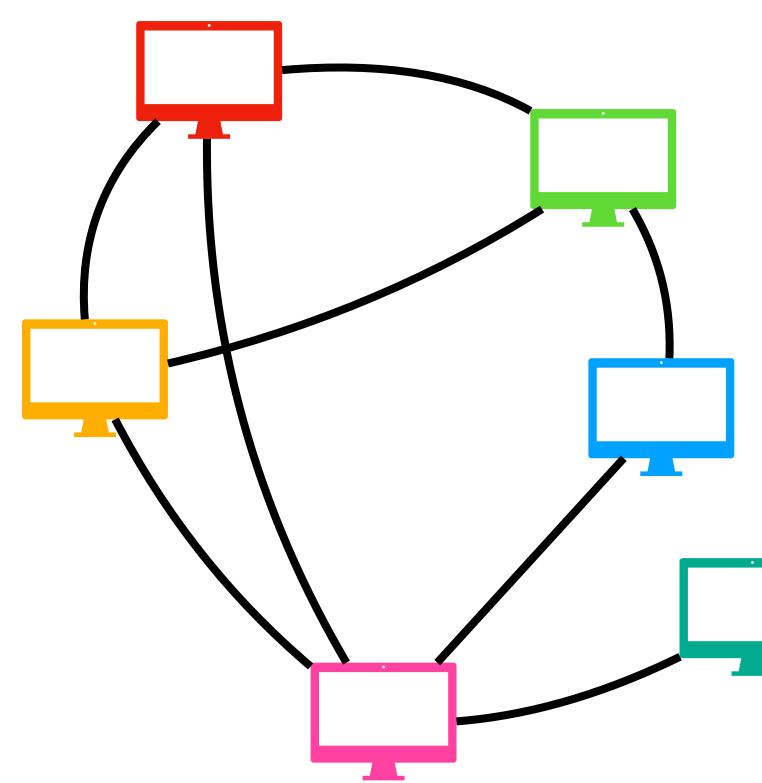
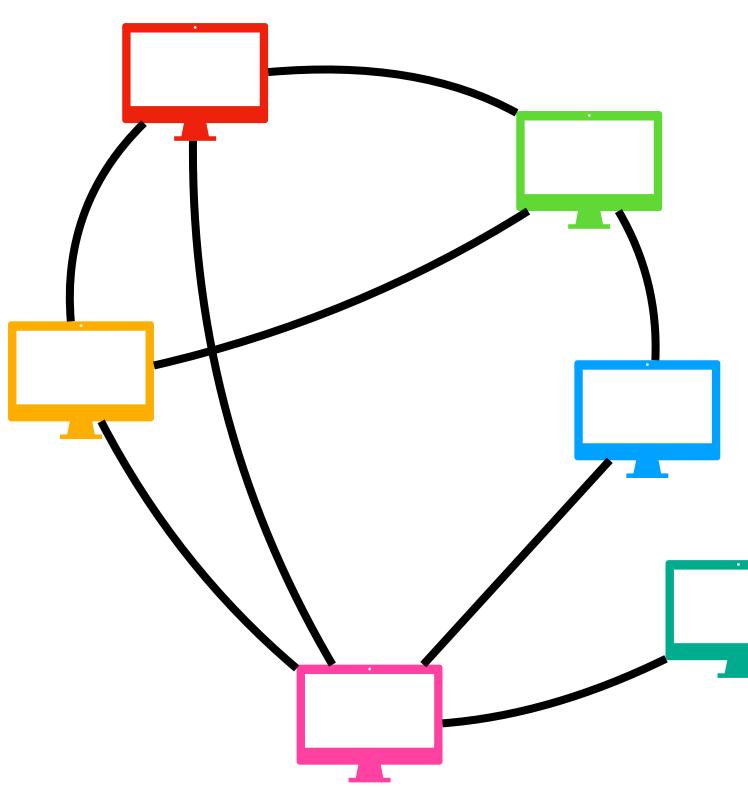
Message Complexity of Distributed Graph Algorithms

Advances in Distributed Graph Algorithms, ADGA 2024

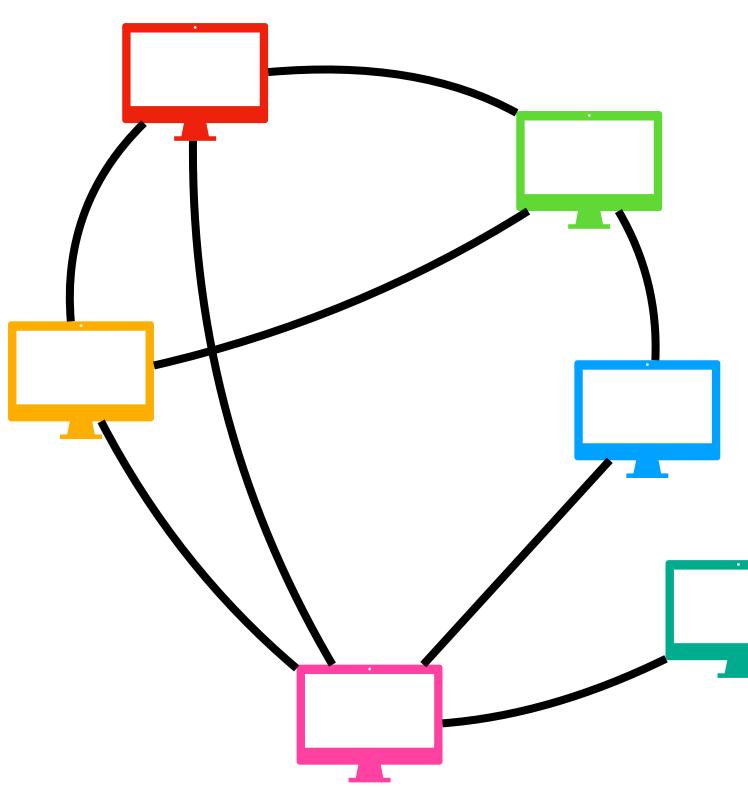
Shreyas Pai IIT Madras



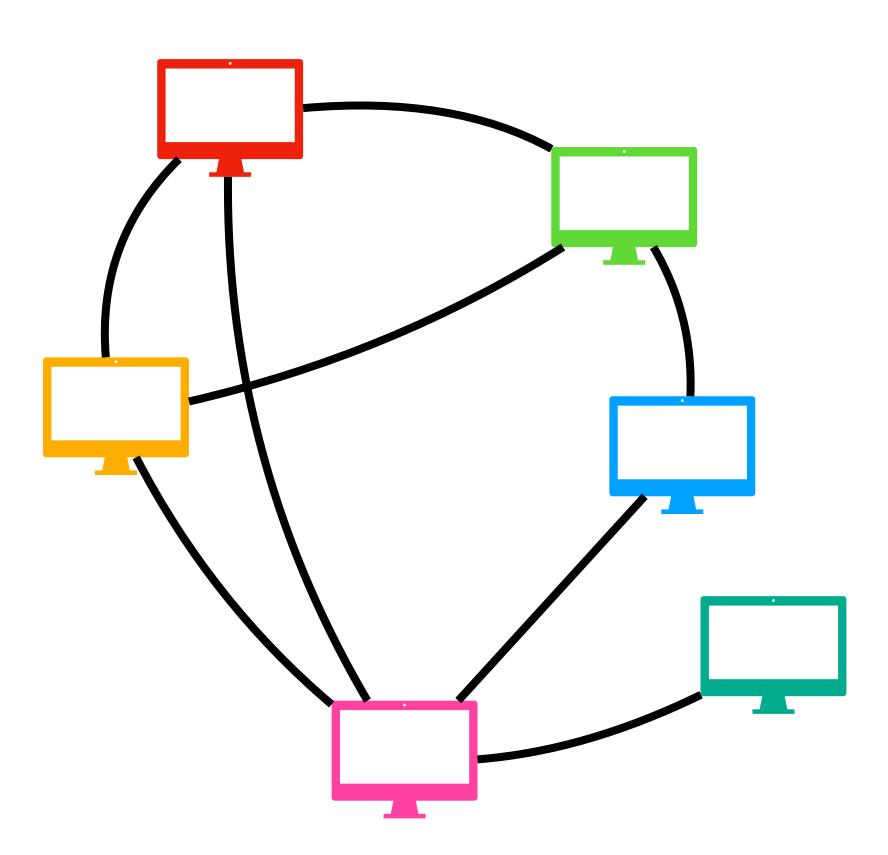
• Given a graph G which is the communication network.



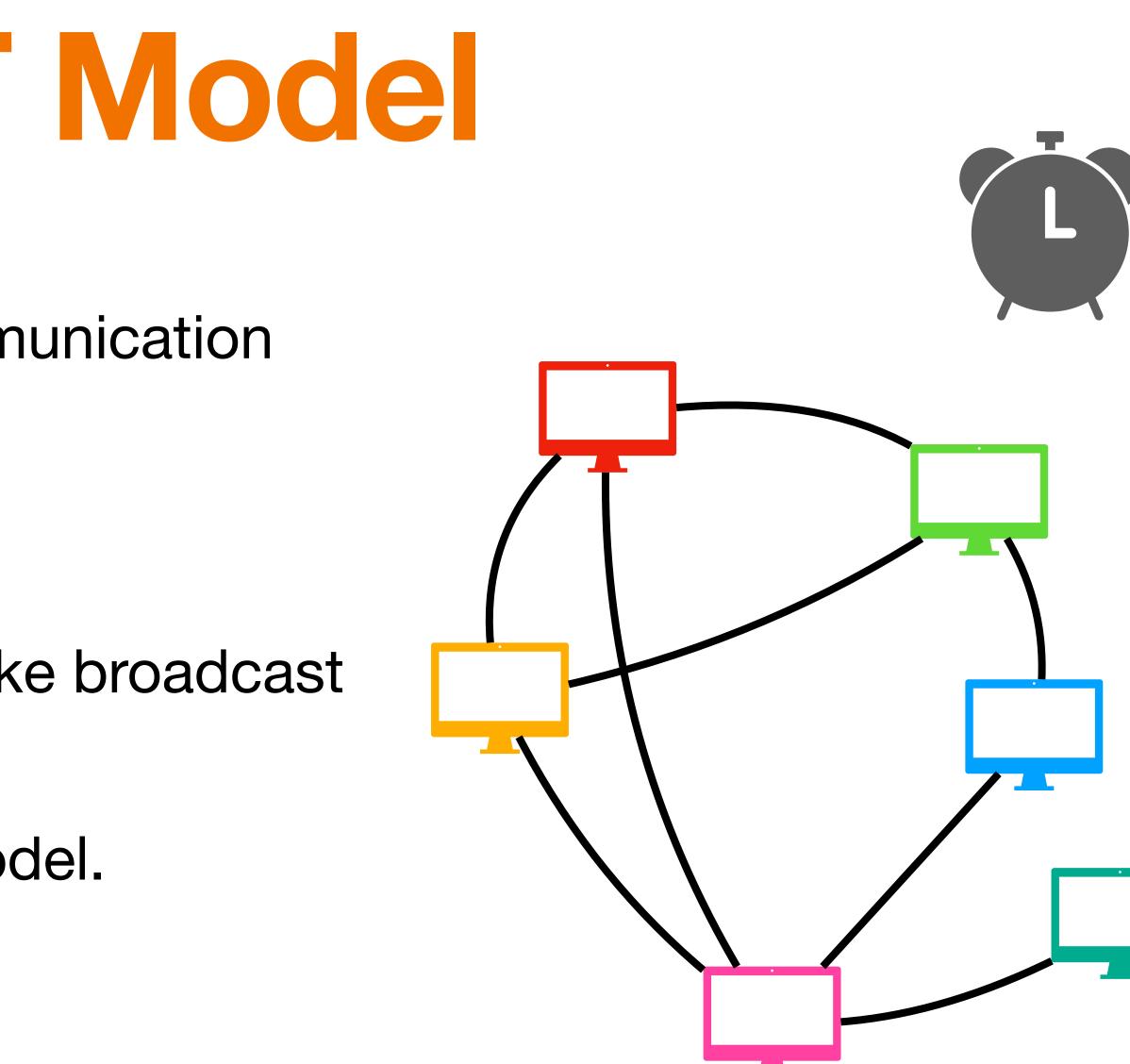
- Given a graph G which is the communication network.
 - *n* nodes and *m* edges.



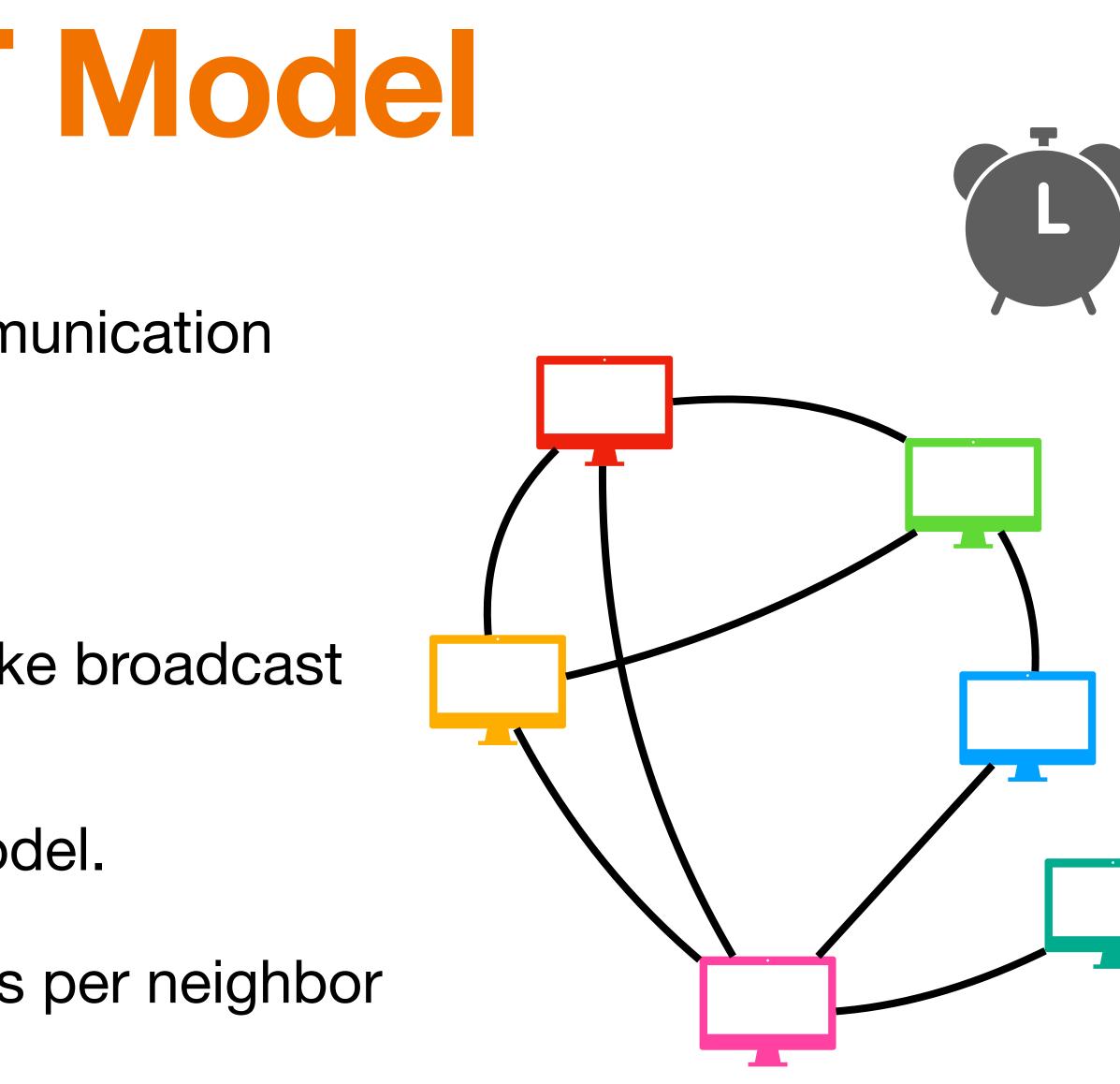
- Given a graph G which is the communication network.
 - *n* nodes and *m* edges.
 - Goal: solve a problem on G, like broadcast or coloring.

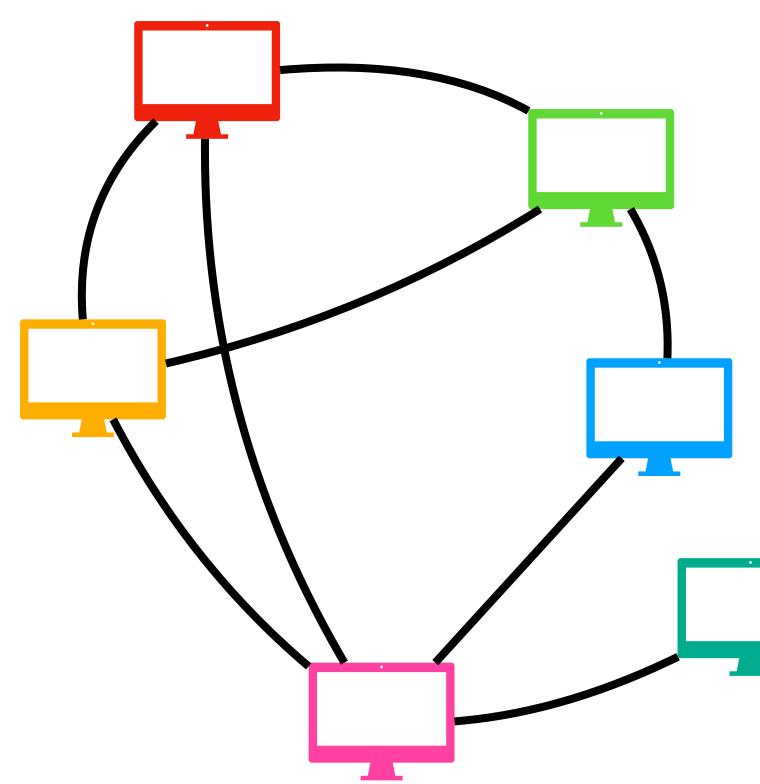


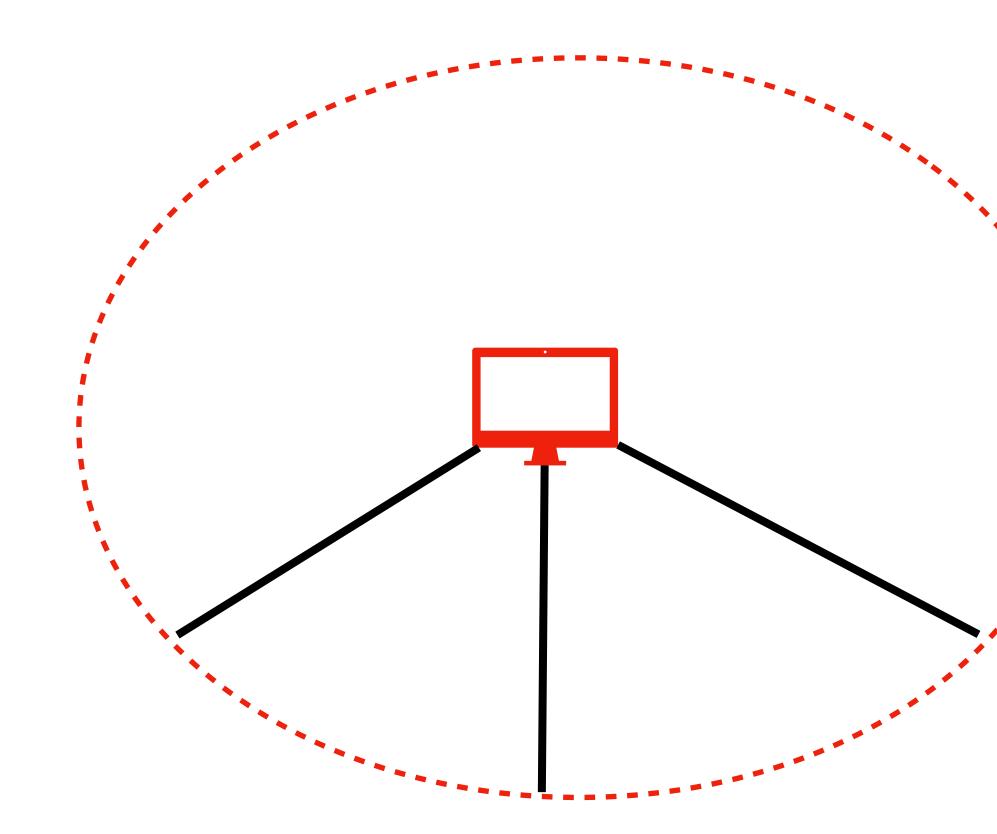
- Given a graph G which is the communication network.
 - *n* nodes and *m* edges.
 - Goal: solve a problem on *G*, like broadcast or coloring.
- Synchronous message-passing model.

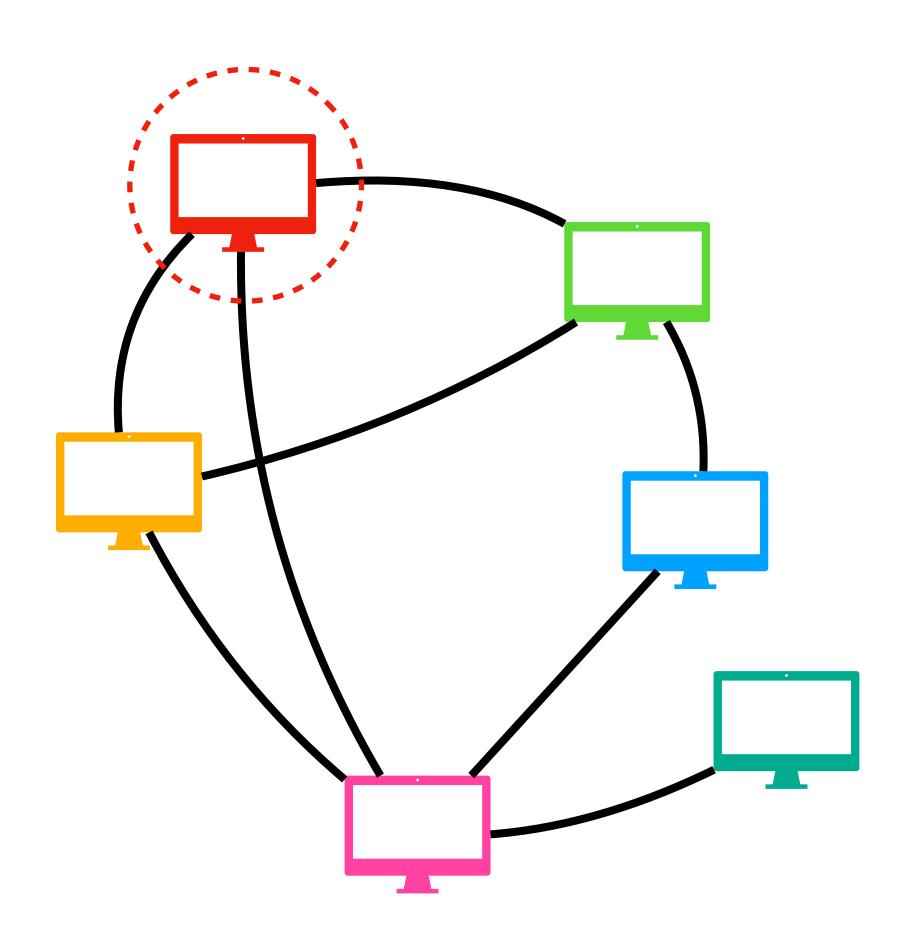


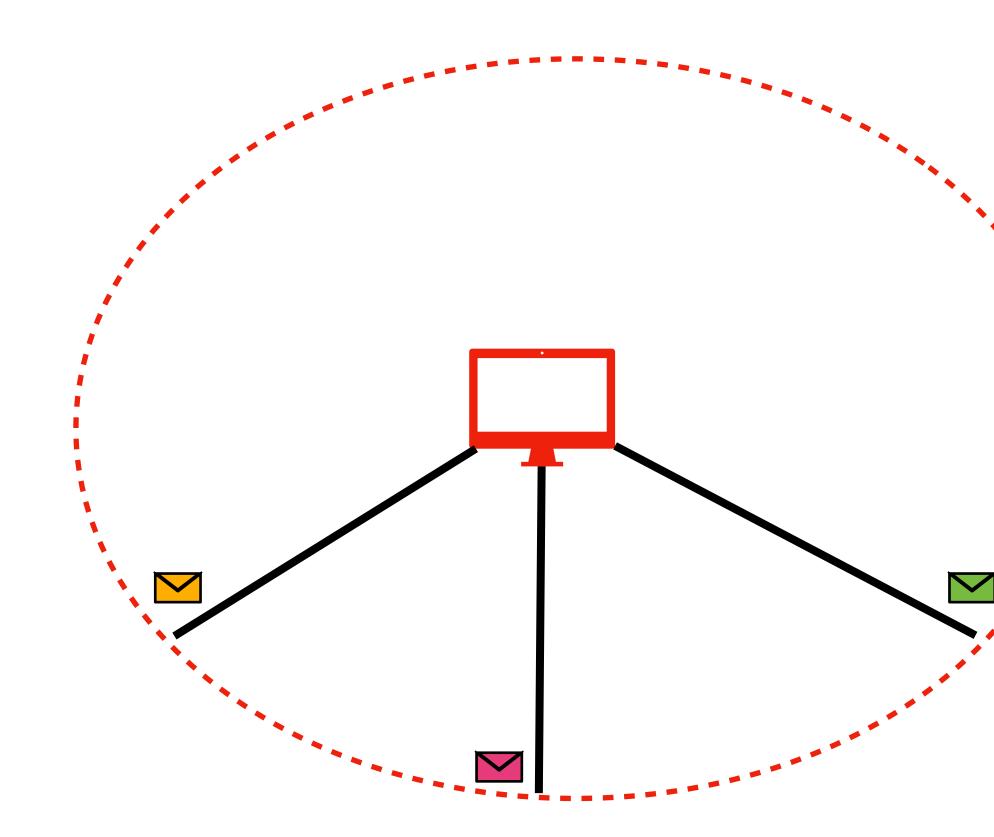
- Given a graph G which is the communication network.
 - *n* nodes and *m* edges.
 - Goal: solve a problem on *G*, like broadcast or coloring.
- Synchronous message-passing model.
- Nodes send O(log n)-bit messages per neighbor per round.

