizing outputs) 

• Can we deal with insertions and deletions of signals?

• even a tiny amount?

Open Questions

• Efficiency and Overhead?

• BFS

• Leader Election  
lower bound . Can we show ?  
 

• General Compiler

O(n3)
O(n max ID)

Ω(n log(max ID/n)) Ω(n2)

≈ O(n8) + O(n3 ⋅ CCAlg)

[Diniz,Moran,Rajsbaum ’07]
[Frei, Ghazi, Gelles, Nolin ’24] 

Keren Censor-Hillel
 Shir Cohen
 Gal Sela

Thanks to my co-authors!!

Alexandre Nolin
Ahmed Ghazi
Fabian Frei

