Distributed Computing with Signals

Ran Gelles, Bar-Ilan University, Israel **ADGA'24, Madrid**

or, **Signal, if you can't (for the damaged)**

What is signaling?

-
- Information coded by the **time**, **order** of arrival

Content-Oblivious Computation

- Santoro and Widmayer 1989 , 1990:
	- In **synchronous** systems,

Synchronous Signaling

Time is not a healer

- In **Asynchronous** systems, messages suffer arbitrary delays
- Time cannot be used, and we need to employ other properties

• Is *asynchronous computation* by signaling (content-oblivious) even possible?

Theorem [Santoro-Widmayer 89]**:** No k-agreement is possible in synchronous system (over K_n) with (i) n/2 messages corrupted per round, *if nodes always transmit or* (ii) n-1 messages corrupted per round, or *inserted*

Impossibility of content-oblivious comp. over bridge

- **•** Bob's actions depend on the count of received messages
	- "Upon receiving the k-th message do: (send ..., output ...)"
- Bob's actions are the same, regardless of Alice's input
	- or never receive k messages $==$ no output.

Theorem [CensorHillel-Cohen-Gelles-Sela 23]**:** When nodes must terminate / finalize output and G contains a bridge, some computation cannot be deterministically simulated over G .

• Consider 2 parties, $f(x, y) = (x, y)$

• if on x_1 Bob outputs (x_1, y) after receiving k messages, then on x_2 he will either output (x_1, y) ,

Impossibility of content-oblivious comp. over bridge

note, if no termination is required, any computation is possible:

- Bob on input $y \in \mathbb{Z}$:
	- Send y messages to Alice
	-

• Upon receiving the k -th message from Alice, update output to $f(k, y)$

So… What can be done?

Let's relax the model and

Assume a Leader

Content Oblivious BFS

- **Reminder**: Distributed Dijkstra the algorithm works in "phases", initiated by the leader (root)
	- "*Explore*": send message to all neighbours (excl. parent) once all neighbours *Ack*, send *Ack* to parent
	- upon receiving "*Explore*": if first time - set sender as parent**.** Reply with *Ack* otherwise -

 if from parent: perform **Explore** if not parent: return *Nack* to sender

Nack

Phase 1 $parent(p_1) = ?$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

Content Oblivious BFS "Observations"

- One message is enough for (*Explore, Ack*)
- How to distinguish *Nack* / *Ack* ?
- Work **sequentially:**
	- Explore one neighbour at a time. Move on to next neighbour only after *Ack*
	- If a node gets a message from a non-parent outside an **Explore** sender must be a sibling !

Nack

Phase 1 $parent(p_1) = ?$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = ?$

Phase 1 $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

 $sibling(p_1) =$ $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

 $sibling(p_1) =$ $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase **2** $parent(p_2) = ?$ $parent(p_3) = r$

 $parent(p_1) = r$ sibling(p_1) = $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase **2** $parent(p_1) = r$ $parent(p_2) = ?$ $parent(p_3) = r$

 $sibling(p_1) =$ $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase **2** $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

 $sibling(p_1) =$ $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase **2** $parent(p_1) = r$ $parent(p_2) = p_3$ $parent(p_3) = r$

 $sibling(p_1) =$ $sibling(p_2) =$ $sibling(p_3) = p_1$

Phase **2** $parent(p_2) = p_3$ $parent(p_3) = r$


```
parent(p_1) = r sibling(p_1) = p_3sibling(p_2) =sibling(p_3) = p_1
```


Phase **2** $parent(p_2) = p_3$ $parent(p_3) = r$

 $parent(p_1) = r$ sibling(p_1) = p_3 $sibling(p_2) =$ $sibling(p_3) = p_1$

Content Oblivious BFS Further Observations

- Requires knowing $n = |V|$ or a bound on it (for termination)
- The sequential method performs "controlled DFS"
	- Can be modified to obtain a content-oblivious DFS algorithm
- Complexity: $O(|V| \cdot |E|)$ signals
- *Requires a leader ….*

Content Oblivious Leader Election

Content Oblivious Leader Election

• Theorem: Content-Oblivious Leader Election is possible in **Rings**

[Frei, Ghazi, Gelles, Nolin, DISC'24]

Content Oblivious Leader Election

- Leader election on (content-based messages, rings):
	- Elect the node with maximal ID (e.g., send your ID clockwise, $O(n^2)$ messages)
	- No IDs? Symmetry Braking is Impossible!
- Let's imitate this protocol using signals:
	- Each v sends D_v many signals **clockwise**
	- If ν receives more than ID_{ν} signals, propagate the rest (v is not the leader)

Termination!?

 $ID=10$

 $ID = 3$

Terminating CO LE

- Note: after previous phase all nodes see exactly max ID clockwise signals!
- The leader is the last to see max ID signals (but it does not know whether more signals are yet to come)
- We did not use the **counter-clockwise** path!
	- When $\#$ signals $=$ ID_{*v*}, node *v* starts the same algorithm in the **counter-clockwise** direction
	- When $#$ signals $_{CCW}$ = max ID, terminate
- When the node with max ID receives max ID **counter-clockwise** signals, all other nodes have terminated.
- Complexity: $n(2ID_{max} + 1)$

 $ID = 8$

 $ID = 3$

Orienting a ring

- We assumed that the ring is oriented:
	- Nodes distinguish the CW and the CCW directions.

• Can we remove this assumption?

Orienting a ring

• Observation: Forwarding a signal goes along the cycle, even if the ring is un-oriented.