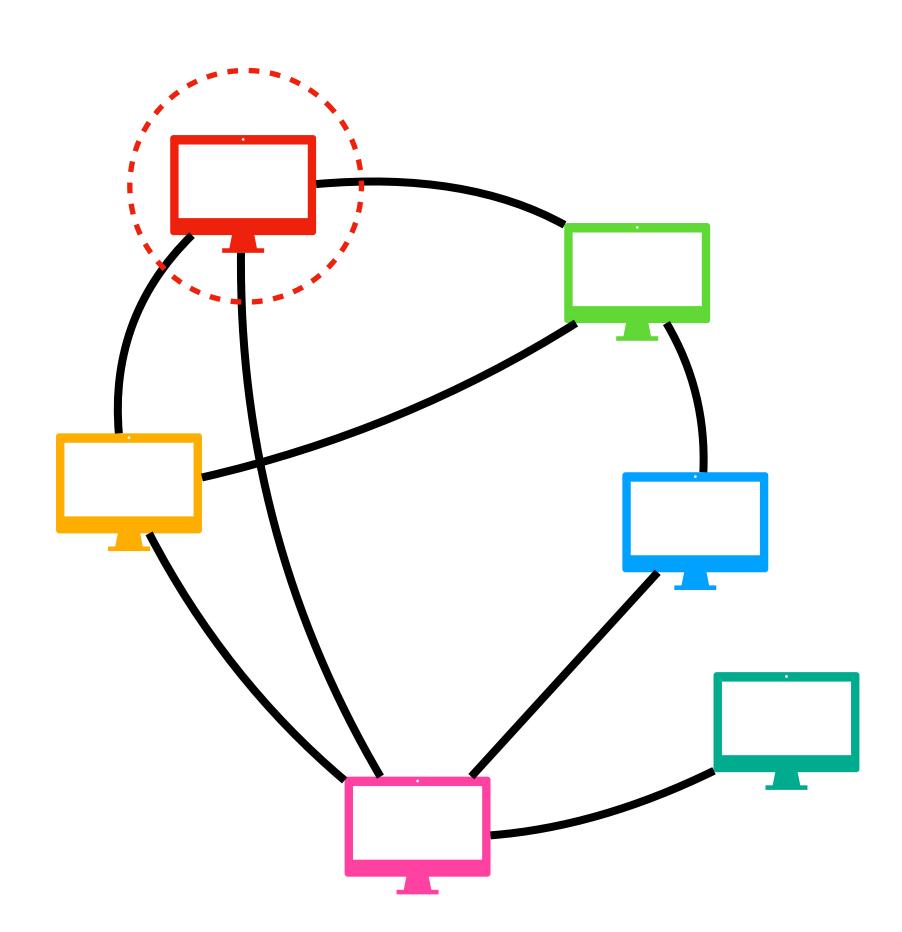


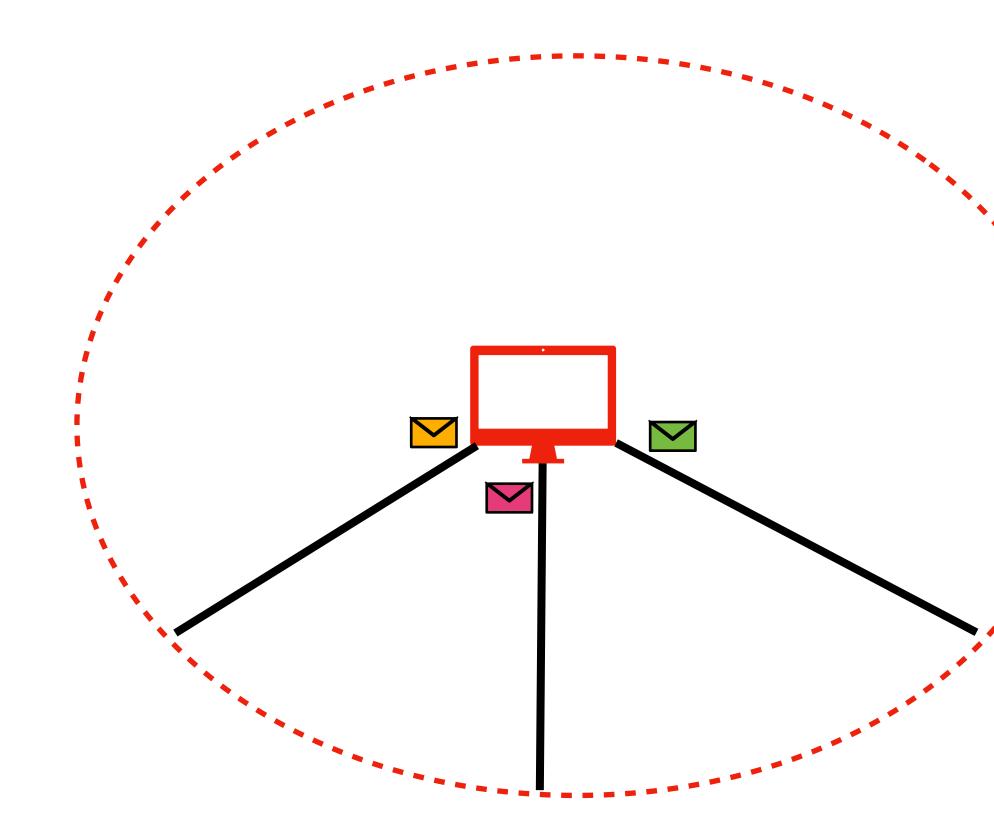


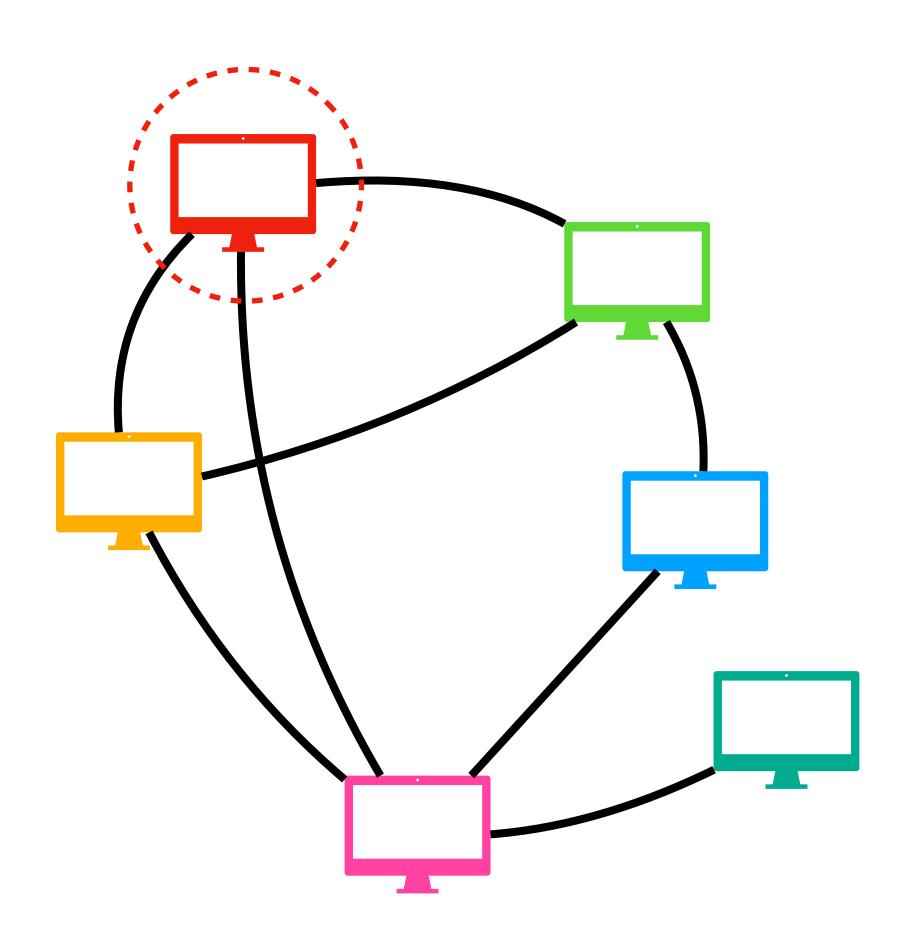


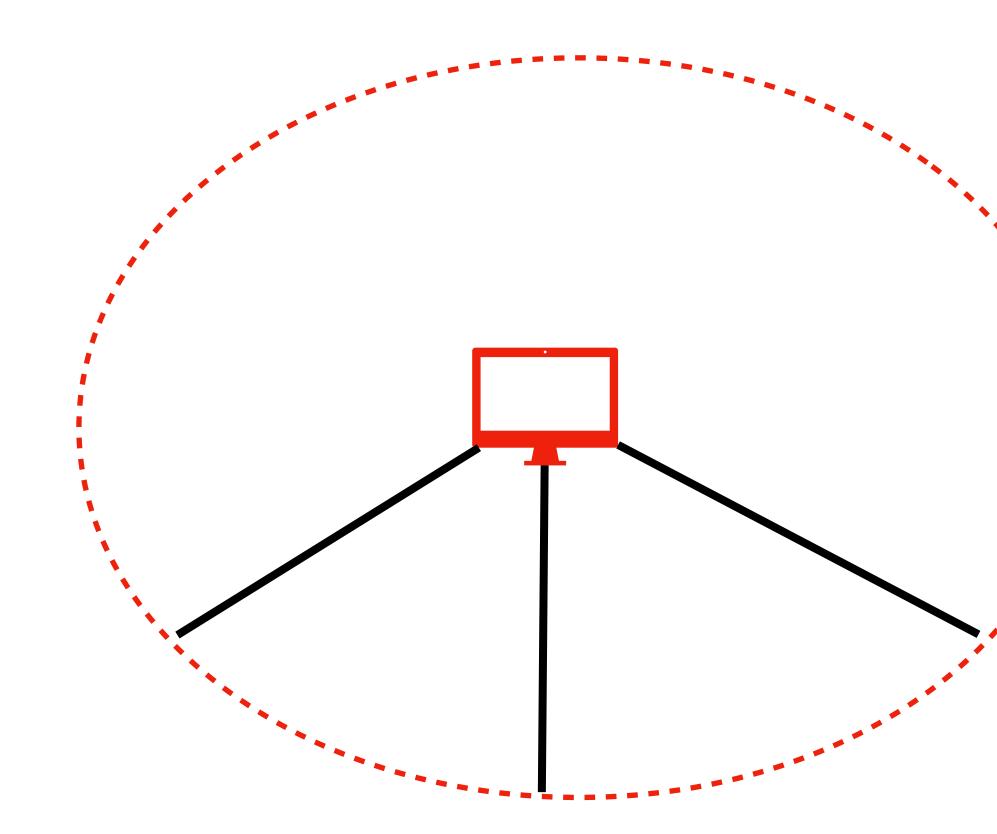


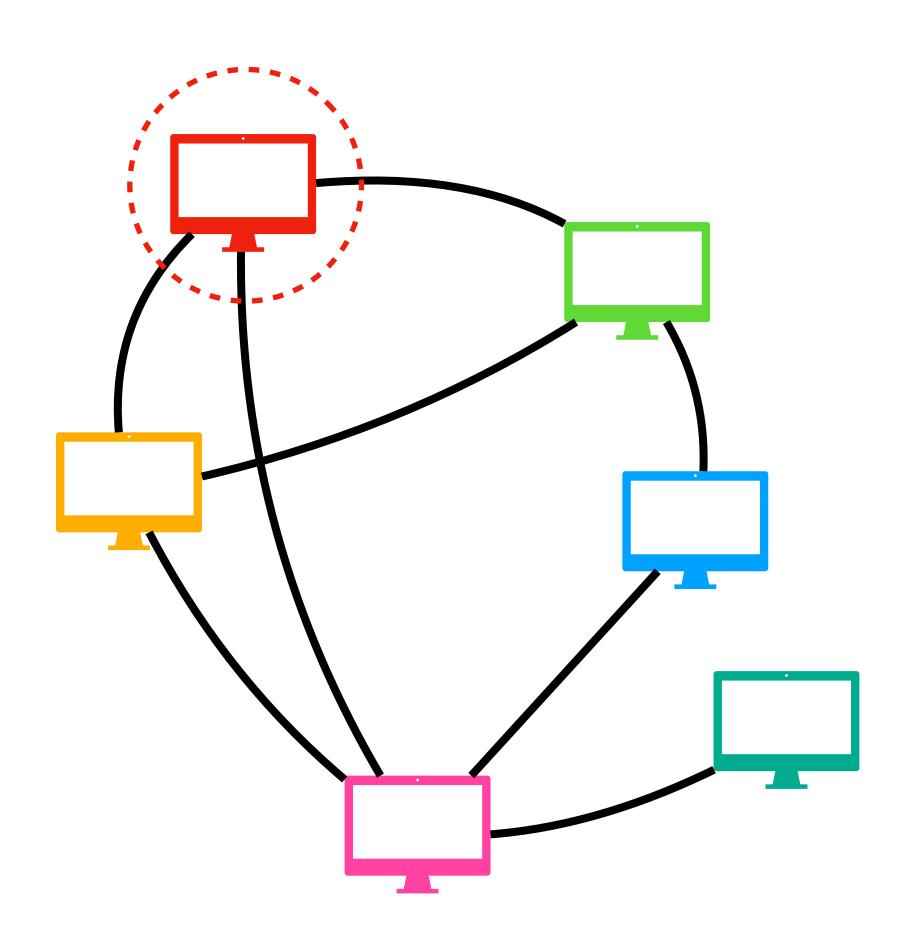


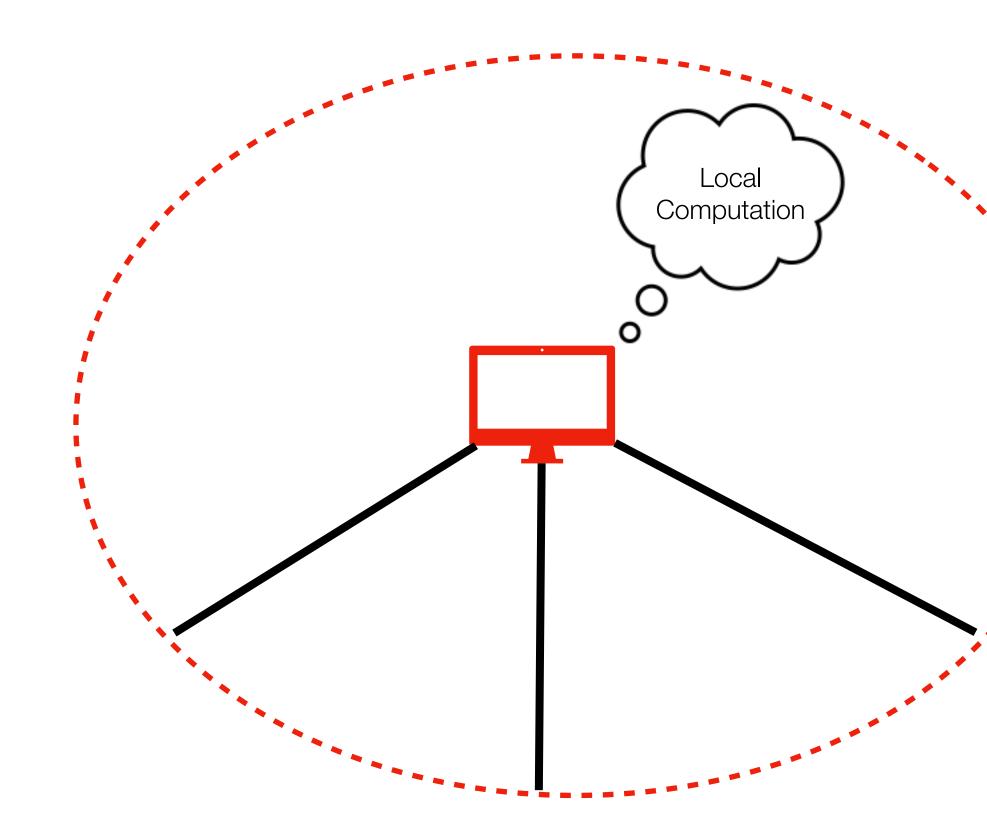


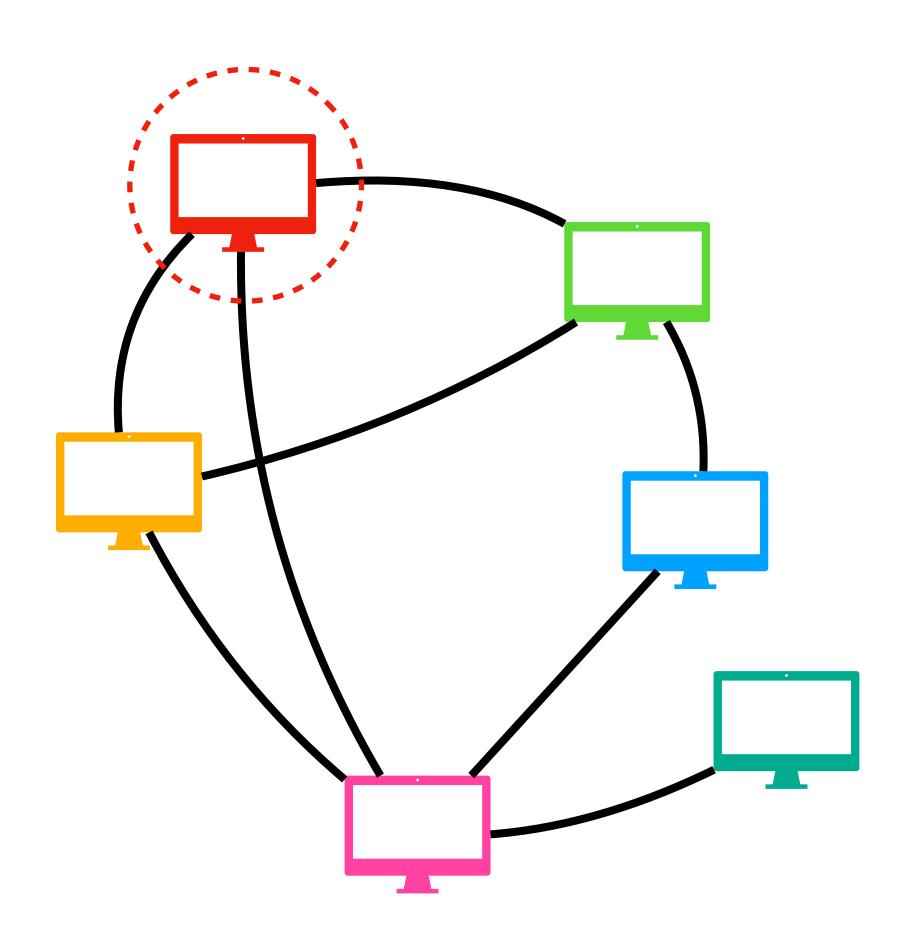


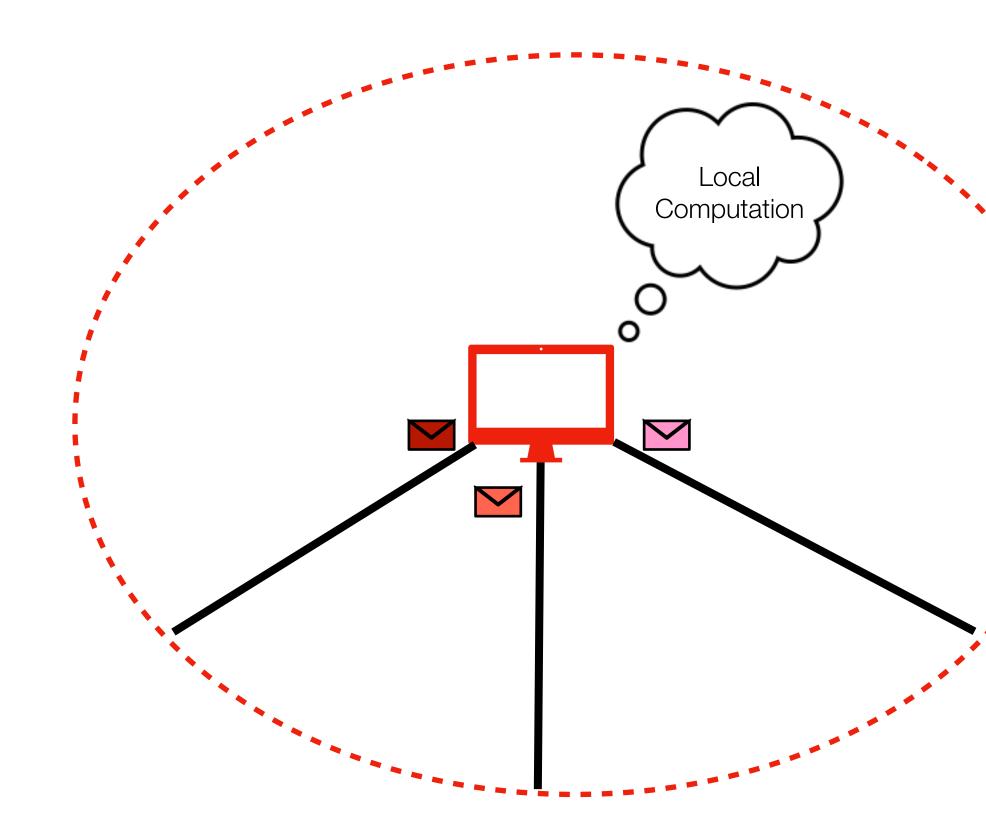


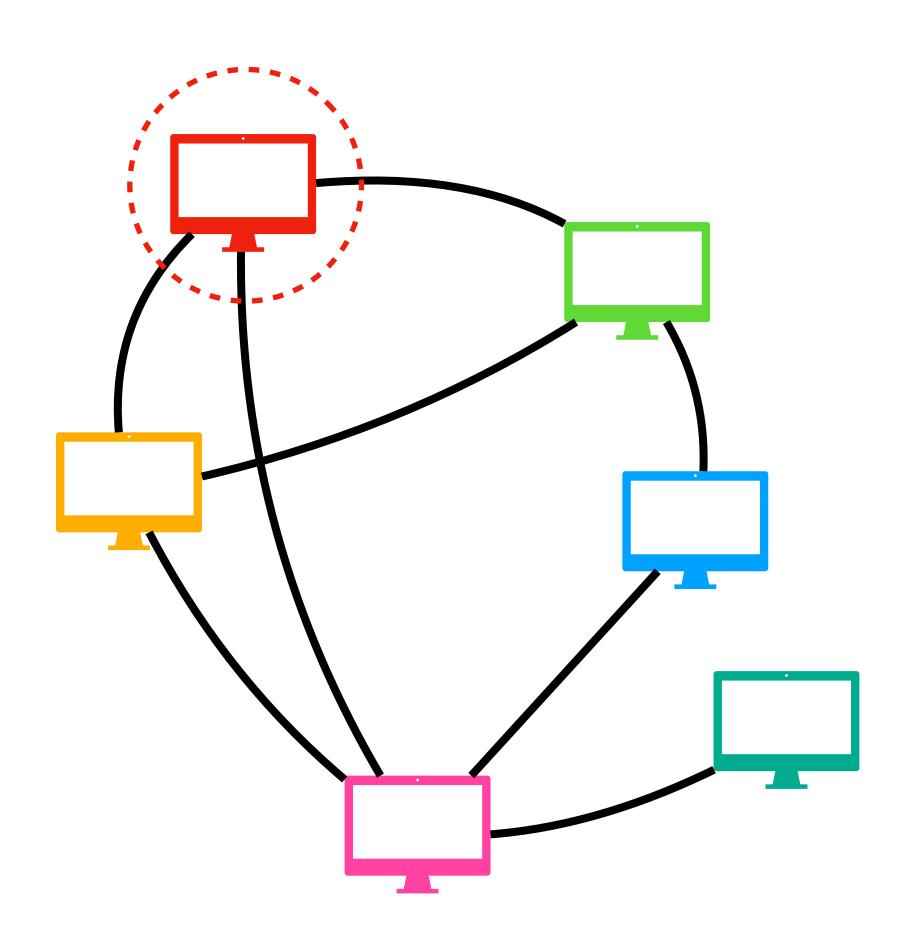


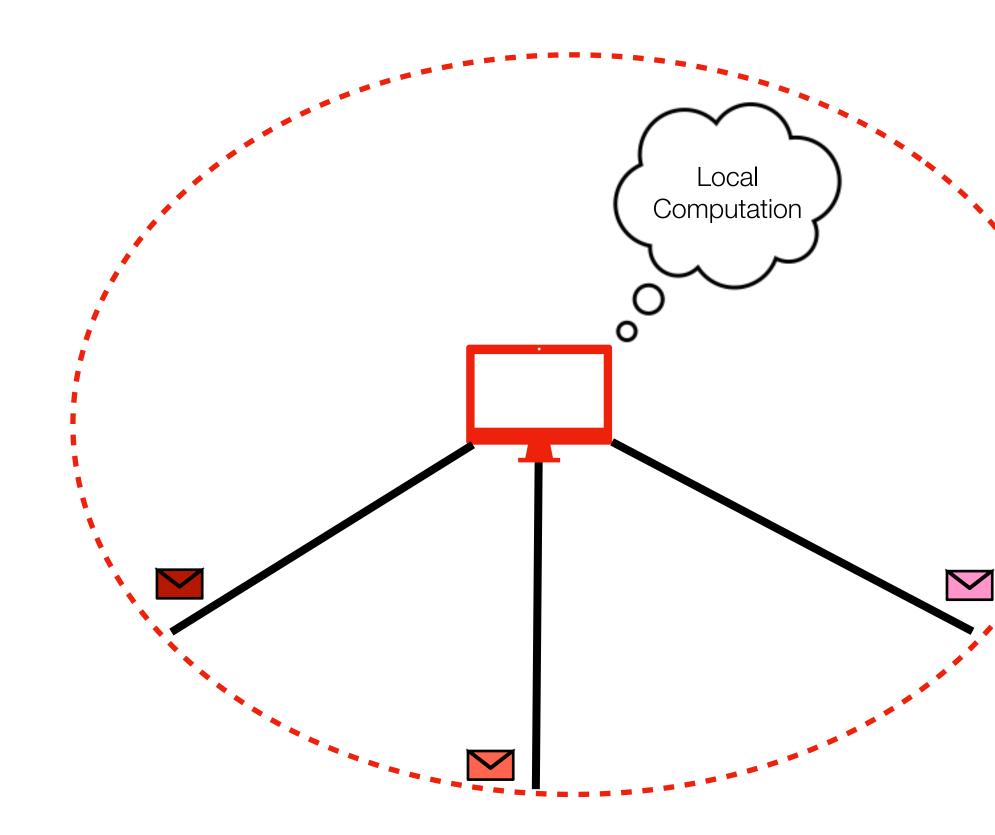


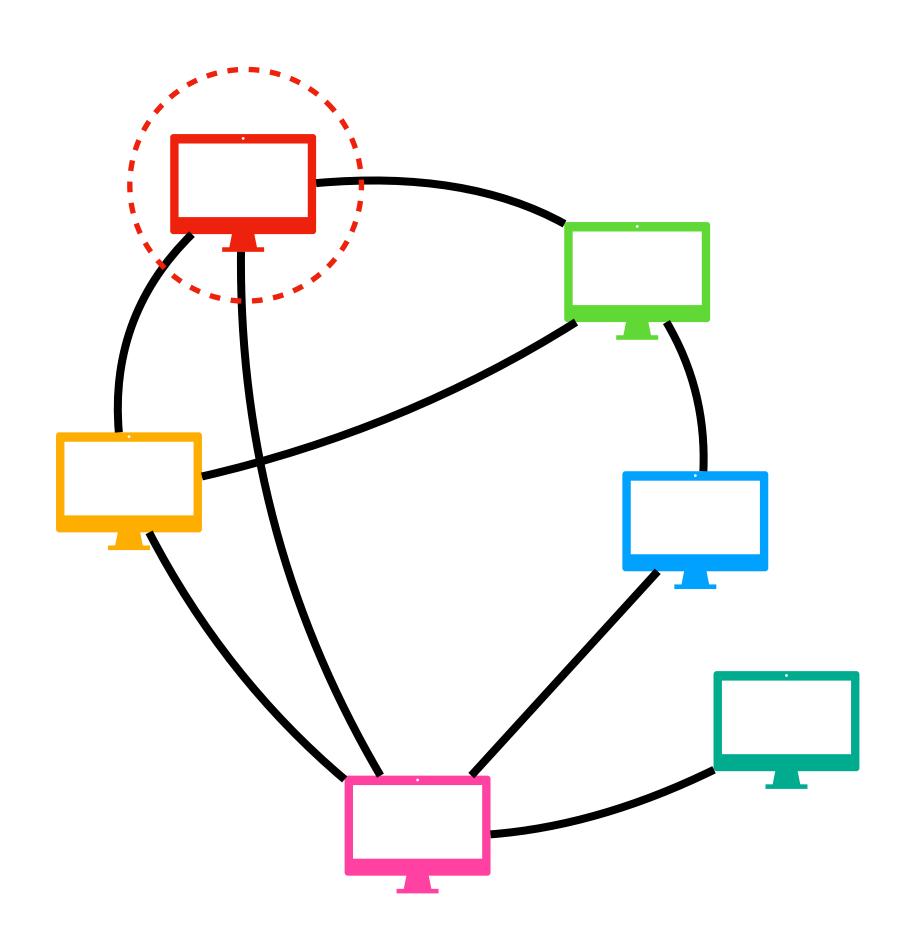


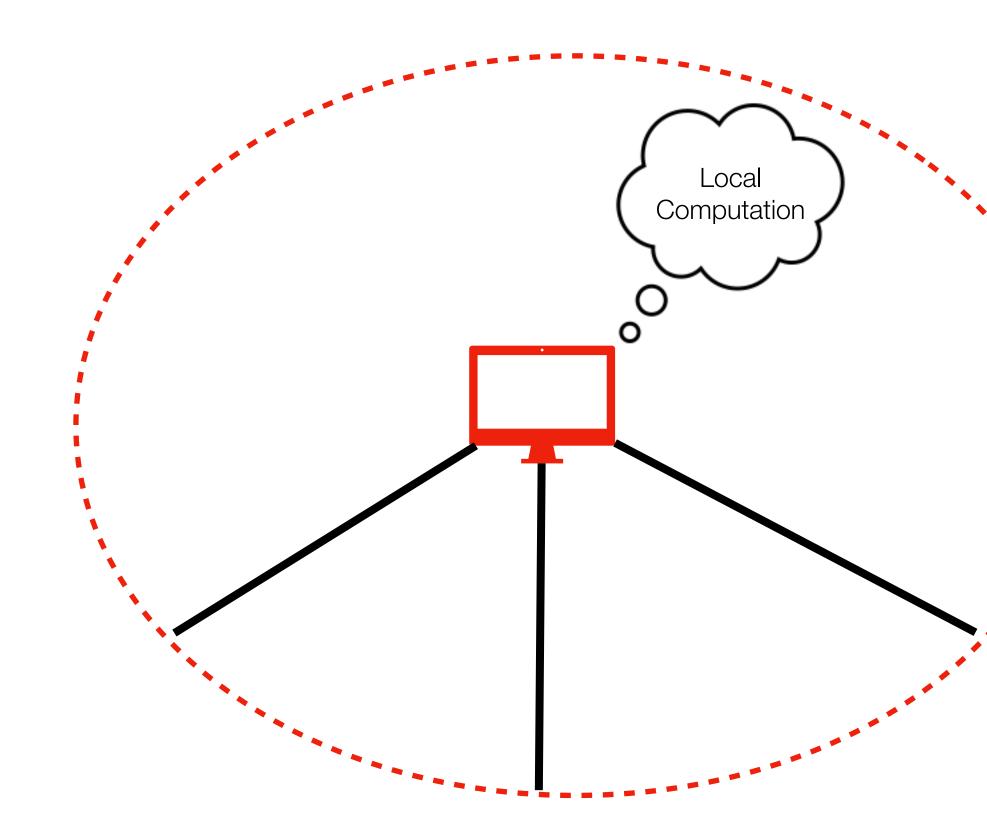


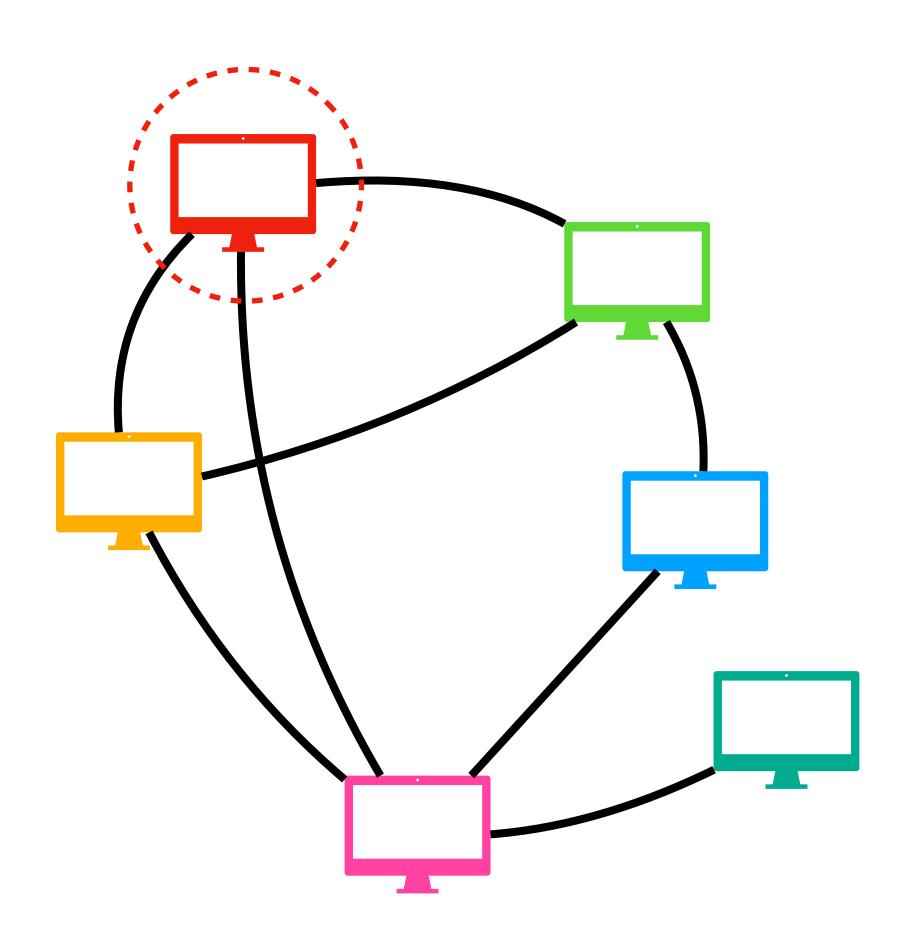




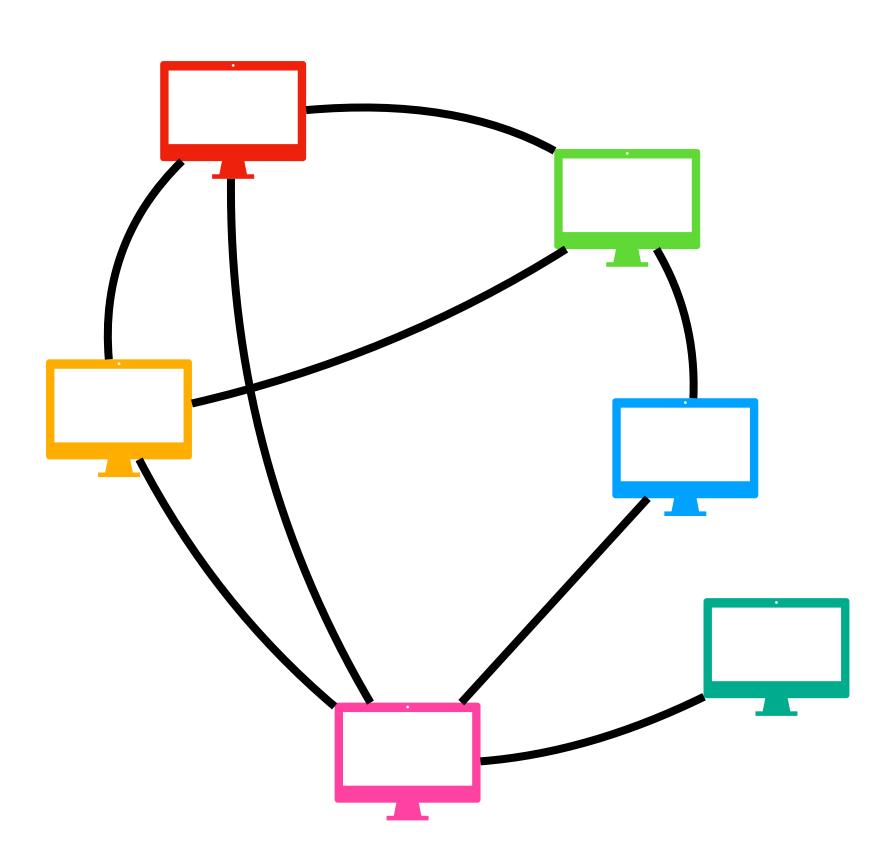


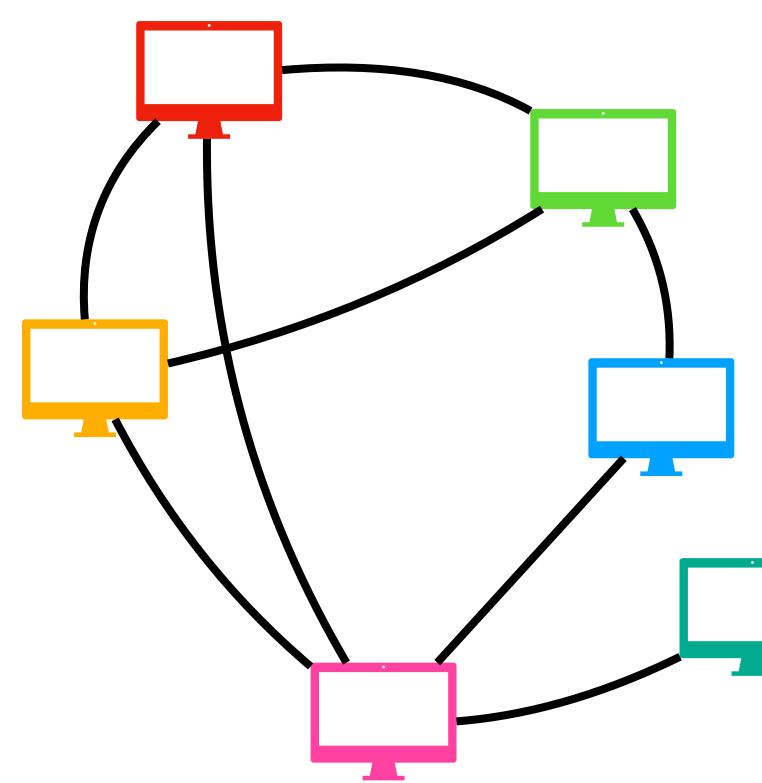




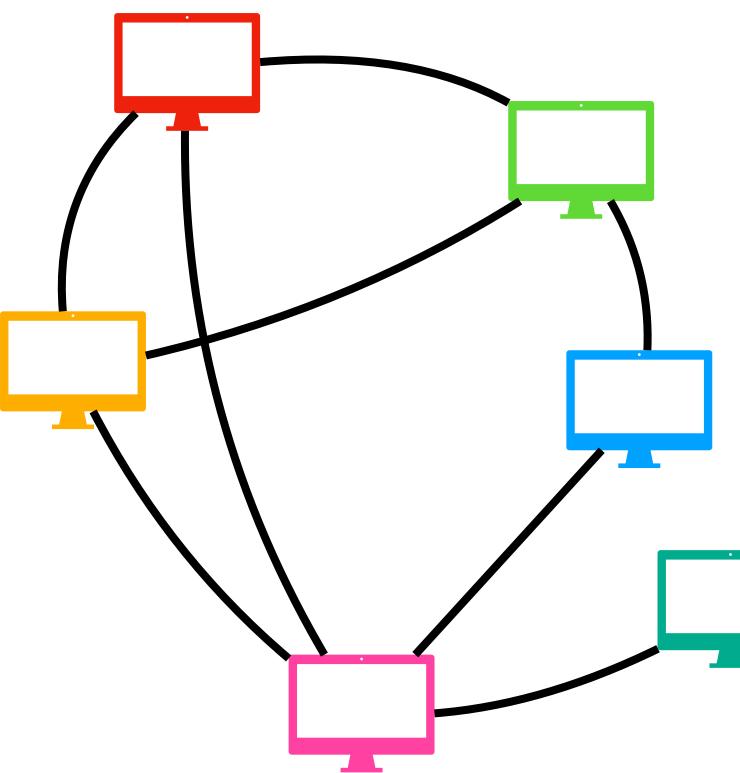


- Other model assumptions:
 - The machines have unique ID's
 - Perfect Synchrony
 - No Faults
 - Lossless Message Passing
 - Infinite Local Computation Power

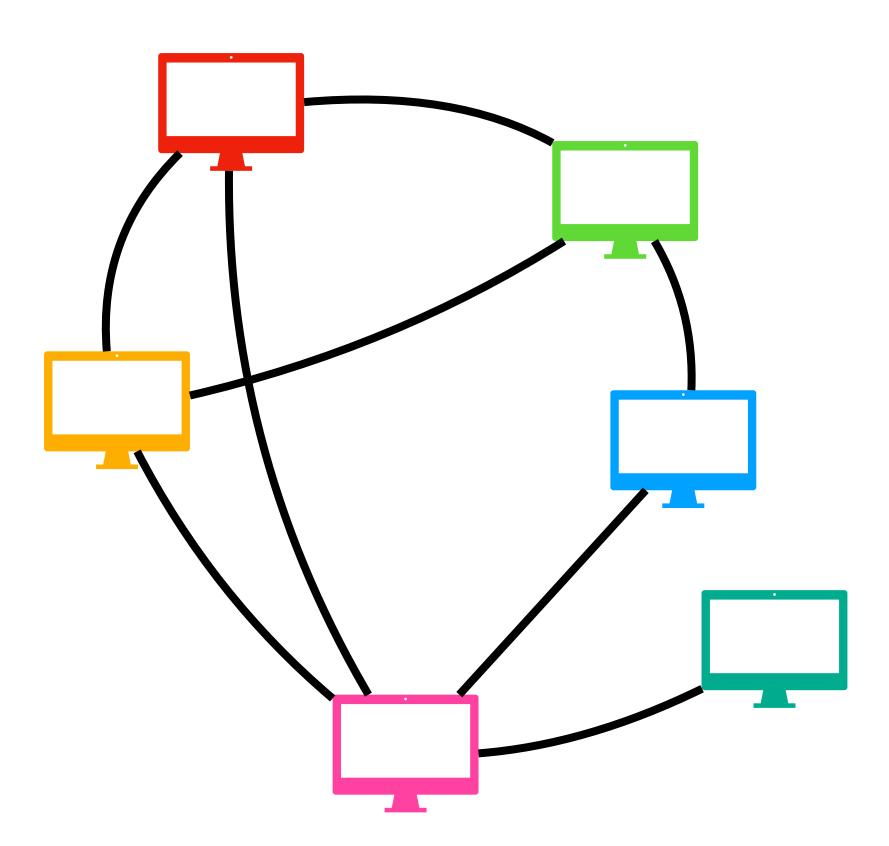




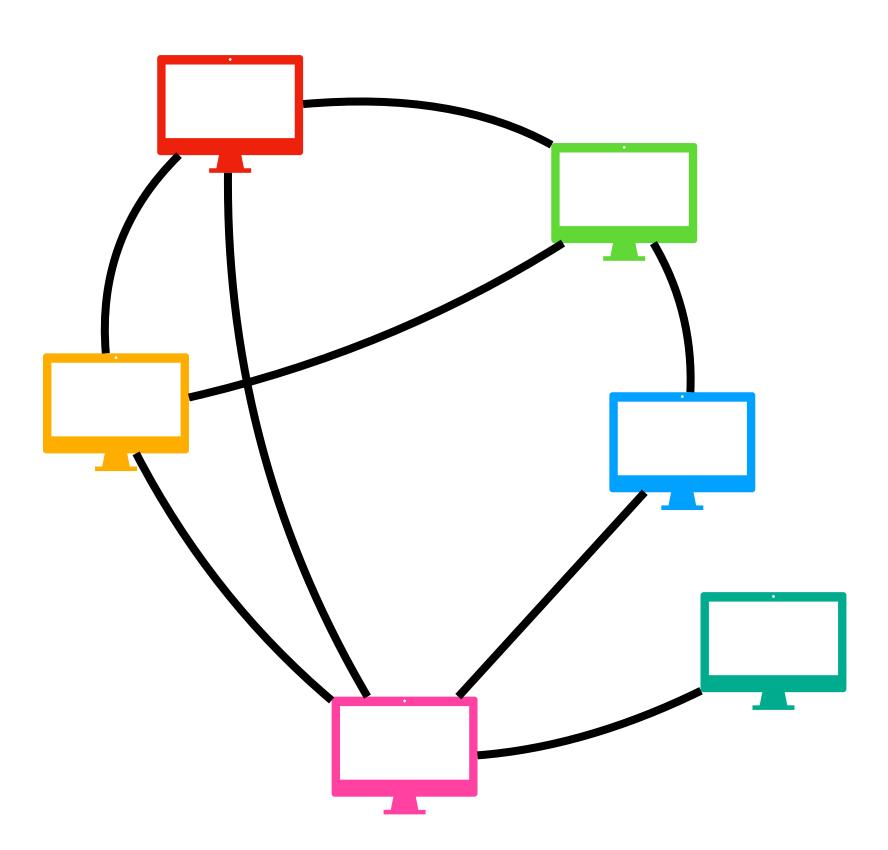
• Output: each node will compute a part of the output, eg, pass/fail, its own color.

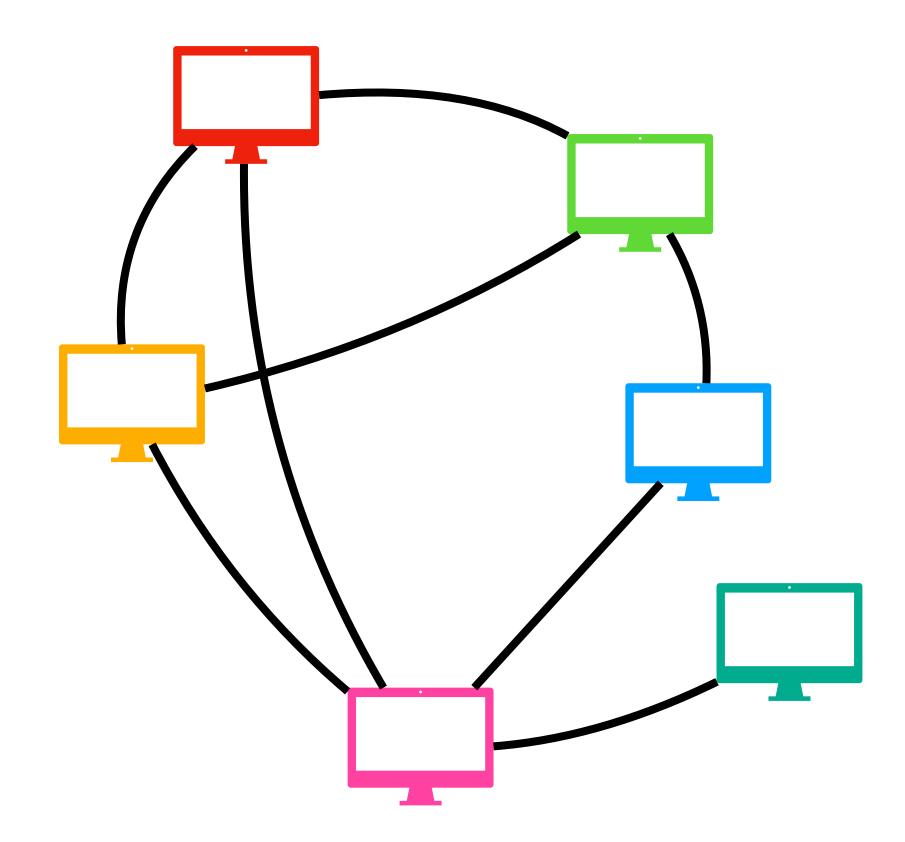


- **Output:** each node will compute a part of the output, eg, pass/fail, its own color.
- Round Complexity: total number of rounds used by an algorithm.

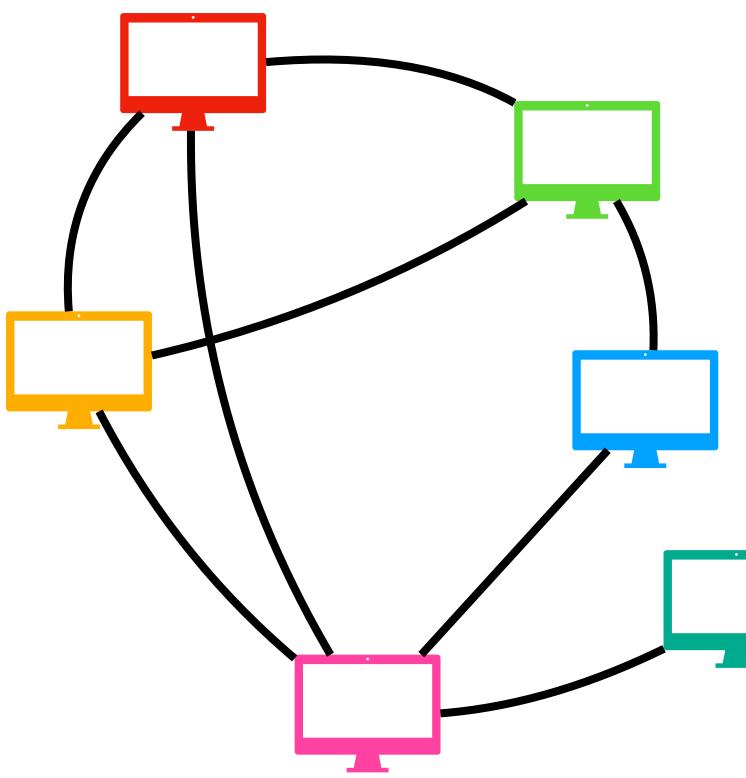


- **Output:** each node will compute a part of the output, eg, pass/fail, its own color.
- Round Complexity: total number of rounds used by an algorithm.
- Message Complexity: total number of messages sent/received in the network.

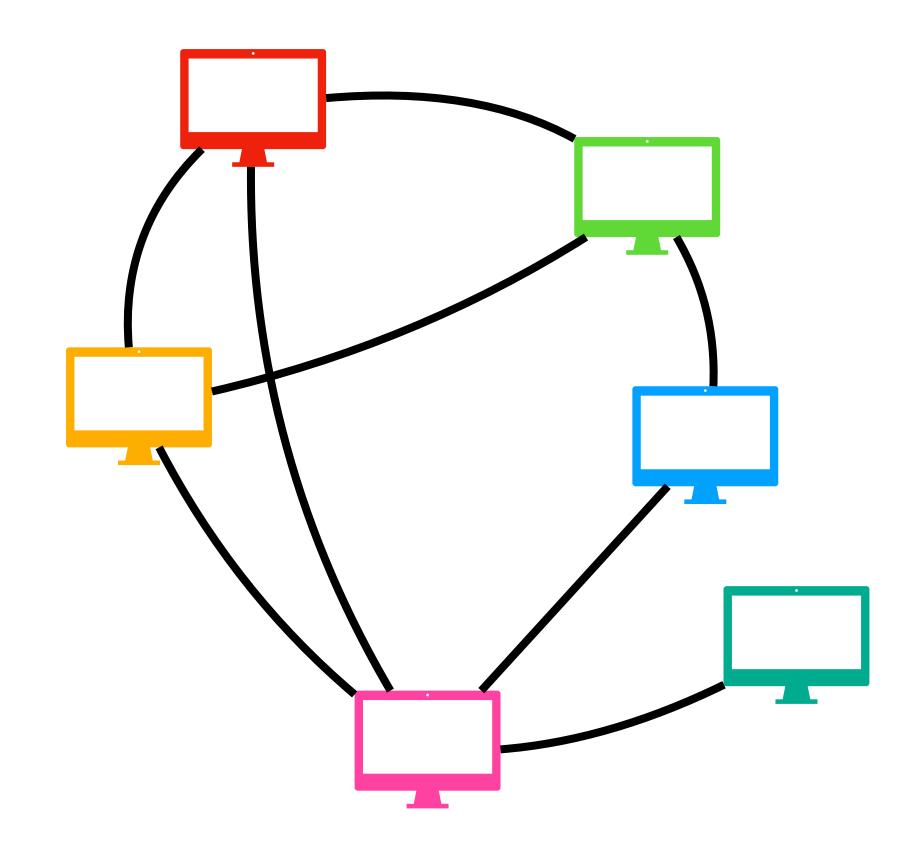




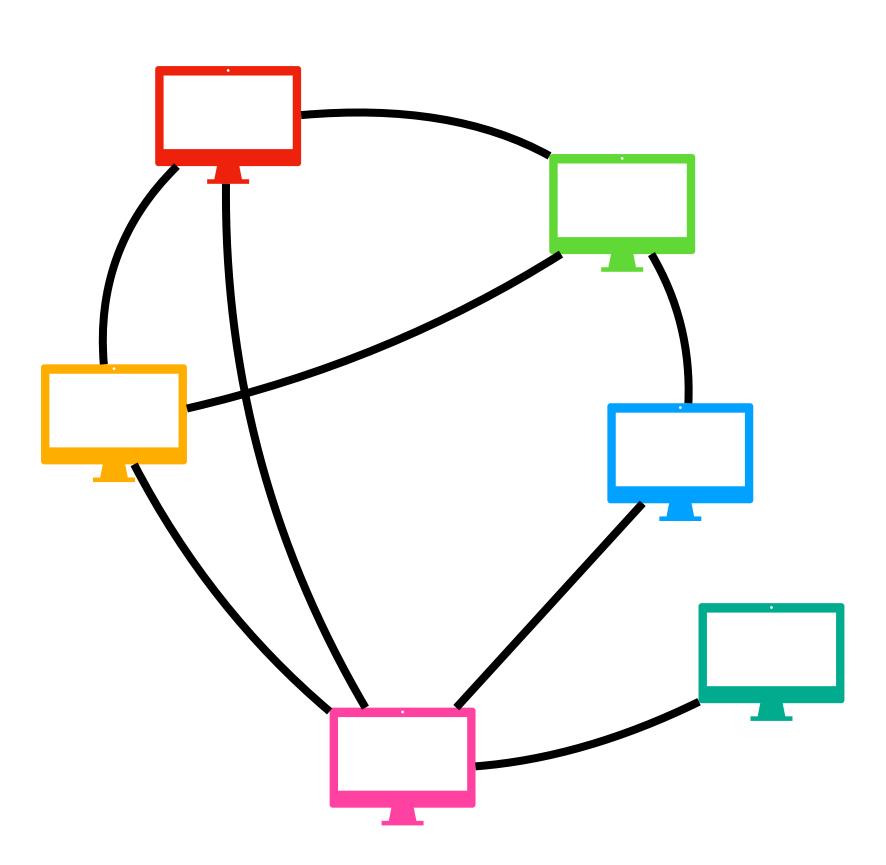
• Node centric computing simplifies algorithm design.



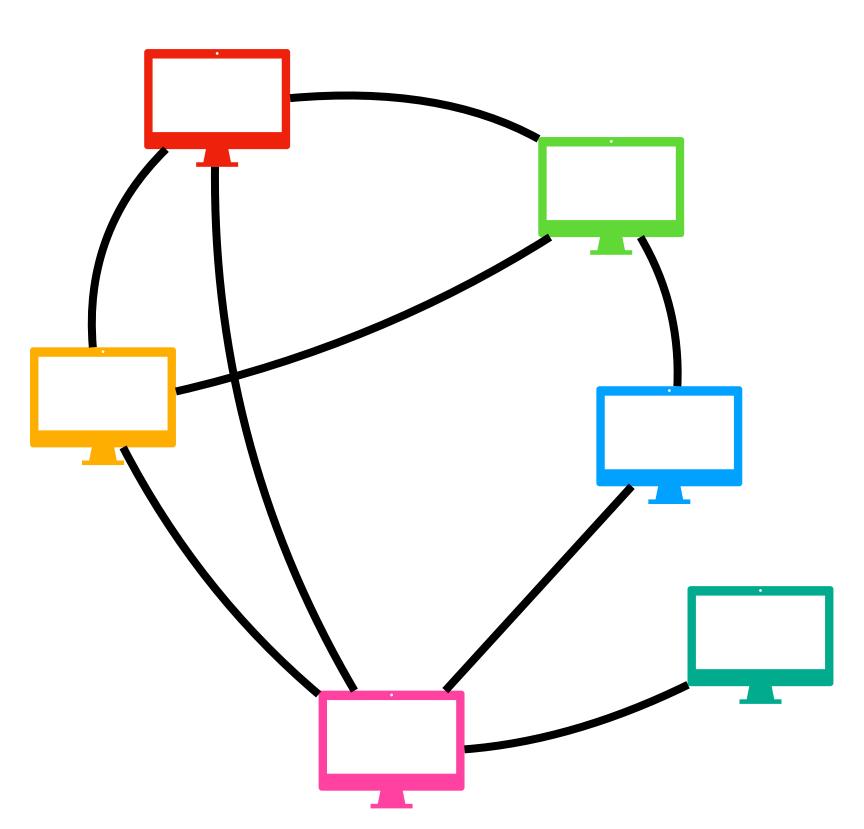
- Node centric computing simplifies algorithm design.
- Captures two important aspects of distributed computing:



- Node centric computing simplifies algorithm design.
- Captures two important aspects of distributed computing:
 - Locality: the information required is far away in the network.