- Orienting a ring: send your ID to CW (propagate surplus), convert if you see more signals in the other direction
- Can achieve both Leader Election and Orientation at the same time

Content Oblivious Ring Orientation

• Theorem:

Content-Oblivious Ring Orientation (+Leader Election) is possible in Rings

- Complexity: $n(2ID_{max} + 1)$
- Non-terminating! But reaching quiescence
	- We suspect this task does not have a terminating algorithm, without further assumptions

[Frei, Ghazi, Gelles, Nolin, DISC'24]

Content Oblivious General Compilers

Content-Oblivious Computation

Theorem:

Any communication protocol Π can be simulated over any 2-edge connected n etwork G , in a content-oblivious way

with $poly(n)$ overhead per bit of Π , assuming a "root"

[Censor-Hillel, Cohen, Gelles, Sela, 23]

- Assume we have two channels:
	- DATA channel Unary encoding of the information (1 message per symbol)
	- END channel marks the end of the transmission (a single message)
- Each message must be acknowledged otherwise, END might be wrong
- END also changes parties' roles

Idea: two channels

- Extension to a cycle is possible as long as there is a single sender
	- Nodes relay any received message
	- Information is carried out by direction:
		- Clockwise: DATA
		- CounterClockwise: END
- Overhead: O(n) per (unary) symbol

Content-oblivious comm. in simple cycles

- What if another node wishes to speak?
- TOKEN exchange mechanism:
	- after an END message, meaning of messages changes:
		- **Clockwise**: request for token
		- **CounterClockwise**: TOKEN

Communication over a Fully-Defective Cycle

p1

- Request (REQ):
	- Nodes request token asynchronously
	- **Invariant**: every node must send 1 REQ and receive 1 REQ before continuing
- Once the current sender sent and received REQ, it releases the token (TOK)
	- If TOK reaches node that wants the token, it becomes the new sender,
- sender initiates communication (sends DATA) (triggers other to quit TOKEN phase)

Communication over a Fully-Defective Cycle Token Mechanism

The General Case

• How to communicate over arbitrary 2-edge connected graphs?

The General Case

- Combining non-disjoint cycles?
	- When *d* gets a message, where should it propagate it to?
- How to construct the cycles?

• How to communicate over arbitrary 2-edge connected graphs?

The General Case A Robbins Cycle

- every 2-edge-connected graph is **orientable:**
- there exists a way to orient all the edges so that the *a*) (c) (e) yielded directed graph is *strongly connected.*

• Theorem [Robbins'39]

- But, how can we construct this orientation (content-obliviously)?
- **Ear-Decomposition Theorem** [Whitney'32]: any 2-edge-connected graph can be decomposed into

$$
G=C_0\cup E_1\cup E_2\cup\cdots
$$

The General Case Constructing a Robbins Cycle

with

- being a simple cycle and C_0
-

 $\cdot \cup E_k$

 E_i^- being a simple <u>path</u> whose endpoints belong to $\ C_0 \cup E_1 \cup \cdots \cup E_{i-1}$

Content-Oblivious Robbins Cycle Const.

Theorem:

Suppose one of the nodes is a designated root. Then, there exists a content-oblivious Robbins-Cycle construction algorithm (via ear-decomposition)

• Complexity: $O(n^8)$

[Censor-Hillel, Cohen, Gelles, Sela, Dist.Comp'23]

Ear decomposition Constructing C_0

- The construction begins at a designated node *root*
- Nodes propagate a token in a DFS-like manner:
	- forward the token to an unused edge
	- if no unused edge or if reached $u \neq root$ twice -> send token back to parent ("retract")
	- until the token reaches root again
- Non-retracted edges form the cycle C_0 Since 2-edge connected, root will be reached again

Ear decomposition Constructing E_1

- C_0 is a simple cycle, its nodes can run the Cycle communication protocol
- If some $u \in C_0$ has unexplored edges, it requests to be the next root (*root*₁) 1
	- Begin a new DFS-exploration (on $E \setminus C_0$) until hitting a node already on the cycle
	- $C_0 \cup E_1$ form a (non-simple) cycle C_1 : $(root \rightarrow root_1 \rightarrow v \rightarrow root)$
- The decomposition then recurses on $E \setminus C_1$

$$
\Big\vert_{\mathfrak{S}} C_0)
$$

Summary and Open Questions

Summary

• Content Oblivious Computation

- means of communication in networks of "simple" devices
- fault tolerance towards potential content corruption / noise
- Some tasks can be done, under different assumptions
	- BFS/DFS (leader, knowledge of n)
	- LE (ring topology)
	- general communication (2-edge connectivity, leader)
	- In **non** 2-edge-connected networks, impossibility result if nodes give output

Open Questions

- What are the minimal assumptions for content-oblivious computation?
	- assumptions for termination?
	-
- Can we deal with insertions and deletions of signals?
	- even a tiny amount?

• weaker notions of termination? (e.g., stabilization, finalizing outputs)

Open Questions

- Efficiency and Overhead?
	- BFS $O(n^3)$
	- Leader Election *O*(*n* max *ID*) lower bound $\Omega(n \log(\max ID/n))$. Can we show $\Omega(n^2)$?

• General Compiler $\approx O(n^8) + O(n^3 \cdot \text{CC}_{Alg})$

$\Omega(n \log(\max ID/n))$. Can we show $\Omega(n^2)$

[Diniz,Moran,Rajsbaum '07] [Frei, Ghazi, Gelles, Nolin '24]

Keren Censor-Hillel Shir Cohen Gal Sela

Fabian Frei Ahmed Ghazi Alexandre Nolin

Thanks to my co-authors!!

CISPA HELMHOLTZ CENTER FOR INFORMATION SECURITY