- Node centric computing simplifies algorithm design. Captures two important aspects of distributed
- computing:
 - Locality: the information required is far away in the network.
 - **Congestion:** bandwidth constraints cause bottlenecks in the network.



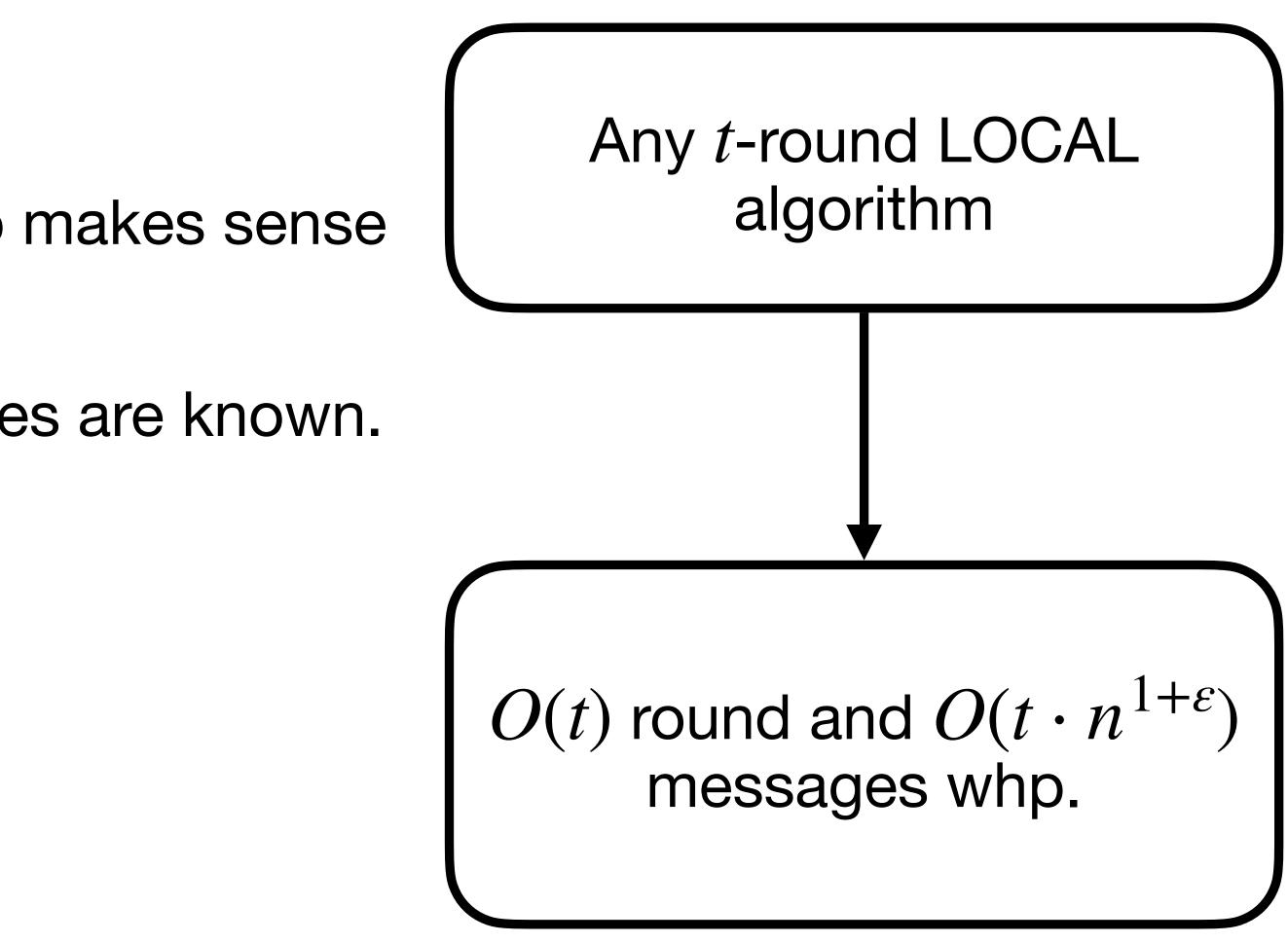
• Notion of message complexity also makes sense in the LOCAL model.

- Notion of message complexity also makes sense in the LOCAL model.
- Generic message reduction schemes are known. For example [BEI+19].

[BEI+19] Bitton, Emek, Izumi, Kutten. DISC 2019

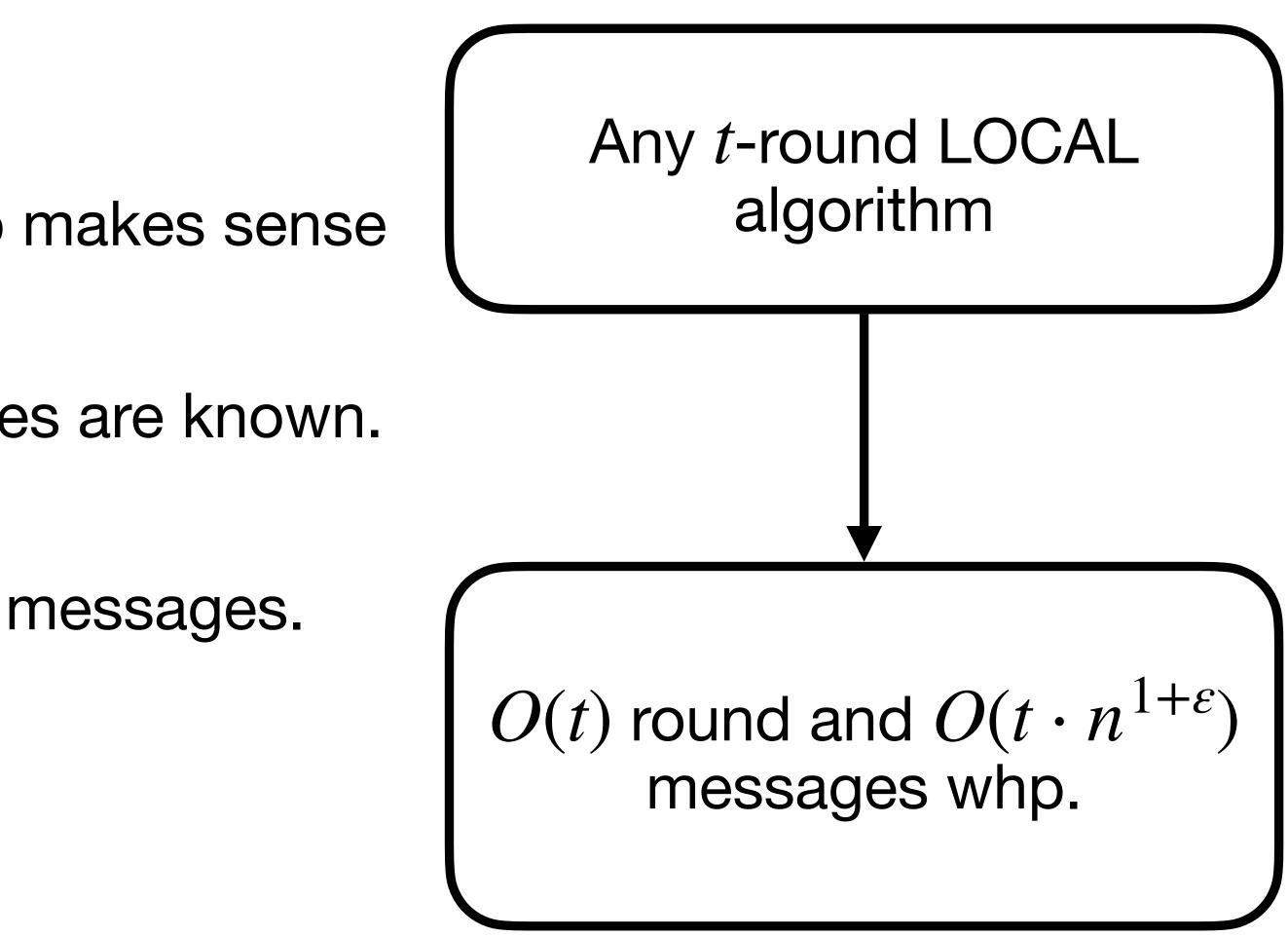
- Notion of message complexity also makes sense in the LOCAL model.
- Generic message reduction schemes are known. For example [BEI+19].

[BEI+19] Bitton, Emek, Izumi, Kutten. DISC 2019



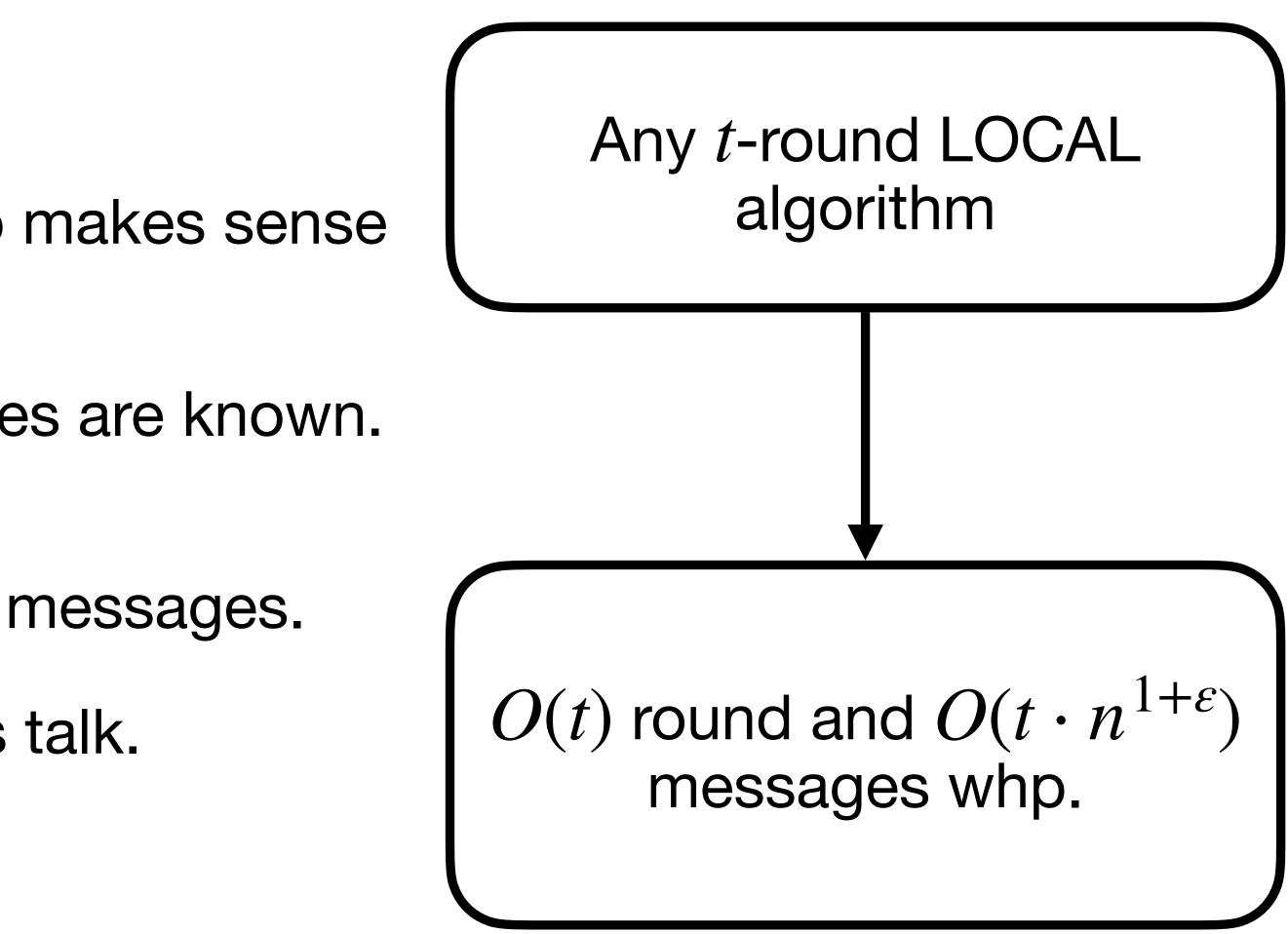
- Notion of message complexity also makes sense in the LOCAL model.
- Generic message reduction schemes are known. For example [BEI+19].
 - Need to send very large sized messages.

[BEI+19] Bitton, Emek, Izumi, Kutten. DISC 2019



- Notion of message complexity also makes sense in the LOCAL model.
- Generic message reduction schemes are known. For example [BEI+19].
 - Need to send very large sized messages.
- Will not be the primary focus in this talk.

[BEI+19] Bitton, Emek, Izumi, Kutten. DISC 2019



Why Message Complexity?

 Studying the interplay between round and message complexity is a fundamental theoretical question.

Why Message Complexity?

- Studying the interplay between round and message complexity is a fundamental theoretical question.
- Communication is costly and consumes a lot of energy.

Why Message Complexity?

- Studying the interplay between round and message complexity is a fundamental theoretical question.
- Communication is costly and consumes a lot of energy.
- Lead to efficient algorithms in big data computing models.

Why Message Complexity?

- Studying the interplay between round and message complexity is a fundamental theoretical question.
- Communication is costly and consumes a lot of energy.
- Lead to efficient algorithms in big data computing models.
 - k-machine model
 - Massively Parallel Computing (MPC)

Why Message Complexity?

- Studying the interplay between round and message complexity is a fundamental theoretical question.
- Communication is costly and consumes a lot of energy.
- Lead to efficient algorithms in big data computing models.
 - *k*-machine model
 - Massively Parallel Computing (MPC)

Broadcast

• One node u has a special message M of $O(\log n)$ bits.

Broadcast

- One node u has a special message M of $O(\log n)$ bits.
- All nodes connected to u must receive M at least once.

Broadcast

- One node u has a special message M of $O(\log n)$ bits.
- All nodes connected to u must receive M at least once.

- Flooding Algorithm:
 - Node *u* sends *M* to all its neighbors.

• If v receives M for the first time, it sends M to all neighbors.

• Takes *D* rounds and 2*m* messages.

- Takes D rounds and 2m messages.
- Is this the best we can do for broadcast?

- Takes D rounds and 2m messages.
- Is this the best we can do for broadcast?
- Broadcast must take $\Omega(D)$ rounds.

- Takes D rounds and 2m messages.
- Is this the best we can do for broadcast?
- Broadcast must take $\Omega(D)$ rounds.

• Otherwise there are not enough rounds for M to reach all nodes.

- Takes D rounds and 2m messages.
- Is this the best we can do for broadcast?
- Broadcast must take $\Omega(D)$ rounds.
- How do you formally prove that broadcast requires $\Omega(m)$ messages?

• Otherwise there are not enough rounds for M to reach all nodes.

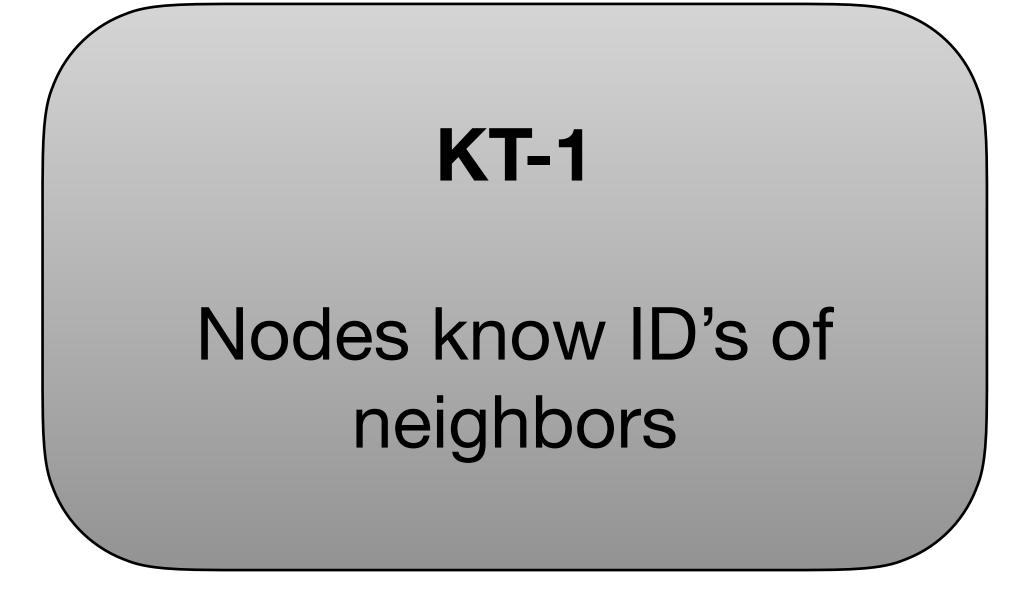
KT-0 Nodes just know their own ID

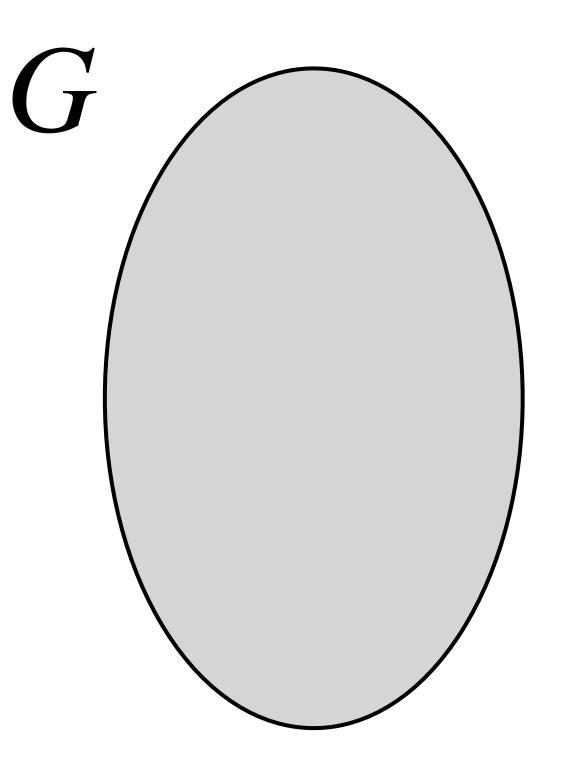
KT-0 Nodes just know their own ID

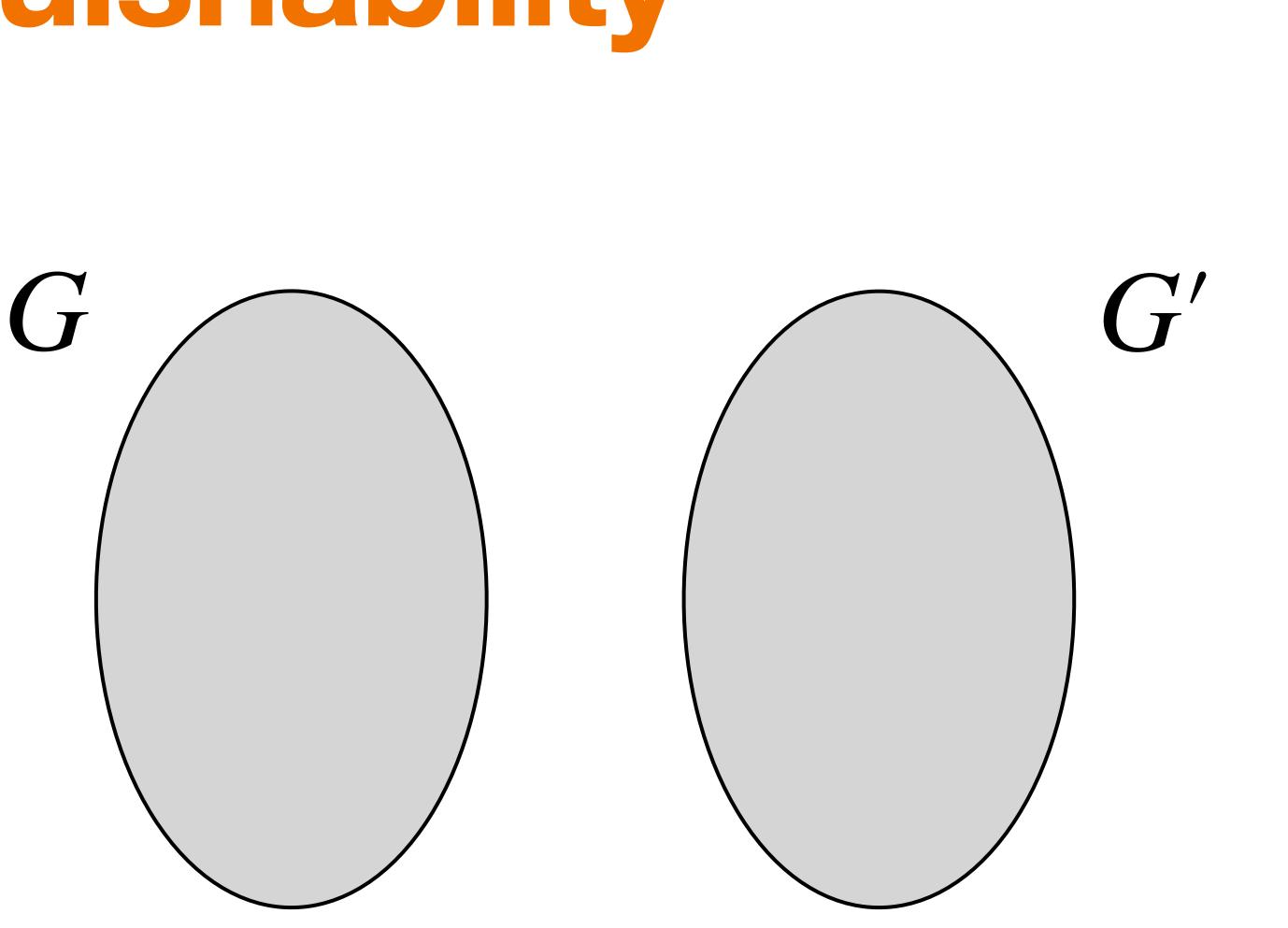
KT-1 Nodes know ID's of neighbors

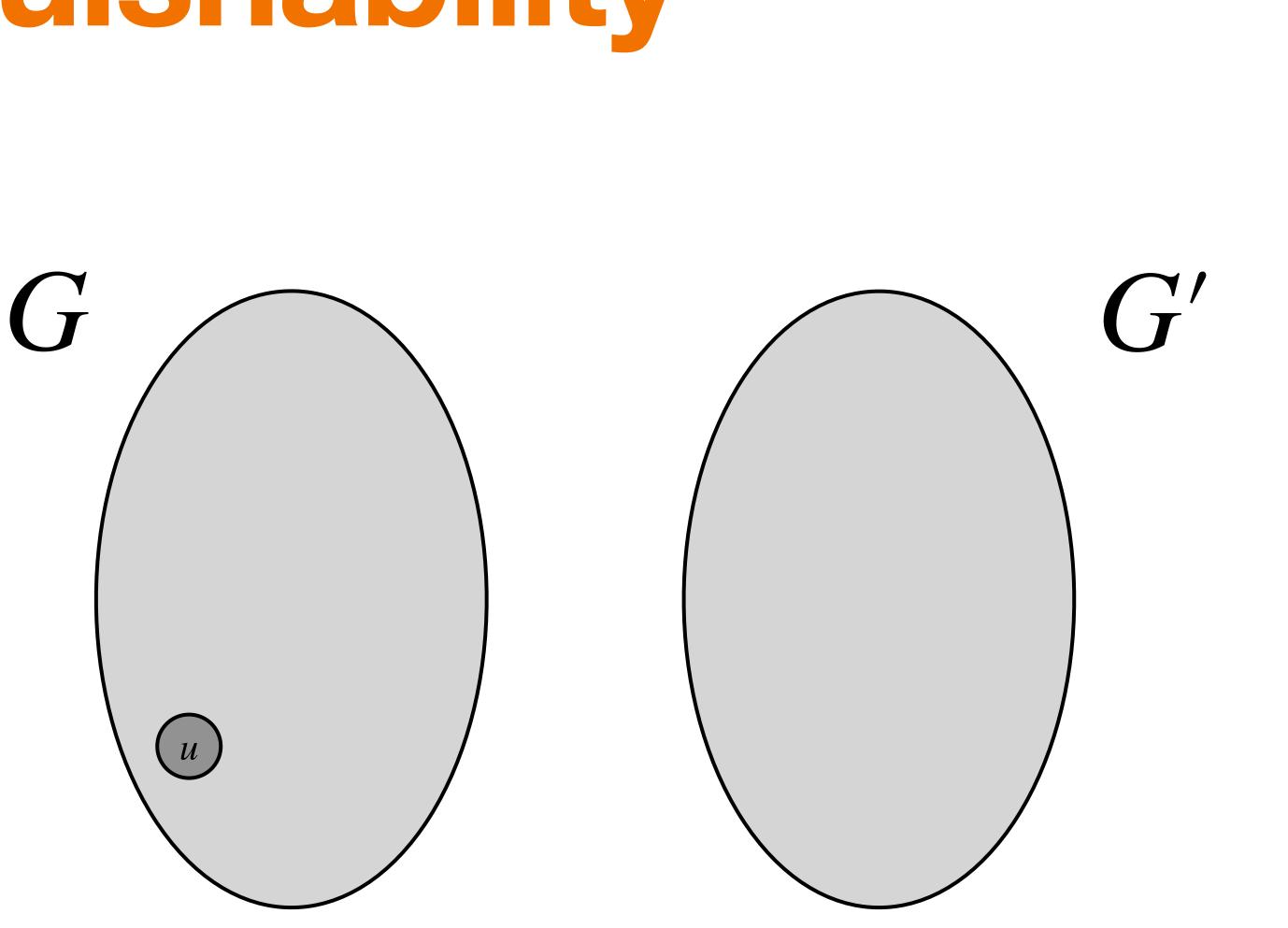
KT-0 Nodes just know their own

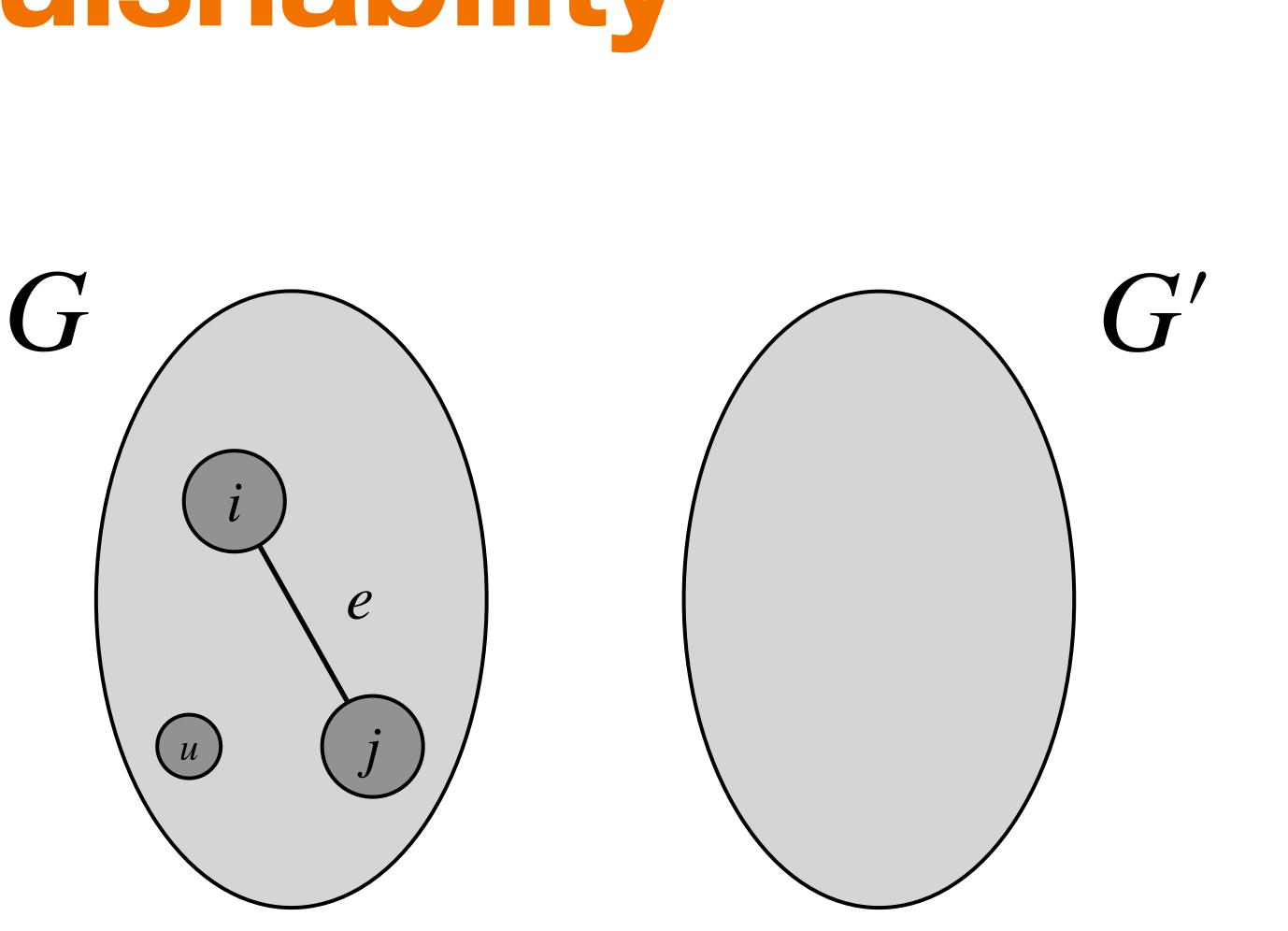
• Going from KT-0 to KT-1 requires only one round, but O(m) messages.

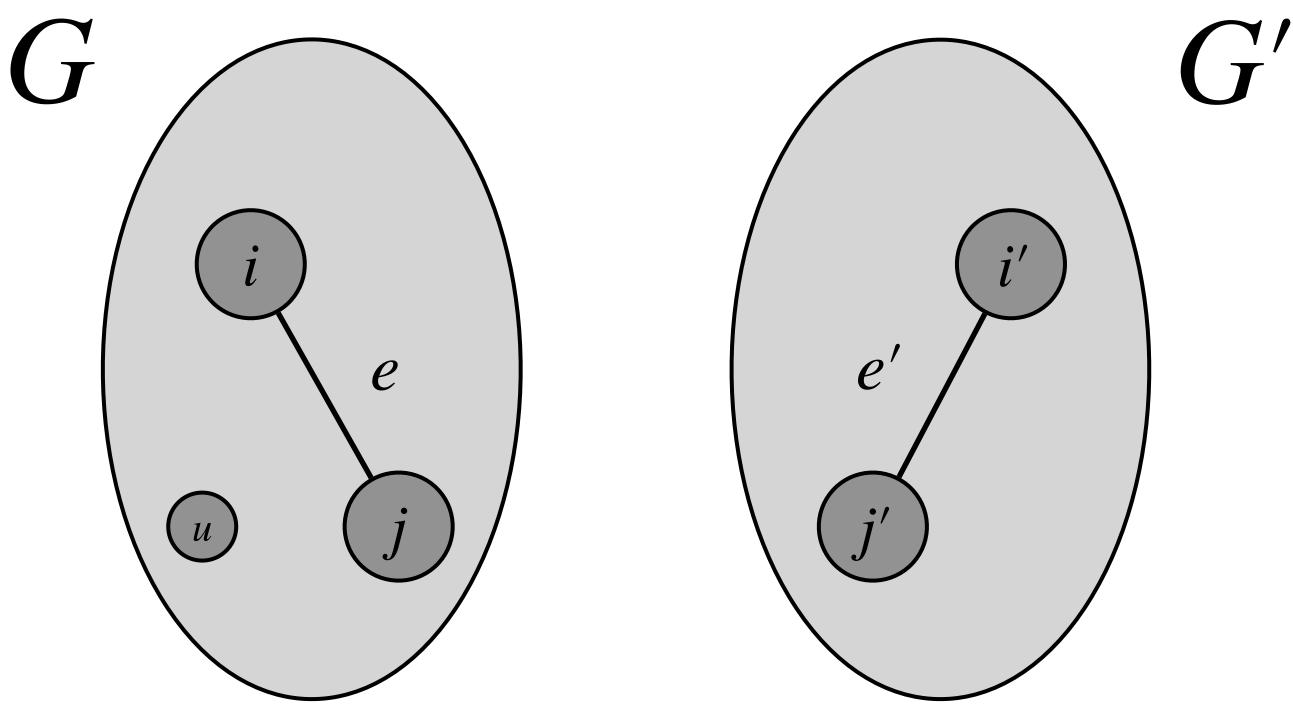




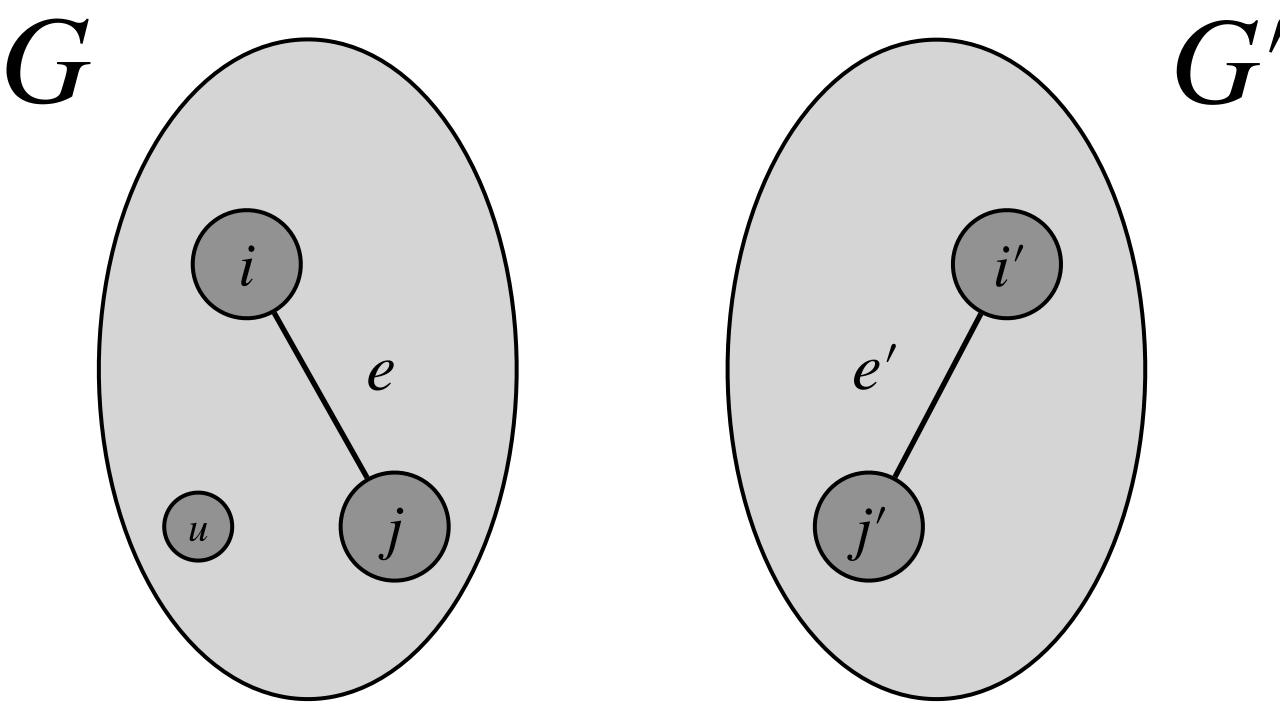




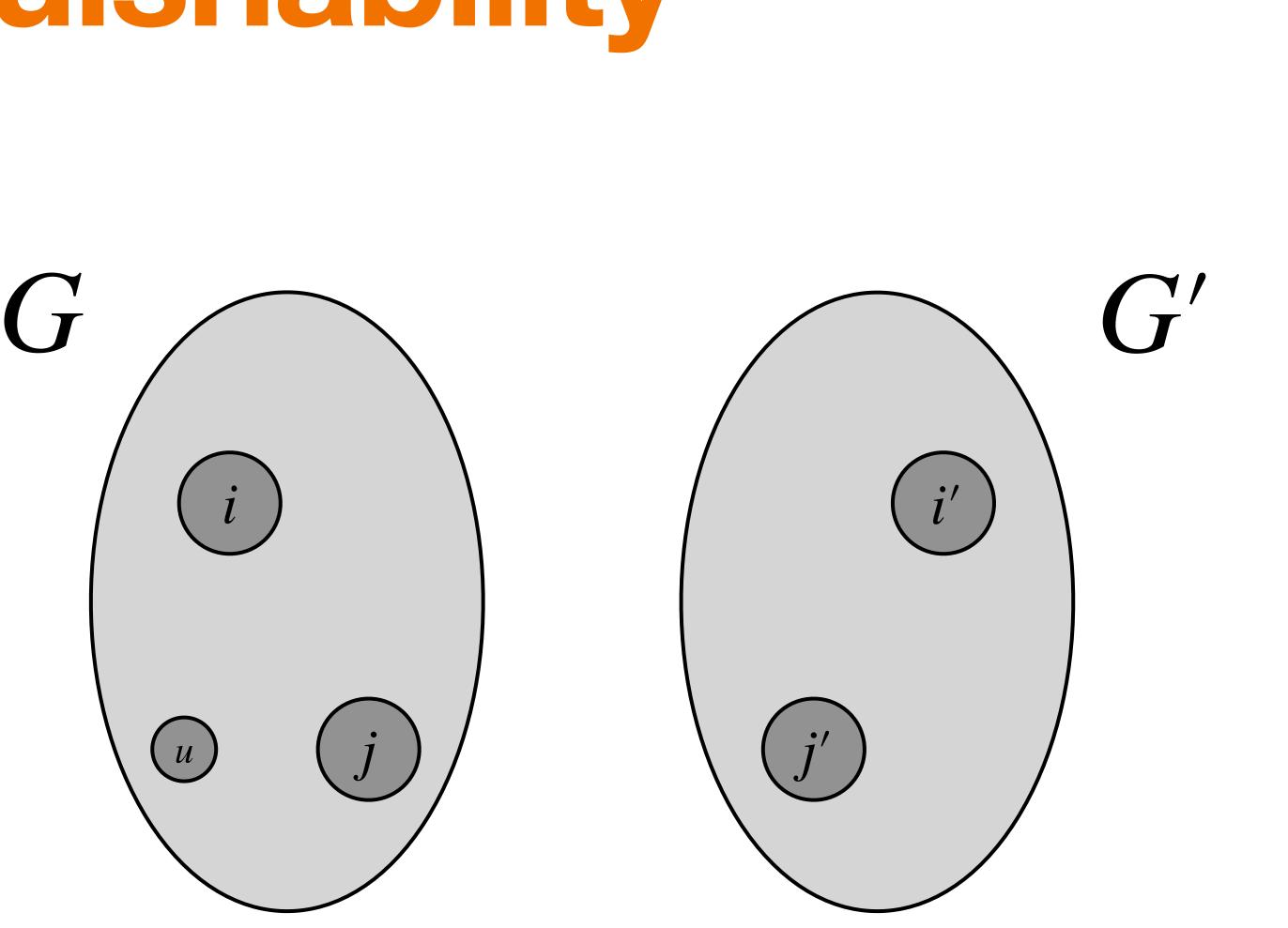




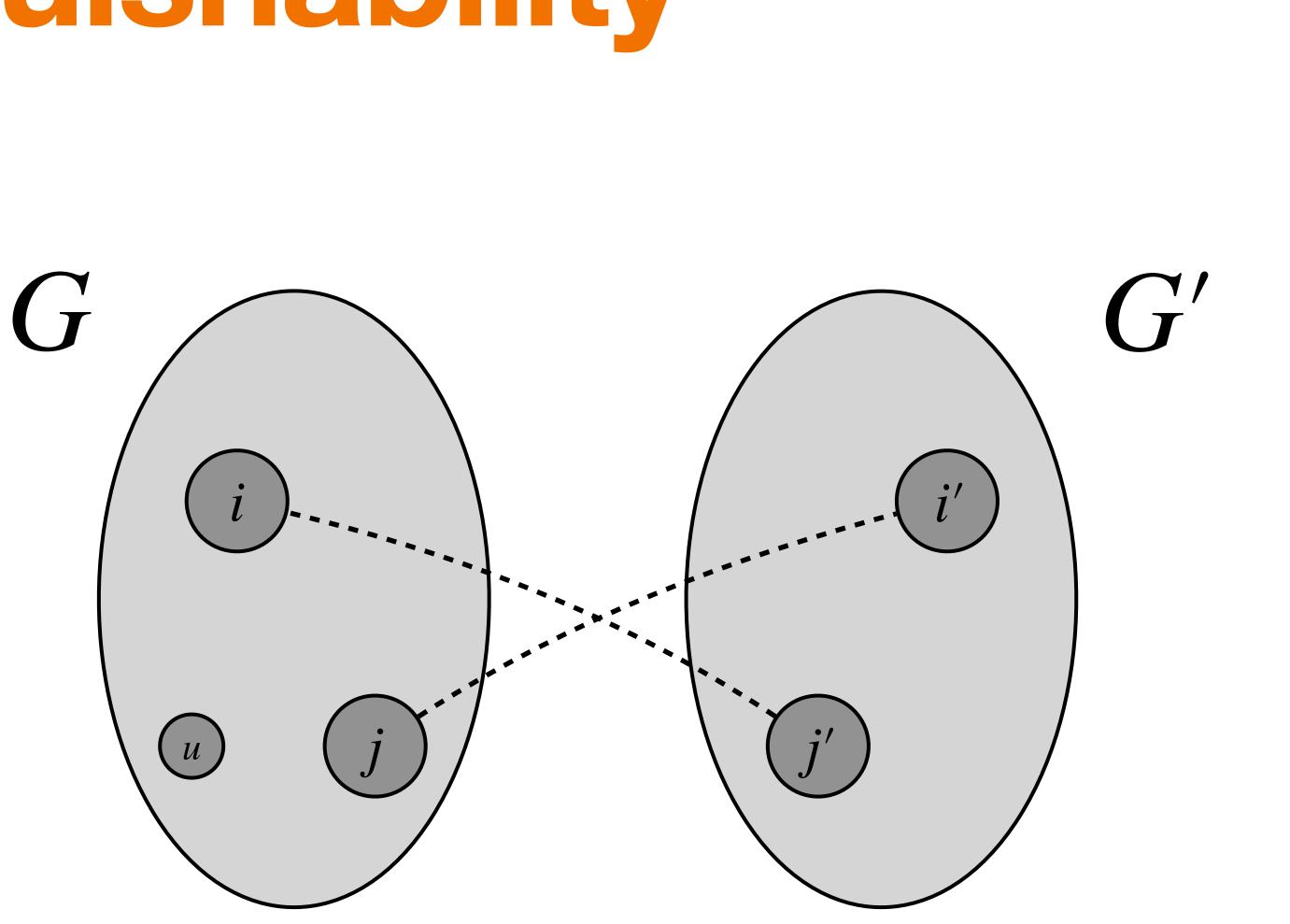
• Assume no message passes through *e* and *e'*.



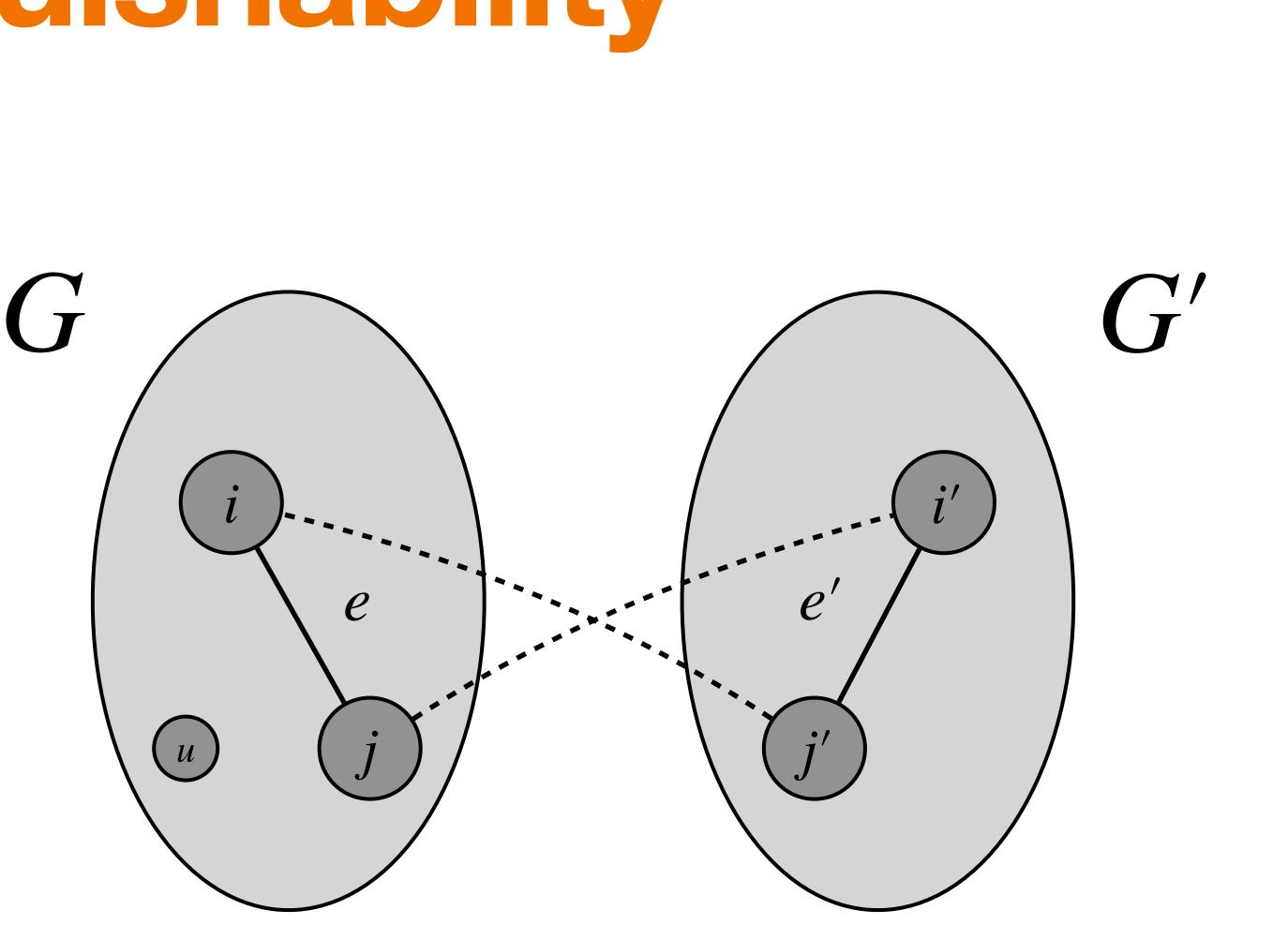
• Assume no message passes through e and e'.



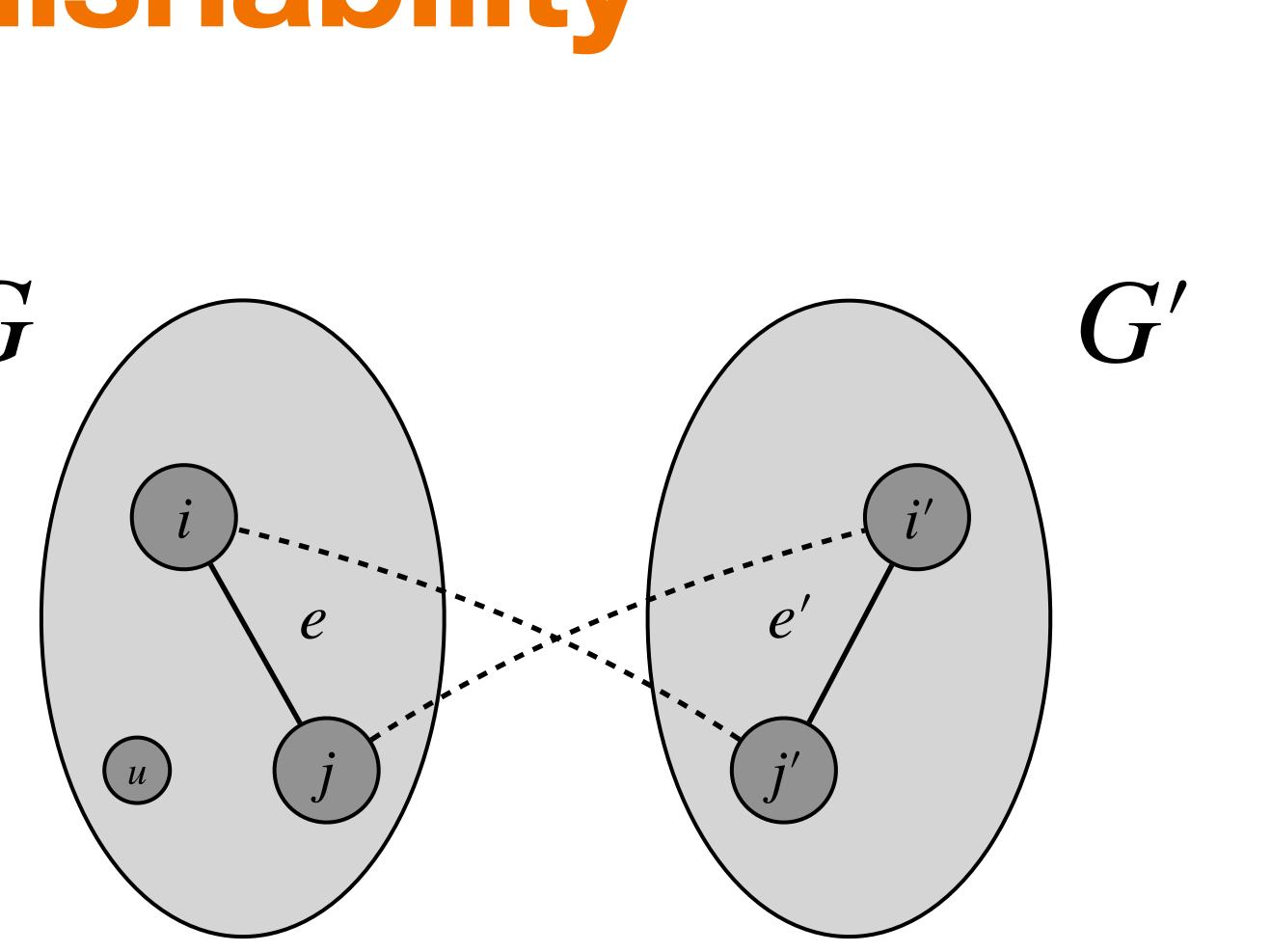
• Assume no message passes through e and e'.



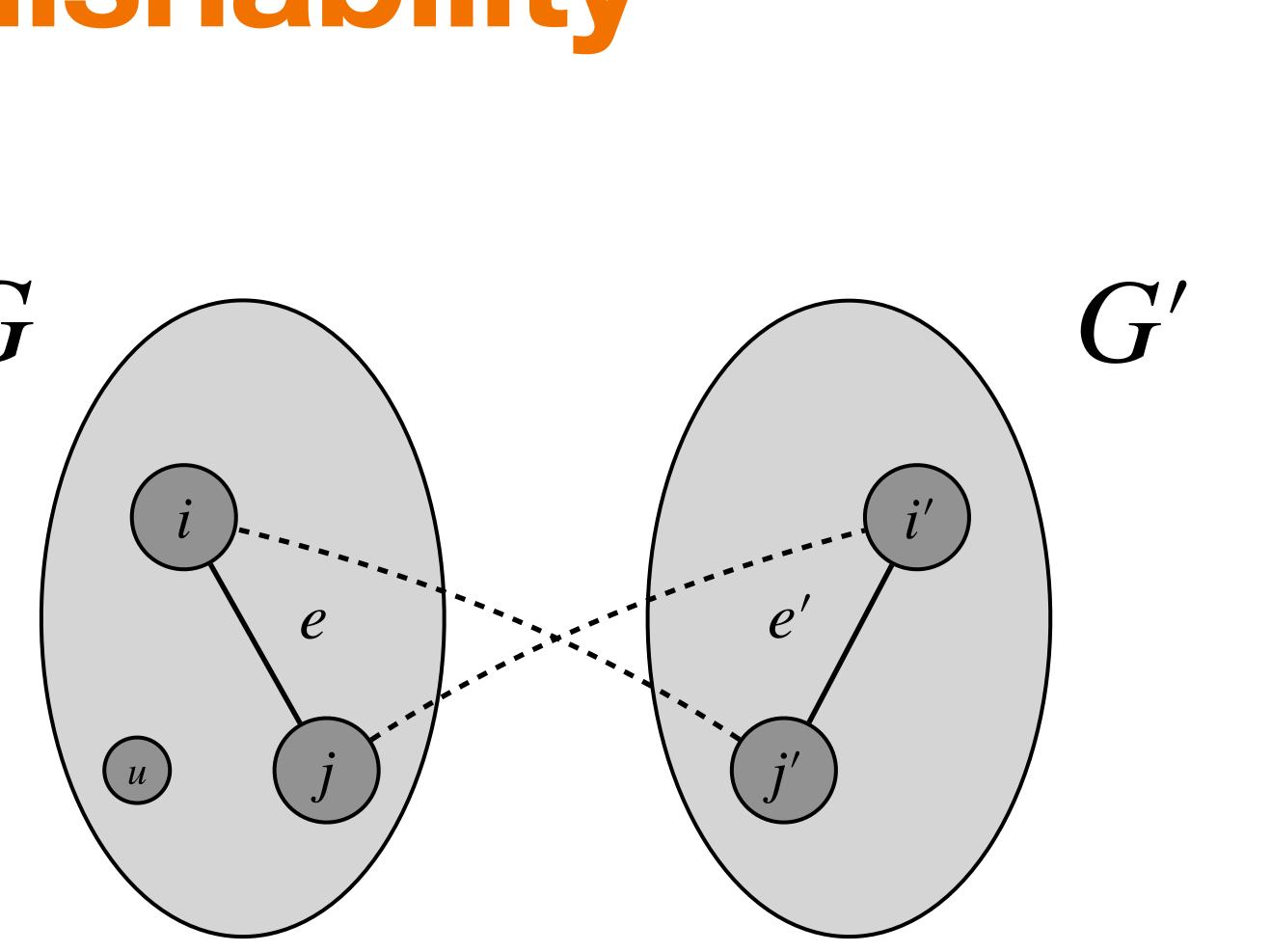
• Assume no message passes through e and e'.



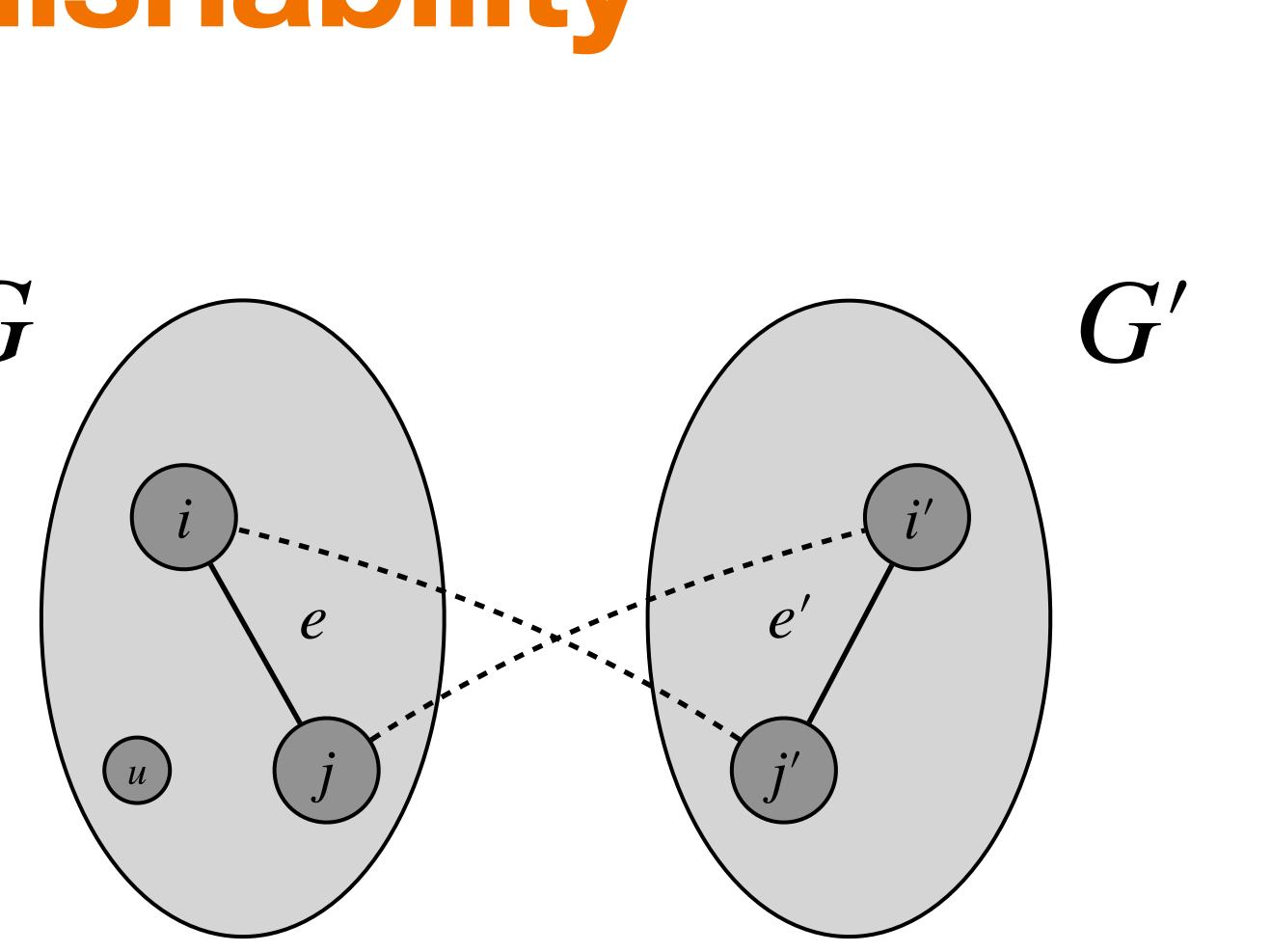
- Assume no message passes through e and e'.
- For every pair of edges, at least one must be used to send a message.

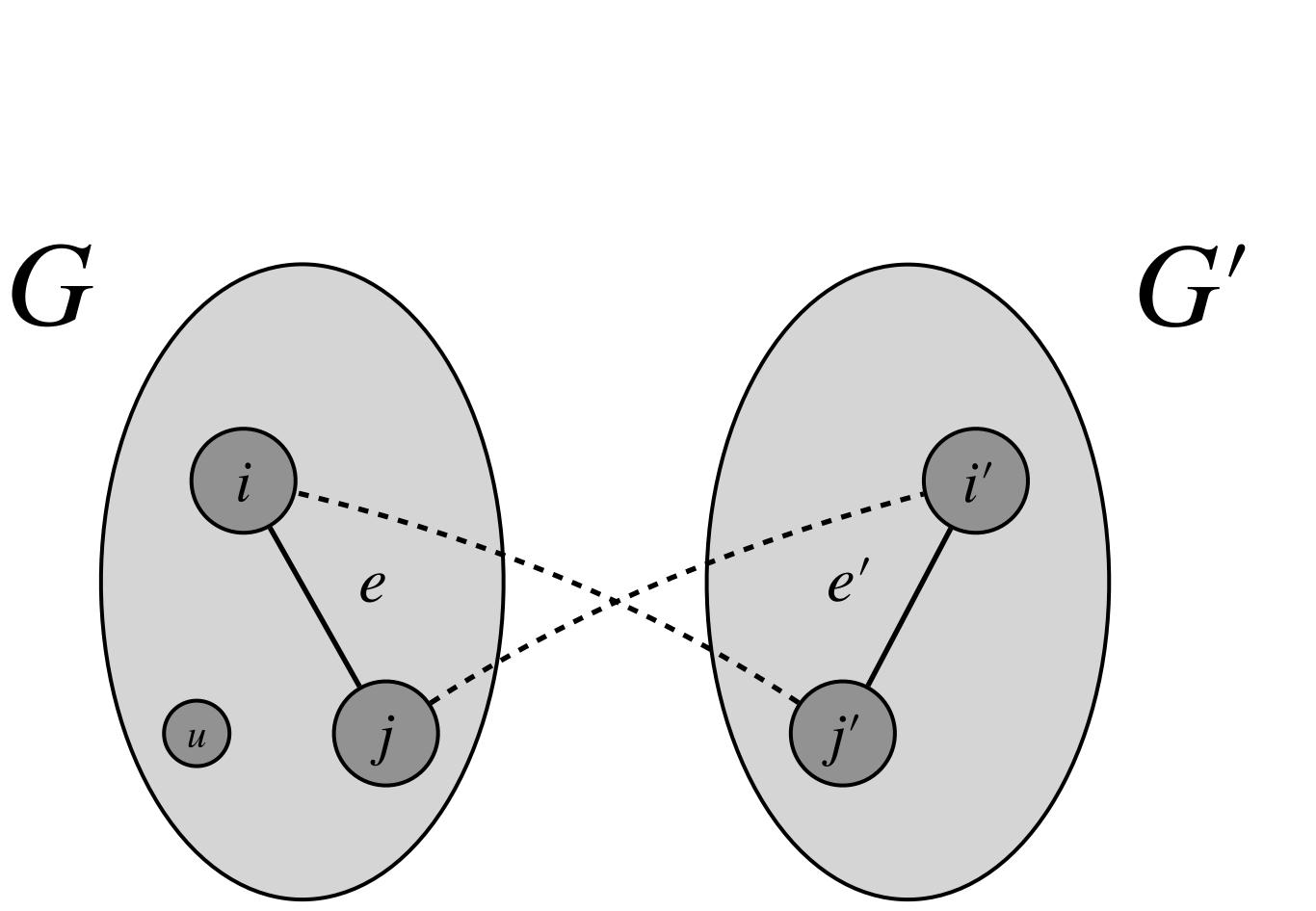


- Assume no message passes through e and e'.
- For every pair of edges, at least one must be used to send a message.
- Therefore, message complexity of broadcast is $\Omega(m)$.

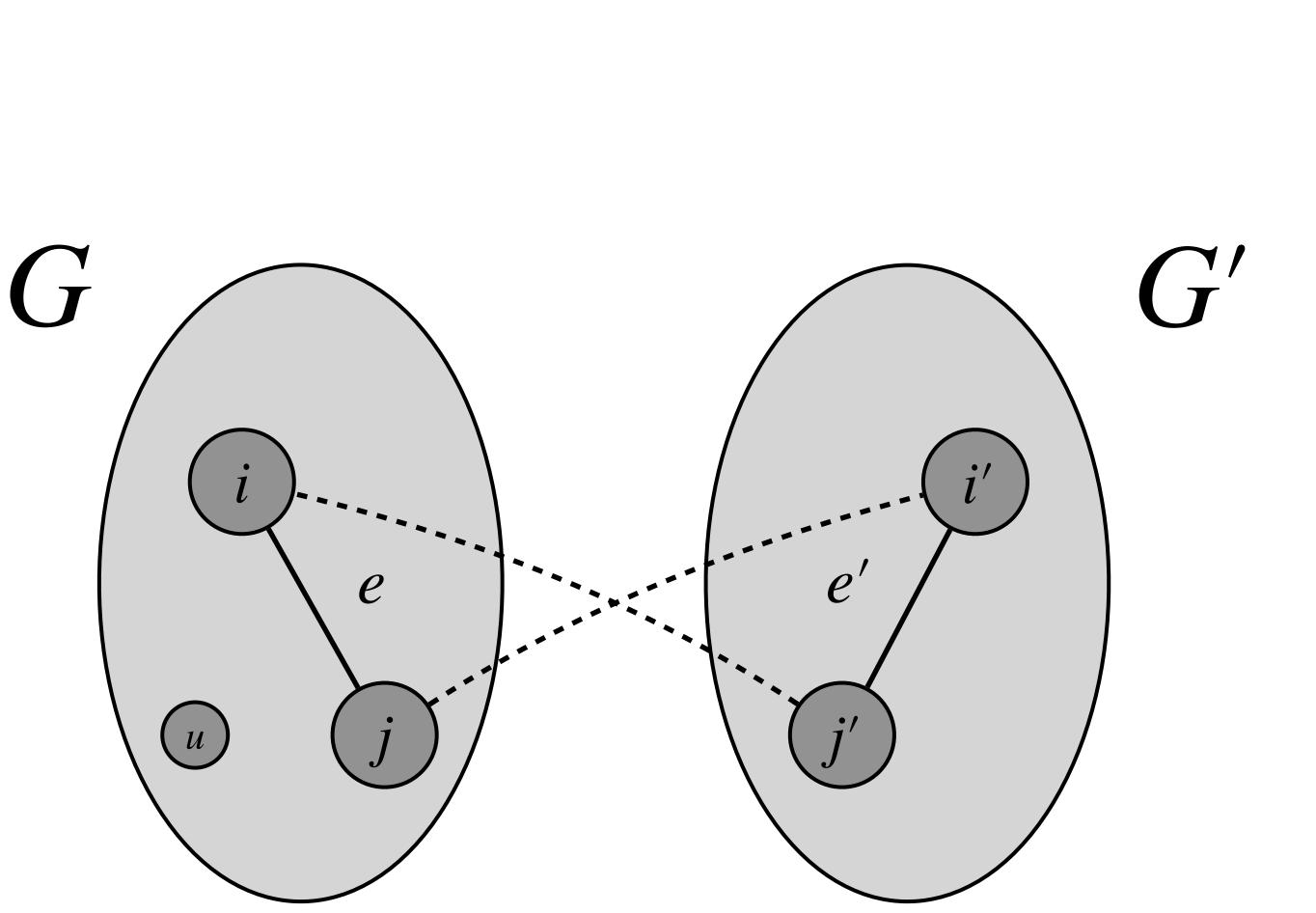


- Assume no message passes through e and e'.
- For every pair of edges, at least one must be used to send a message.
- Therefore, message complexity of broadcast is $\Omega(m)$.
- Even works with infinite bandwidth!

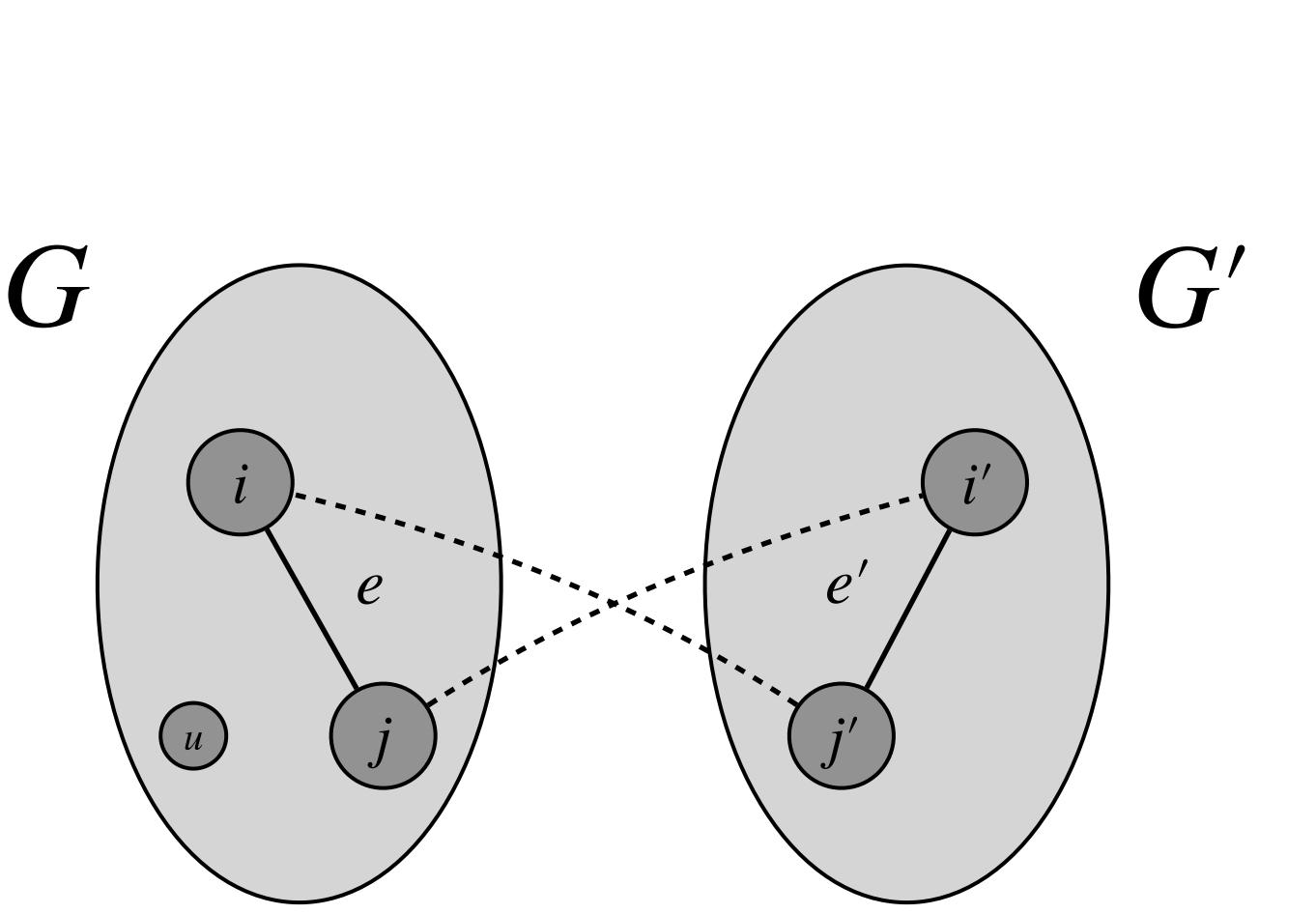




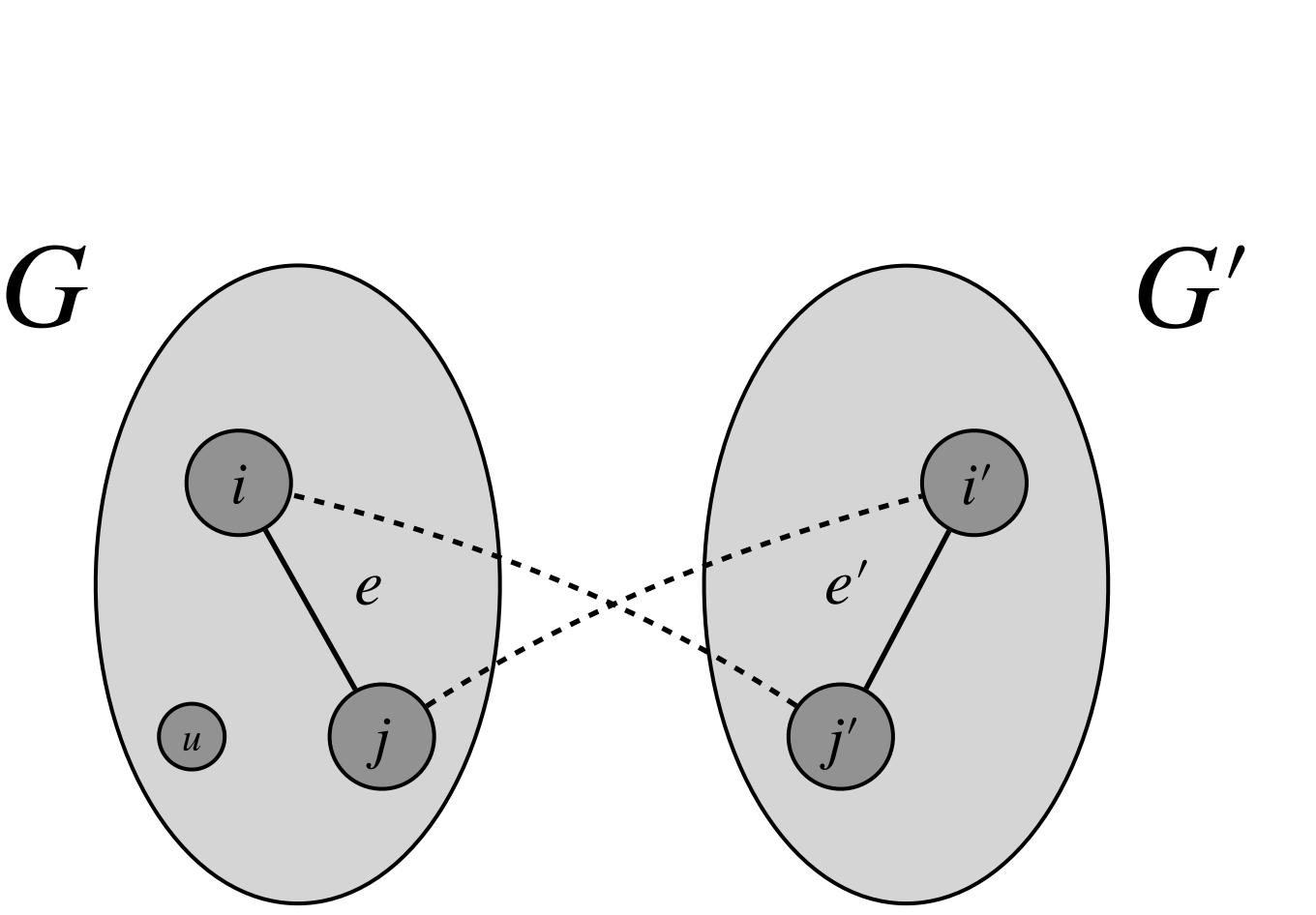
 Initial knowledge itself is different!

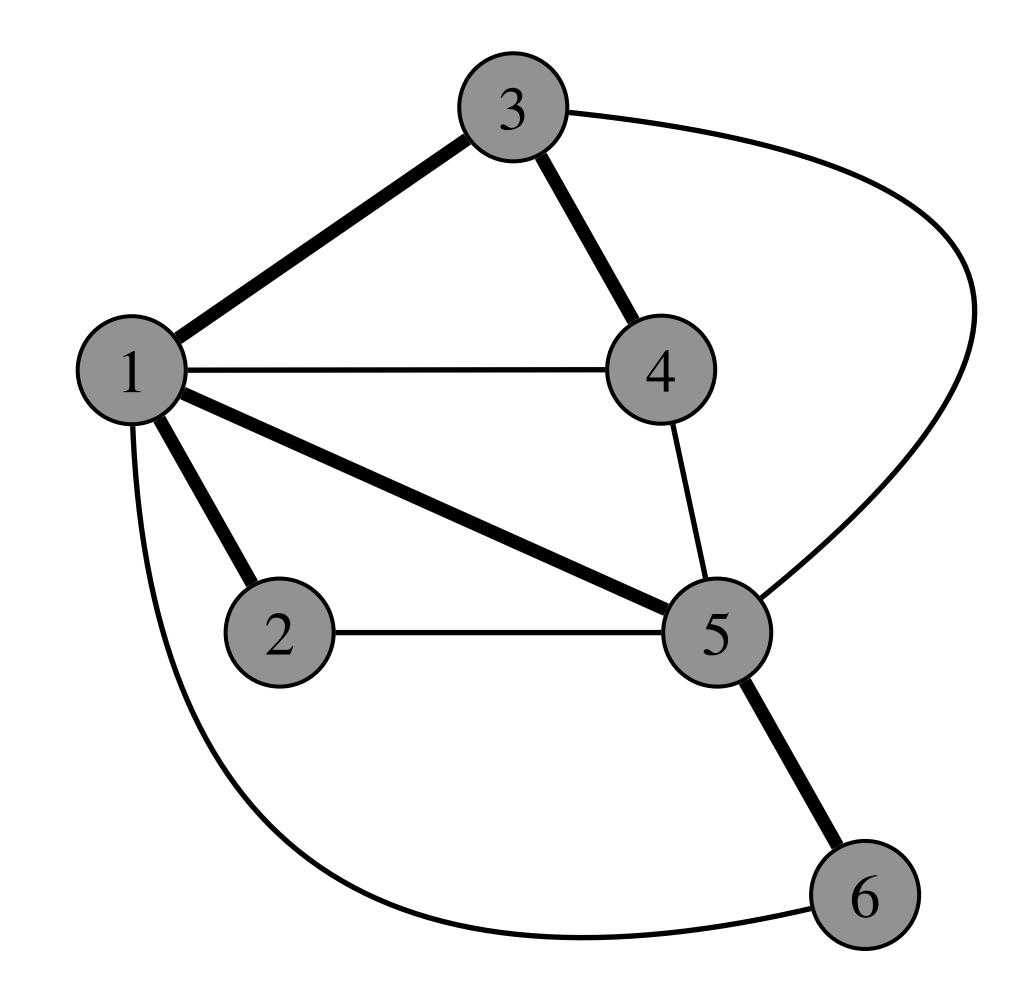


- Initial knowledge itself is different!
- Node *i* sees *j* in one graph and j' in the other.

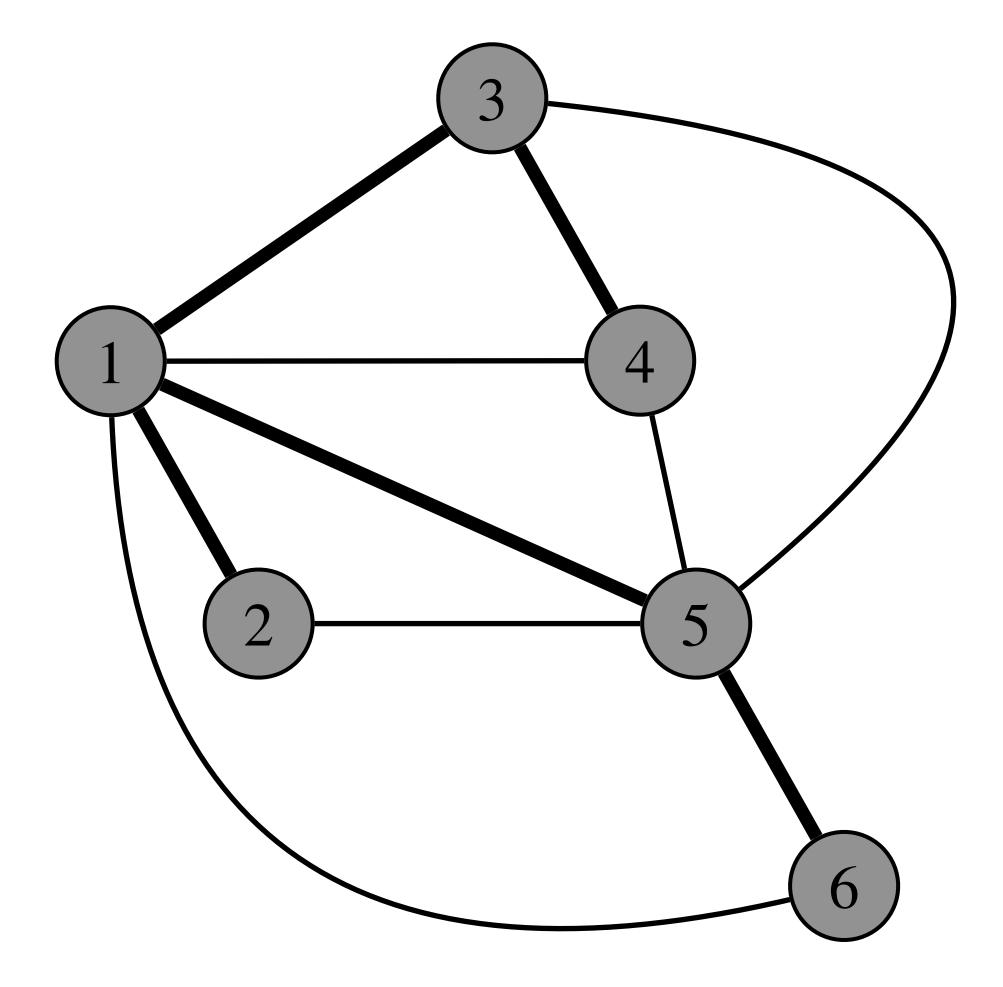


- Initial knowledge itself is different!
- Node *i* sees *j* in one graph and j' in the other.
- Is there any hope for an $\Omega(m)$ lower bound?





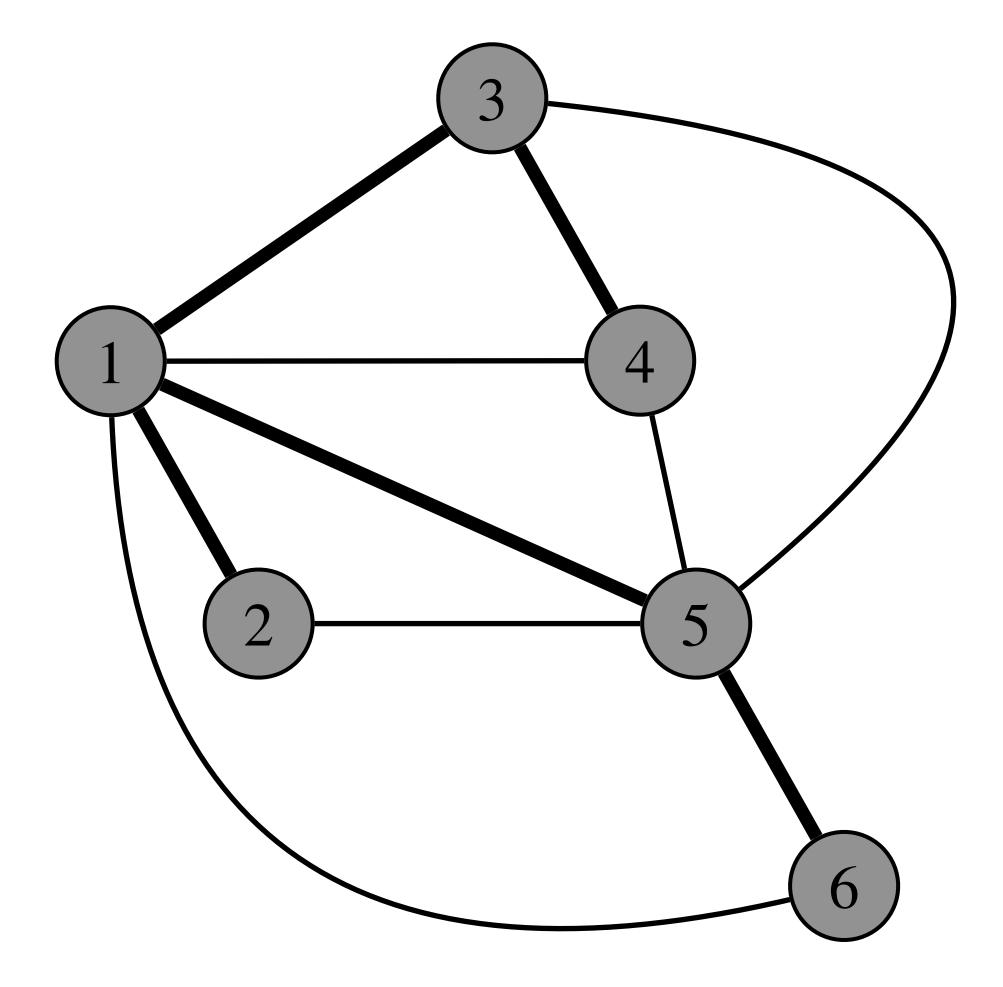
• We can compute a **spanning tree** with $\tilde{O}(n)$ rounds and $\tilde{O}(n)$ messages.



Message Efficient Broadcast

- We can compute a **spanning tree** with $\tilde{O}(n)$ rounds and $\tilde{O}(n)$ messages.
 - [KKT15] key ingredient: randomized linear sketches.

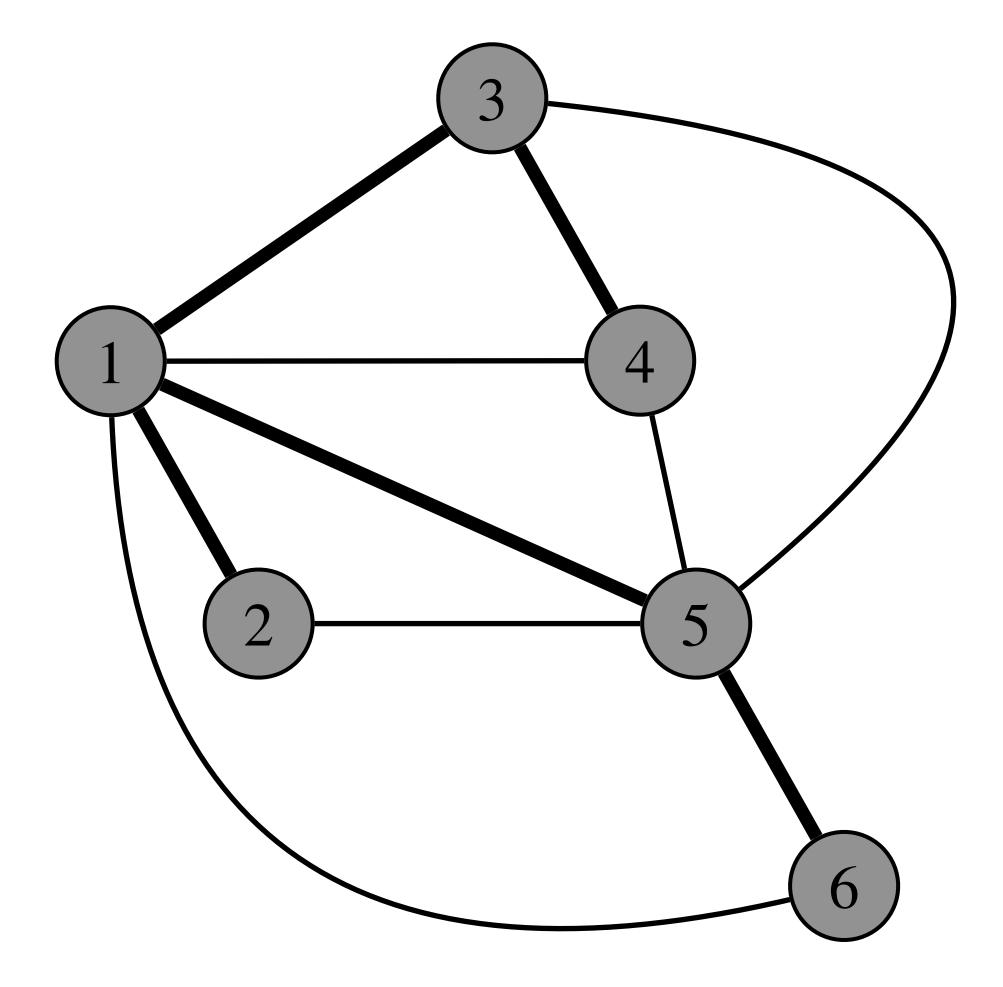
[KKT15] King, Kutten, Thorup. PODC 2015



Message Efficient Broadcast

- We can compute a **spanning tree** with $\tilde{O}(n)$ rounds and $\tilde{O}(n)$ messages.
 - [KKT15] key ingredient: randomized linear sketches.
- Broadcast by flooding on just the spanning tree edges.

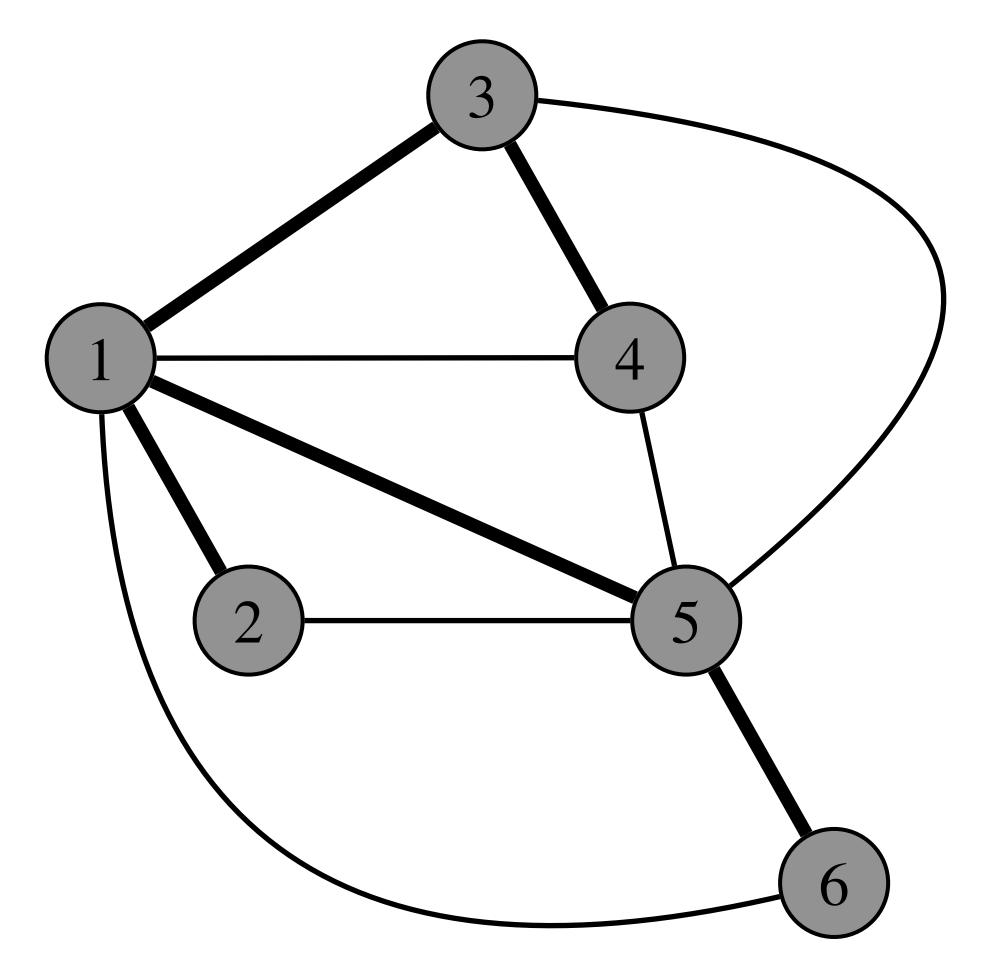
[KKT15] King, Kutten, Thorup. PODC 2015



Message Efficient Broadcast

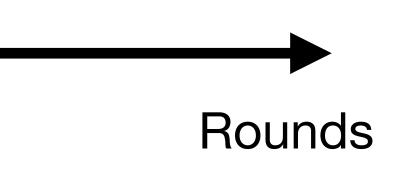
- We can compute a **spanning tree** with $\tilde{O}(n)$ rounds and $\tilde{O}(n)$ messages.
 - [KKT15] key ingredient: randomized linear sketches.
- Broadcast by flooding on just the spanning tree edges.
- Message efficient but not round efficient.

[KKT15] King, Kutten, Thorup. PODC 2015

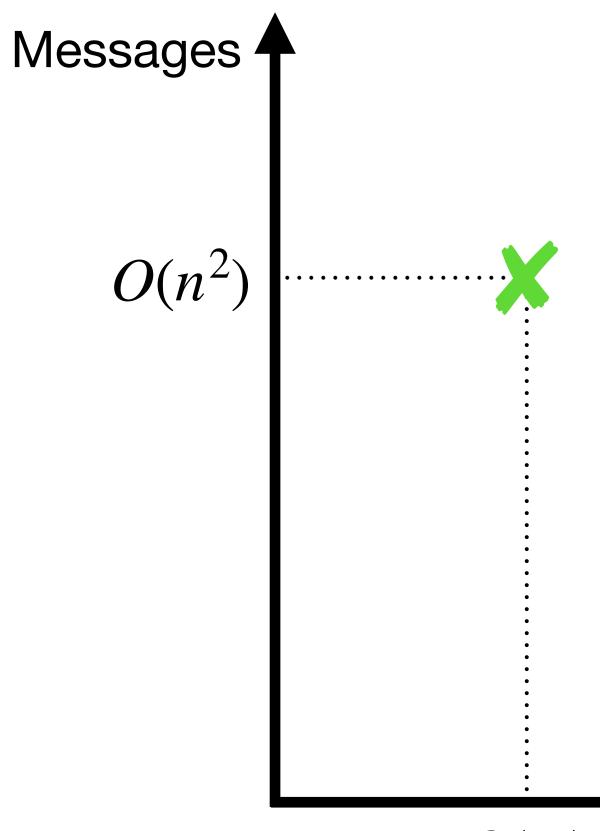


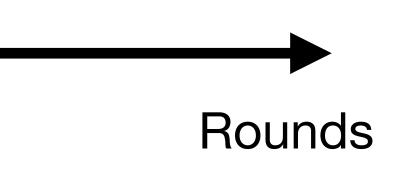
Rounds vs Messages

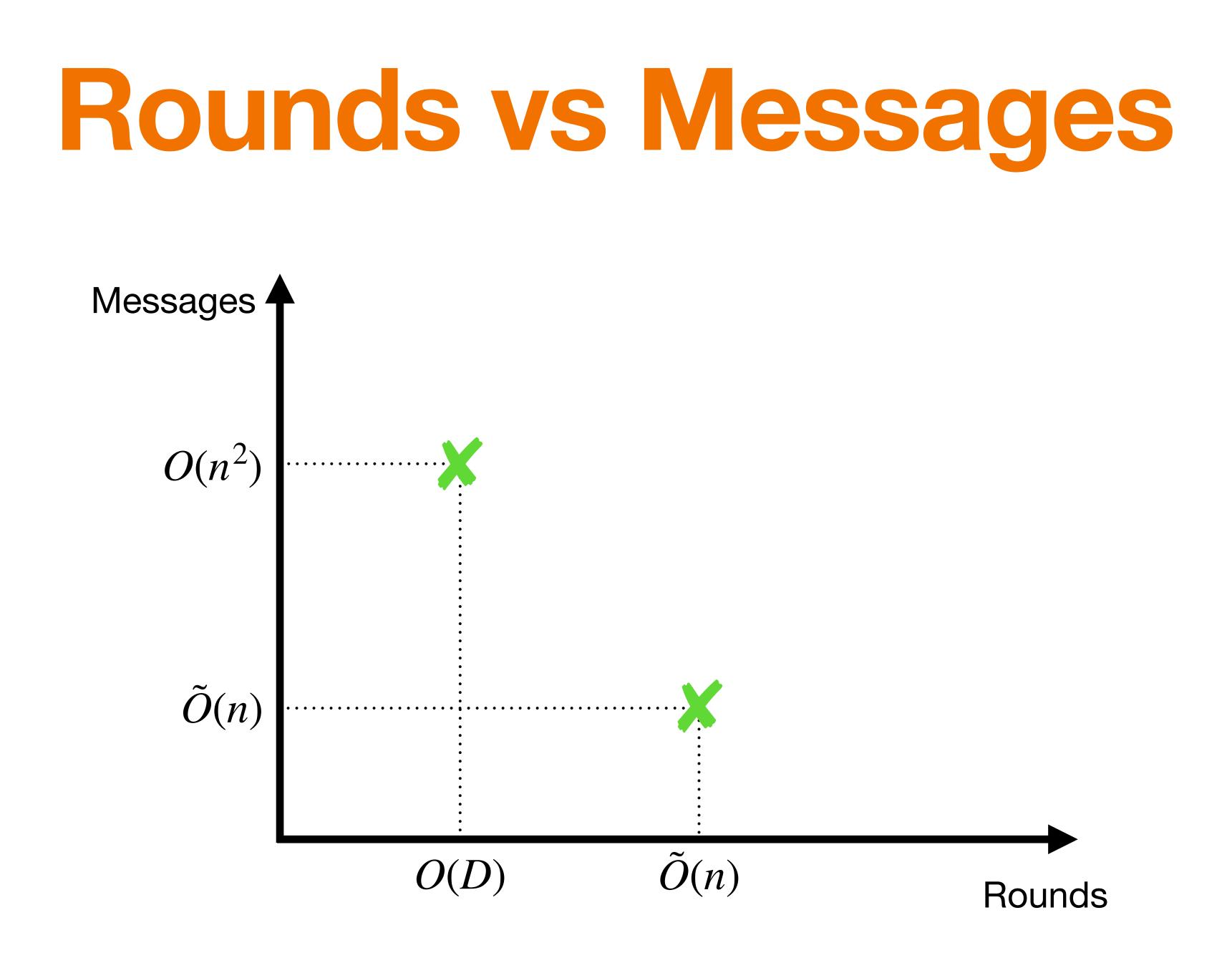
Messages

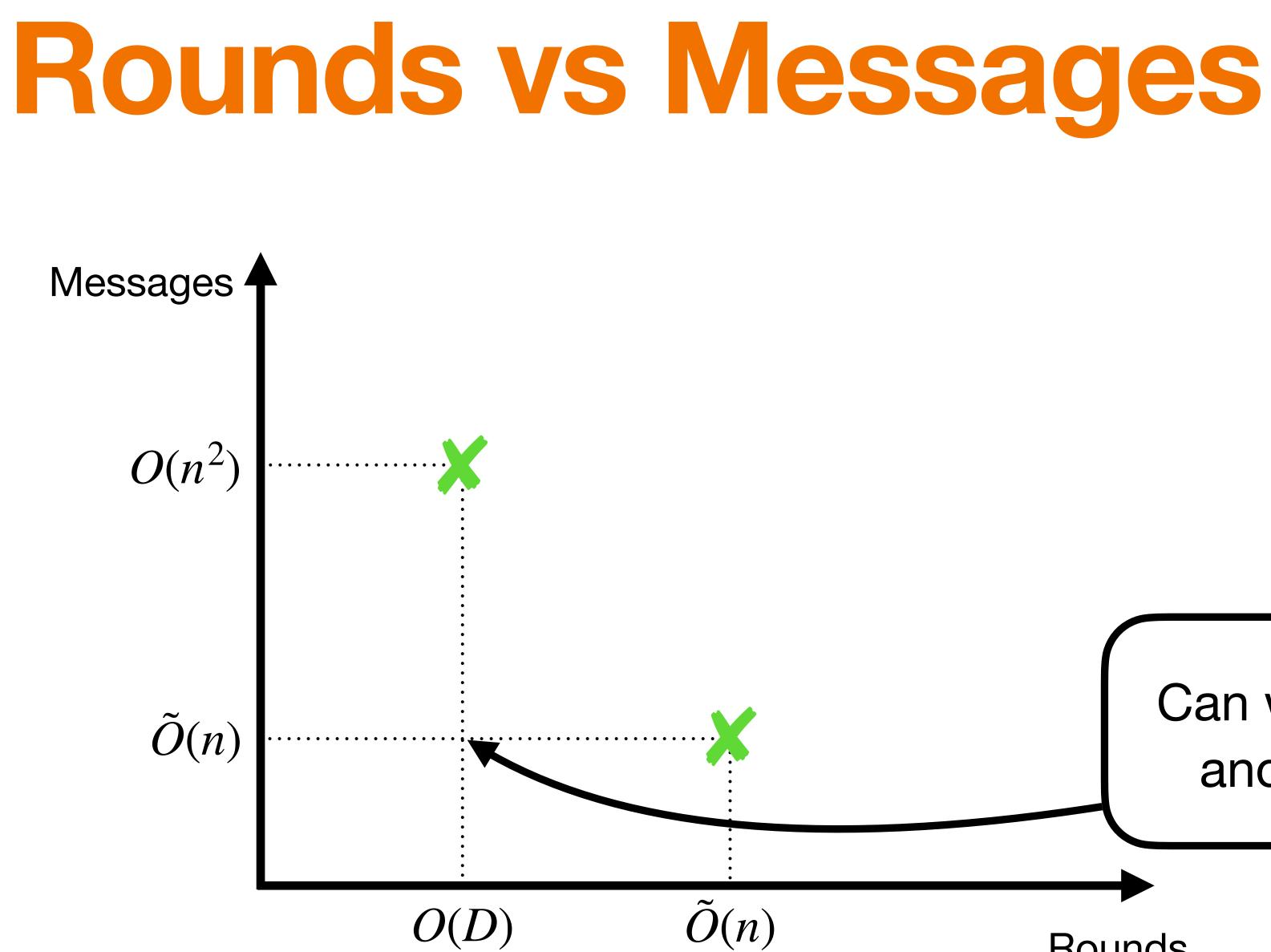


Rounds vs Messages



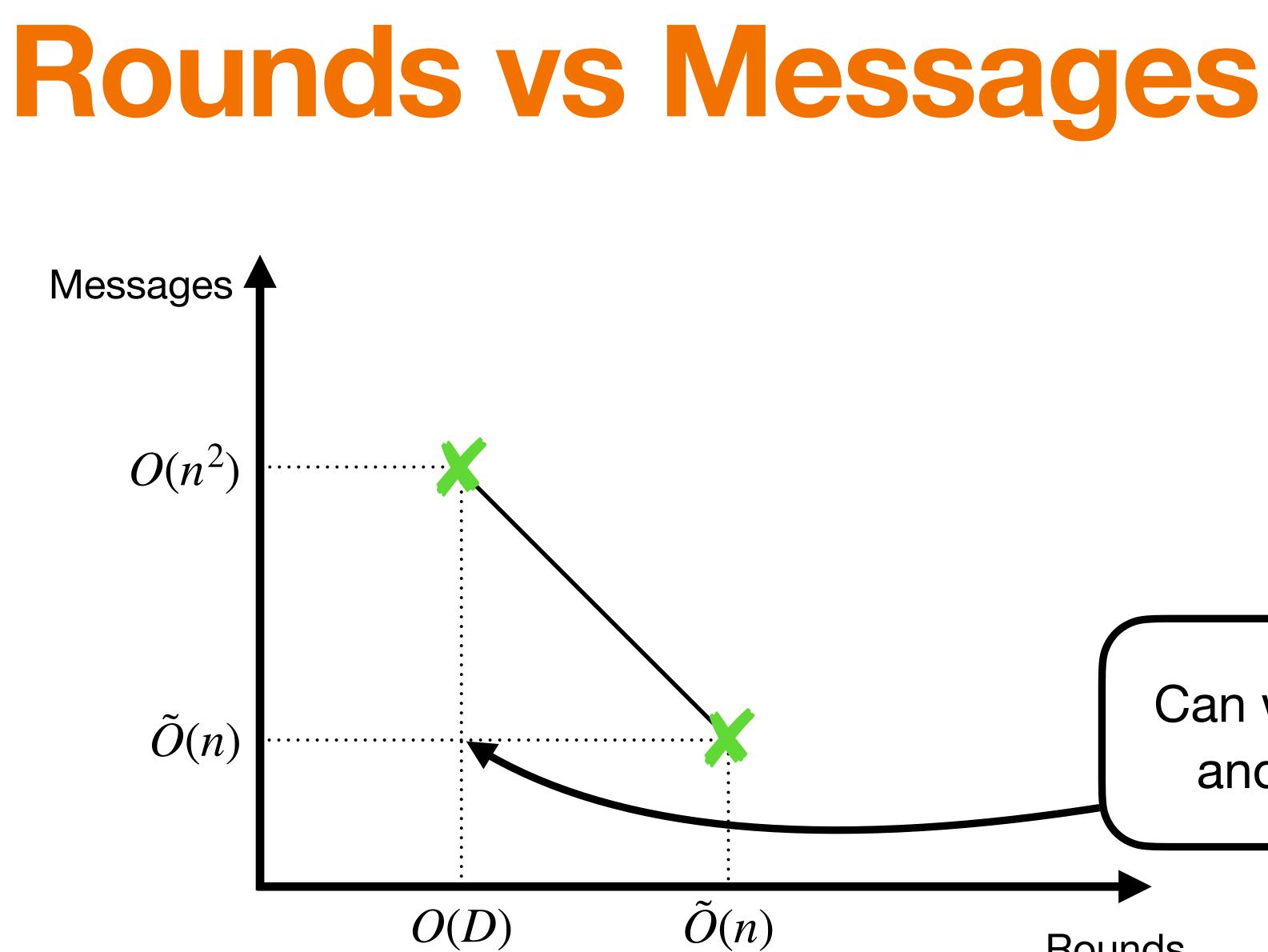






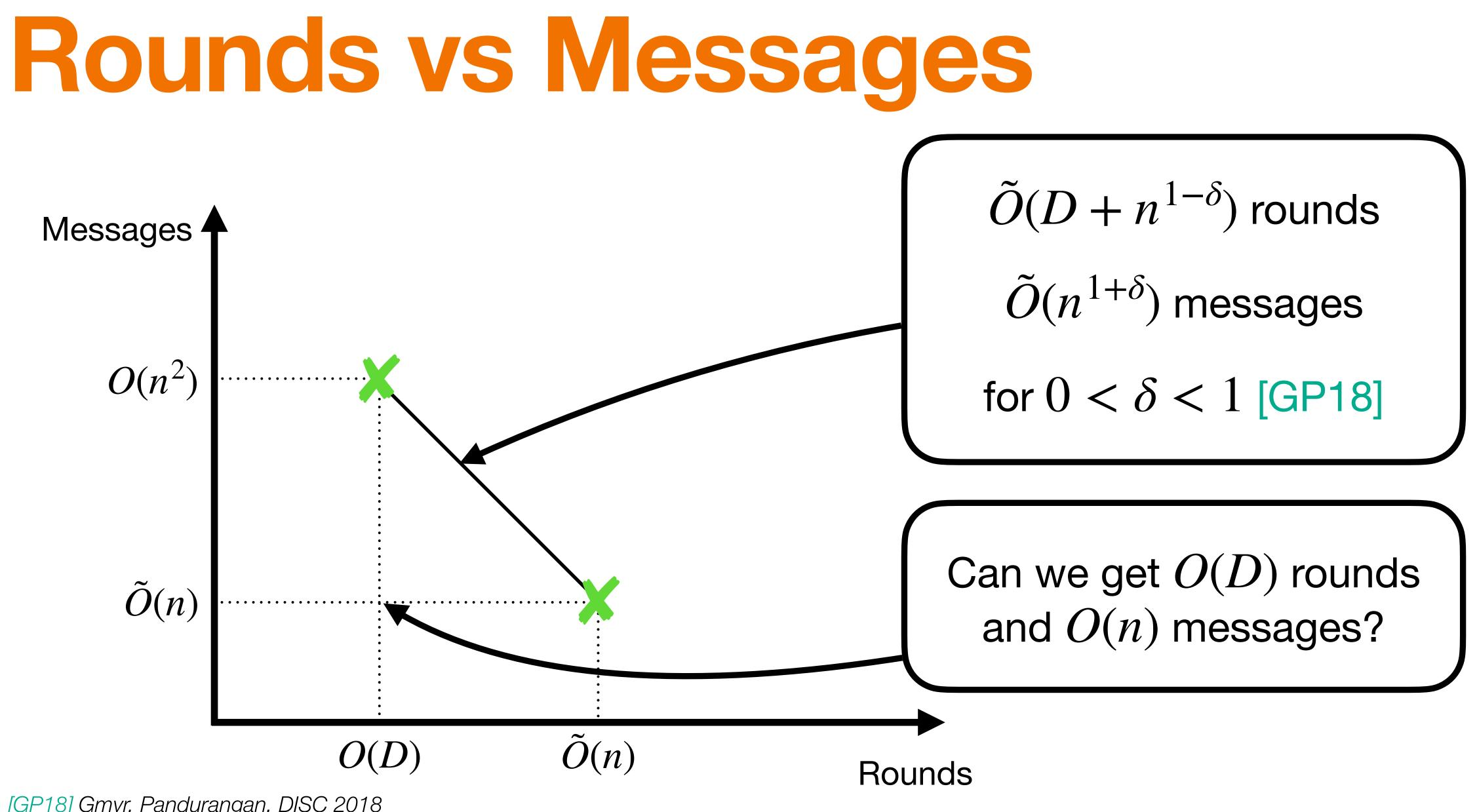
Can we get O(D) rounds and O(n) messages?

Rounds

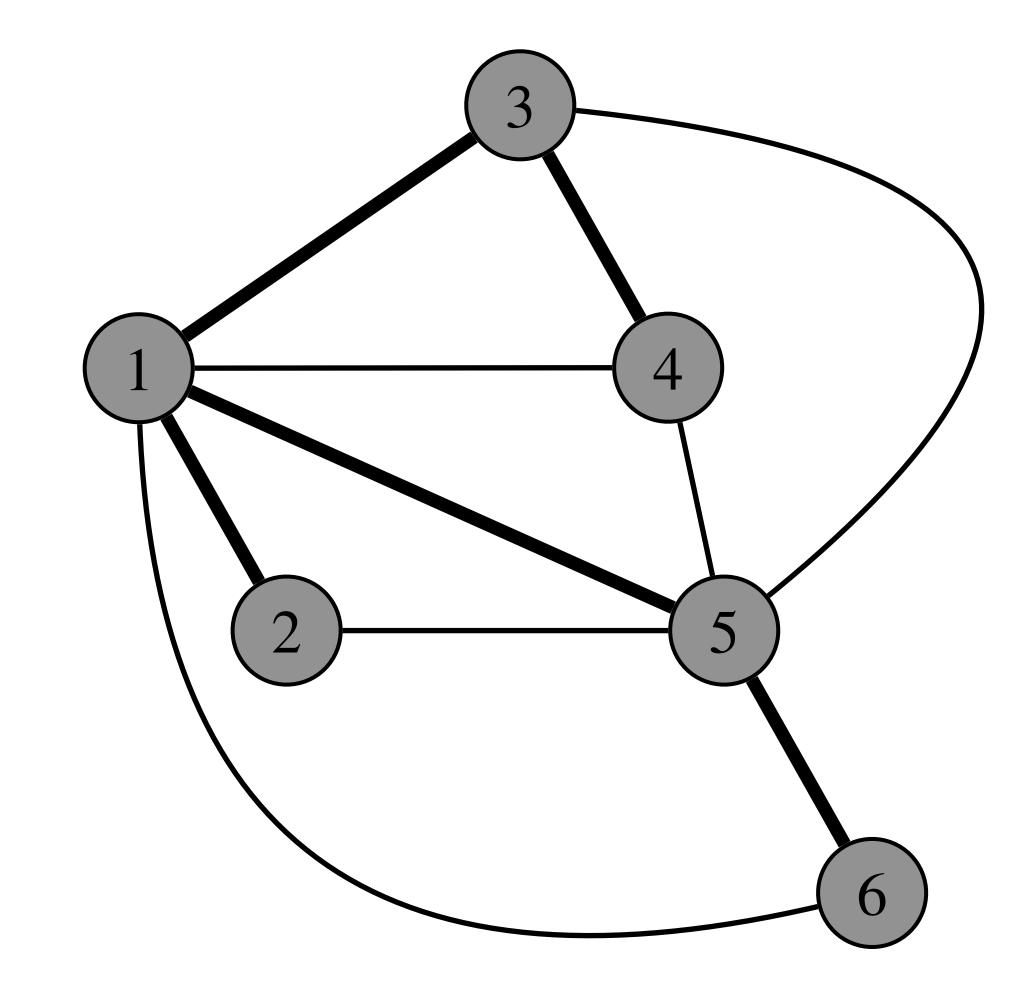


Can we get O(D) rounds and O(n) messages?

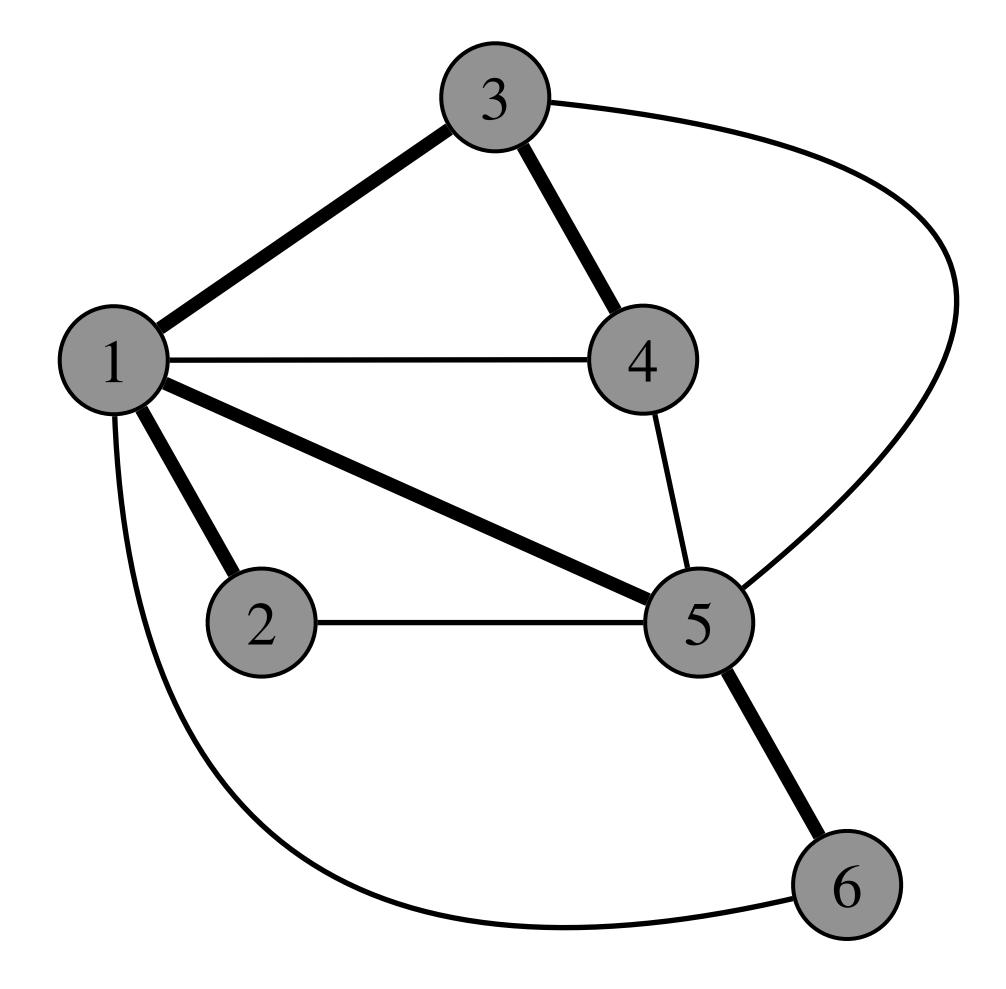
Rounds



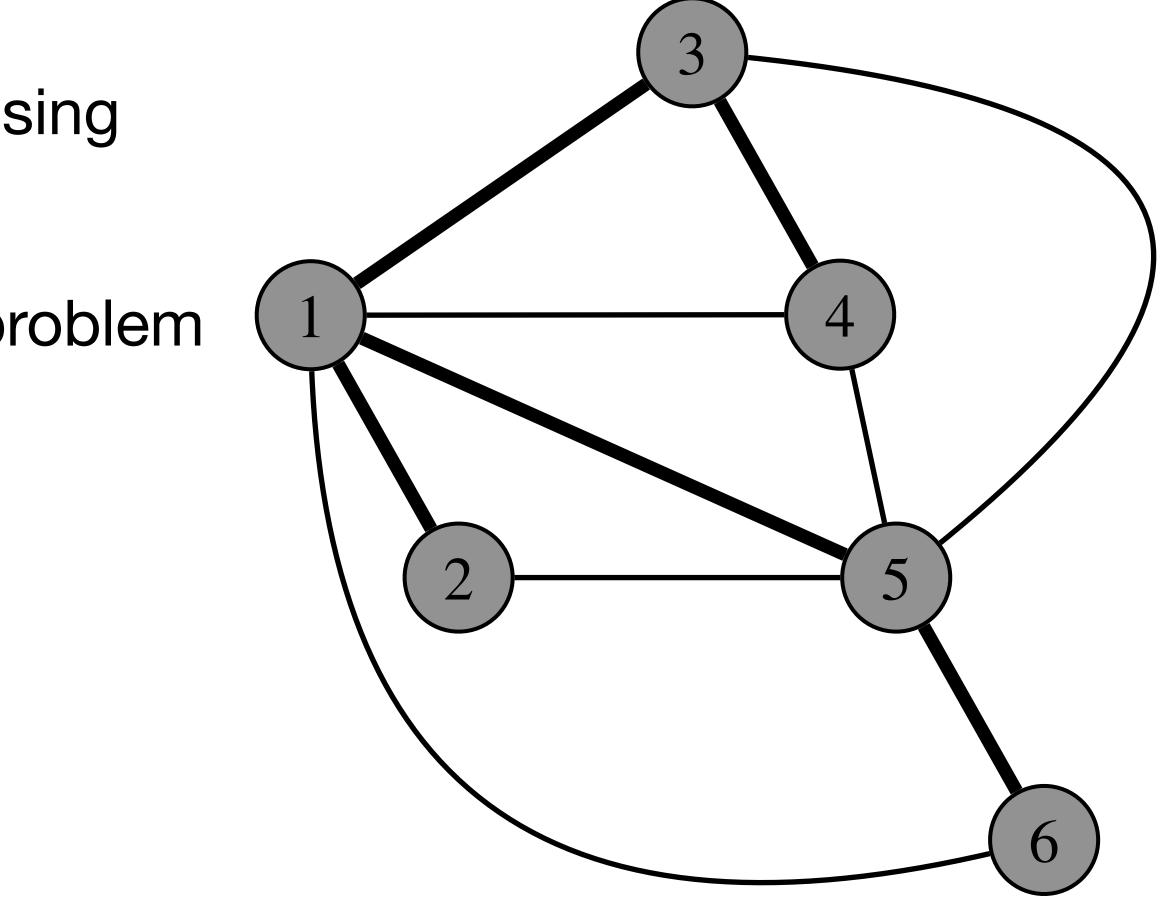
[GP18] Gmyr, Pandurangan. DISC 2018



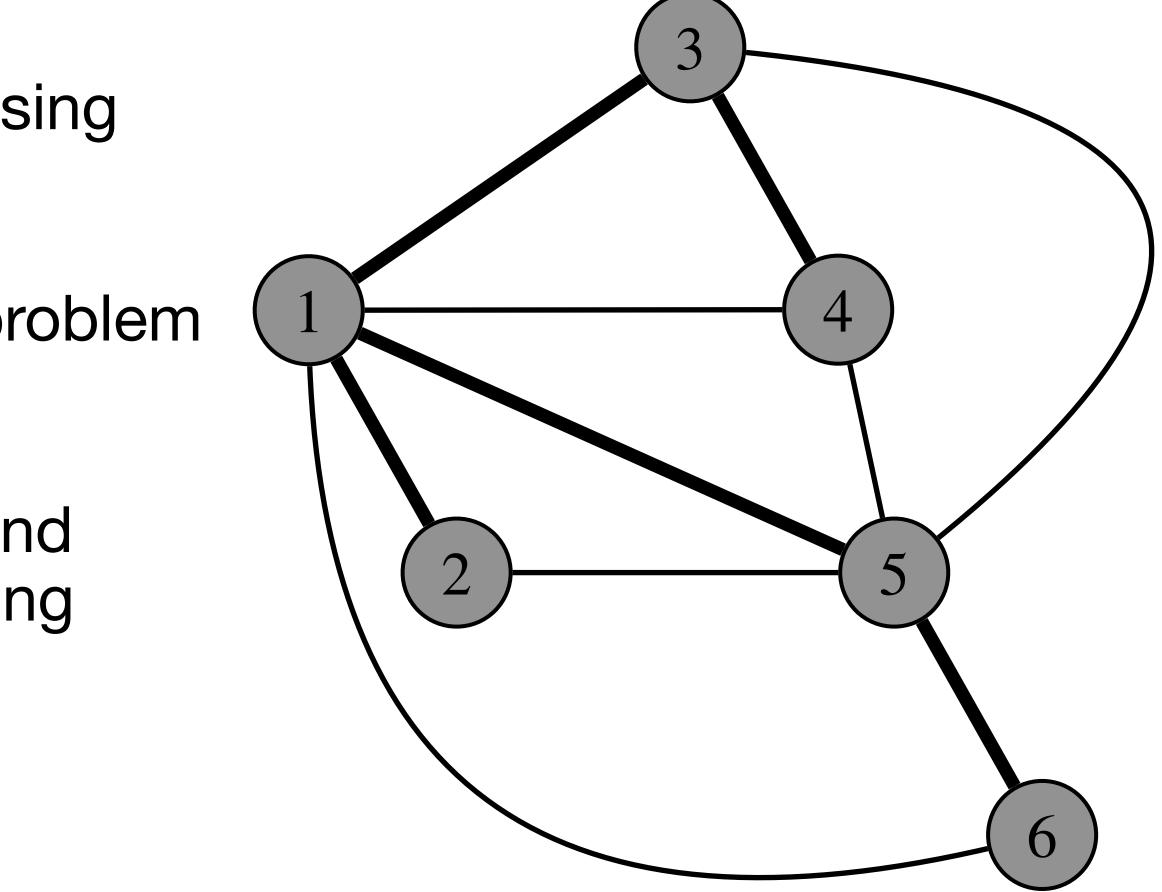
• We can compute a spanning tree using $\tilde{O}(n)$ messages.

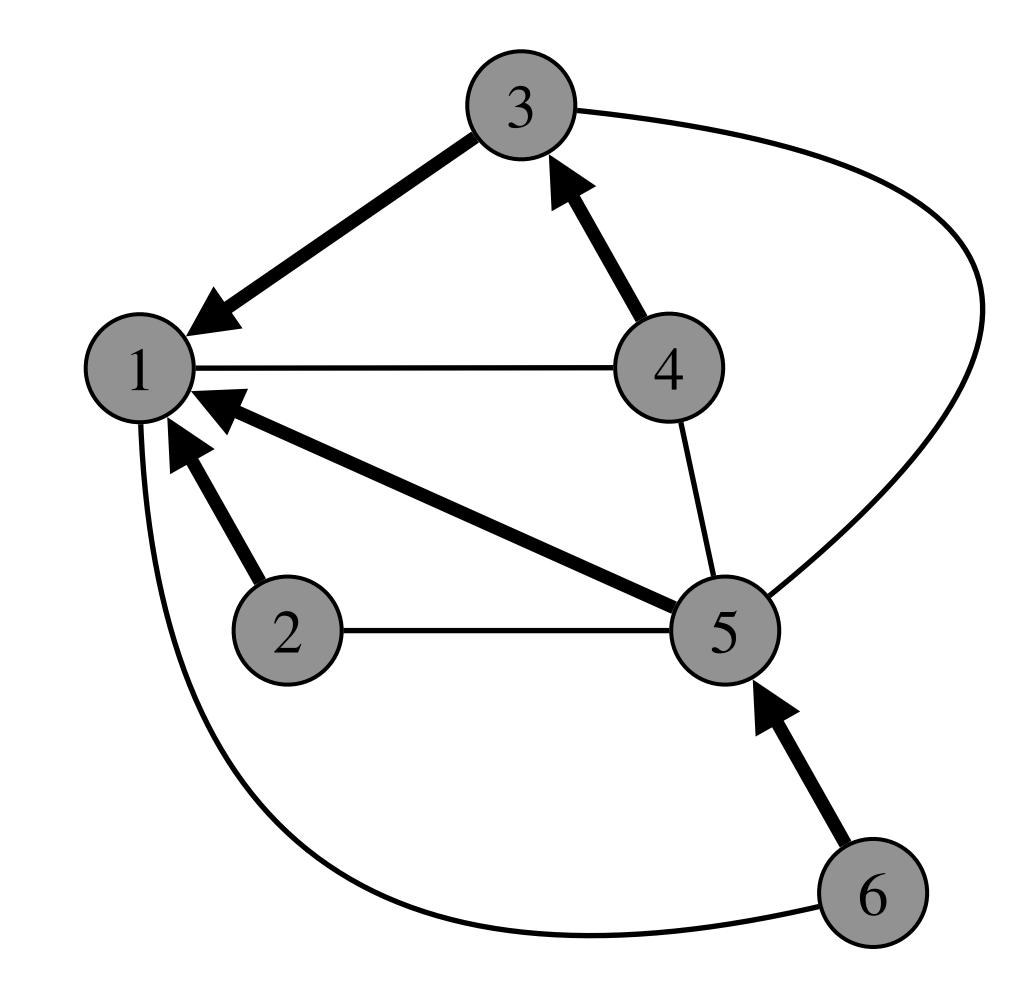


- We can compute a spanning tree using $\tilde{O}(n)$ messages.
- This allows us to solve any graph problem using $\tilde{O}(n)$ messages!



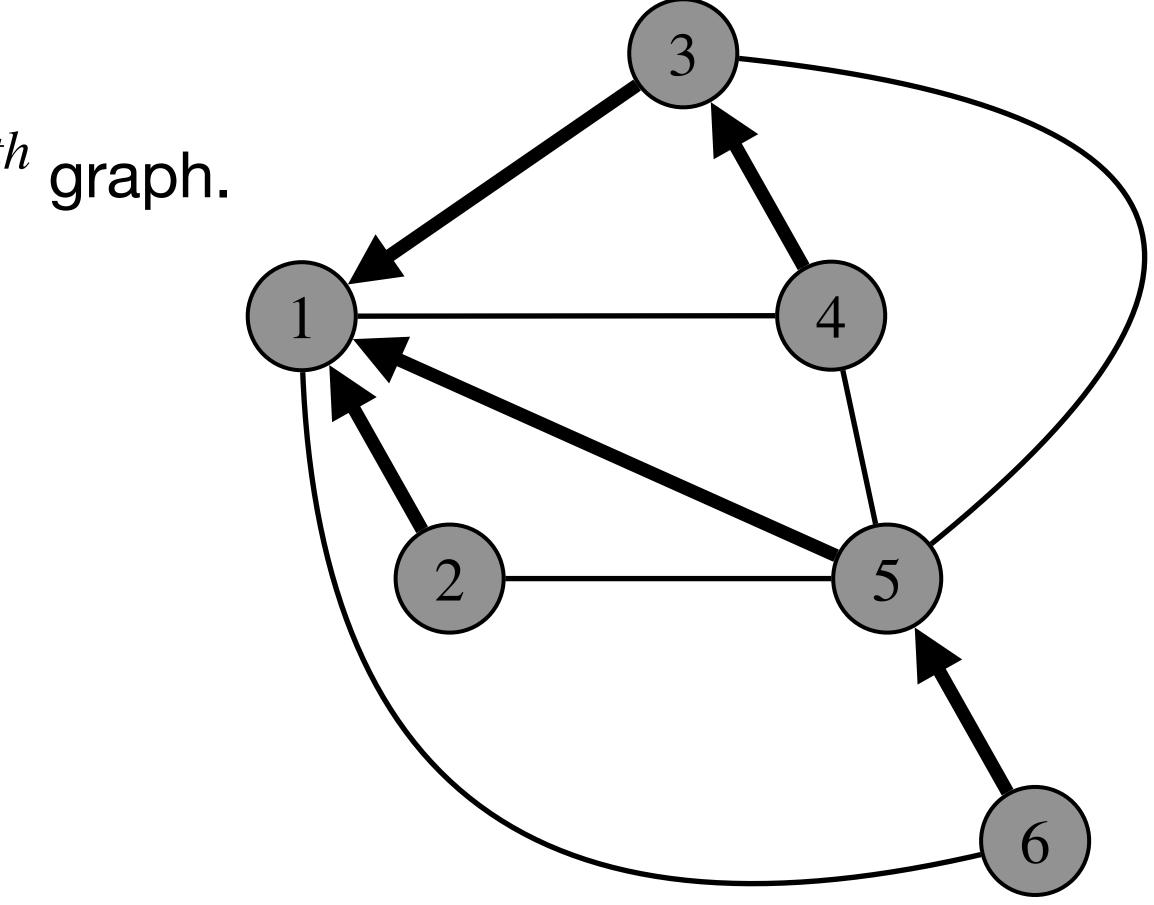
- We can compute a spanning tree using $\tilde{O}(n)$ messages.
- This allows us to solve any graph problem using $\tilde{O}(n)$ messages!
- Trick: nodes use clock values to send topology information up the spanning tree.



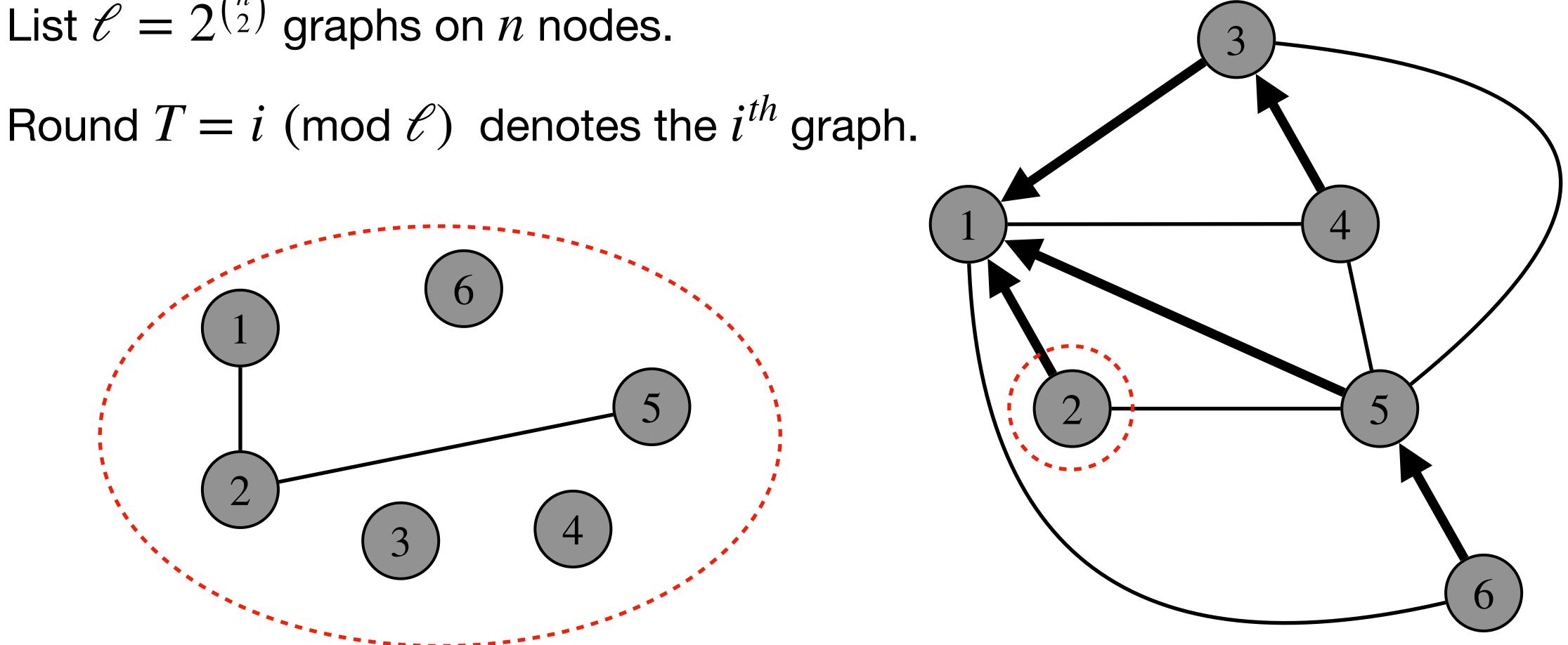


List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.

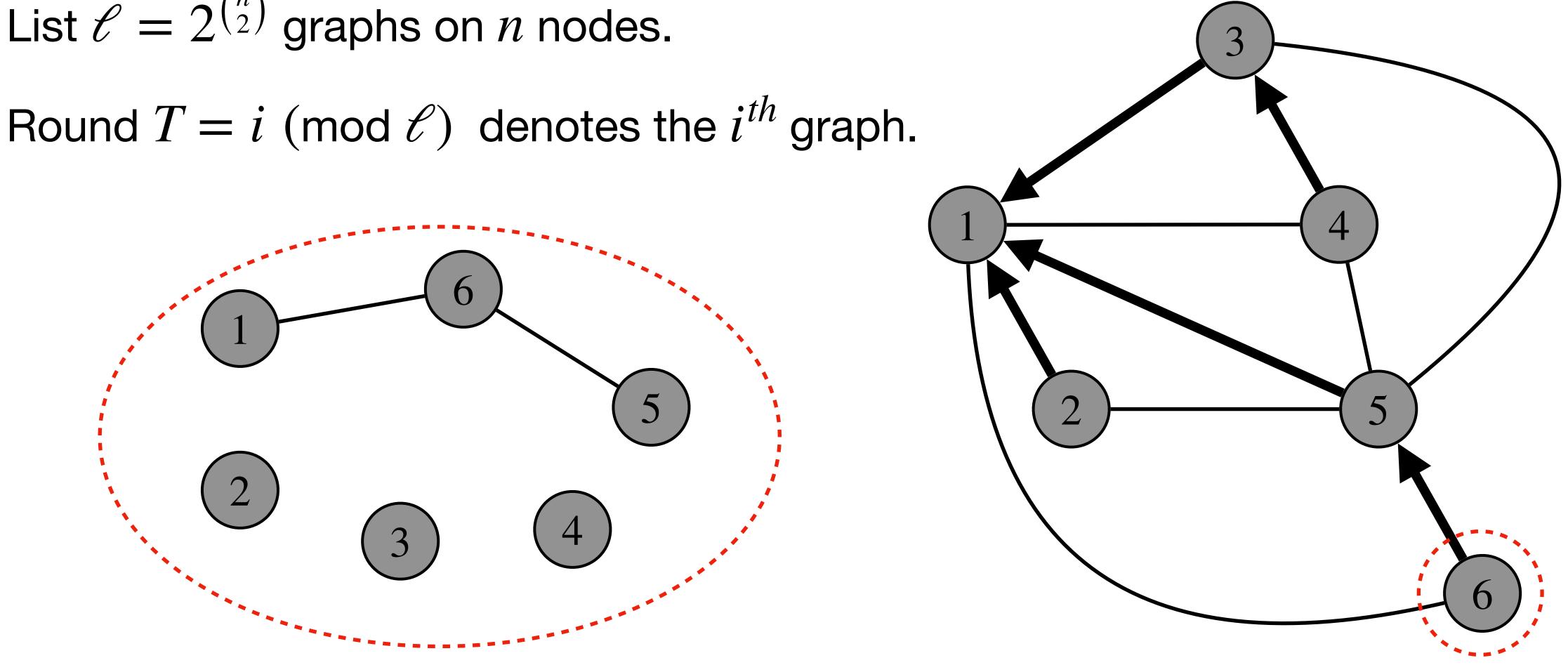
Round $T = i \pmod{\ell}$ denotes the i^{th} graph.



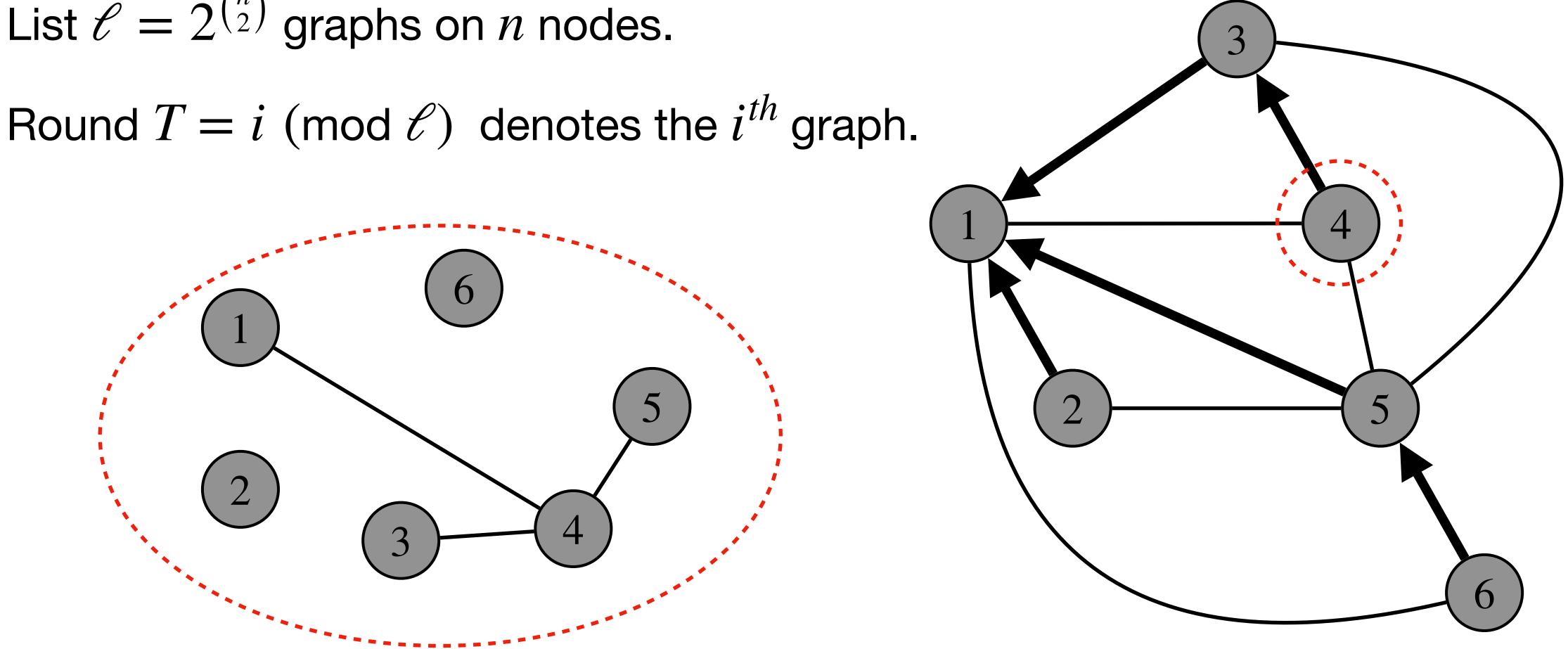
List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.



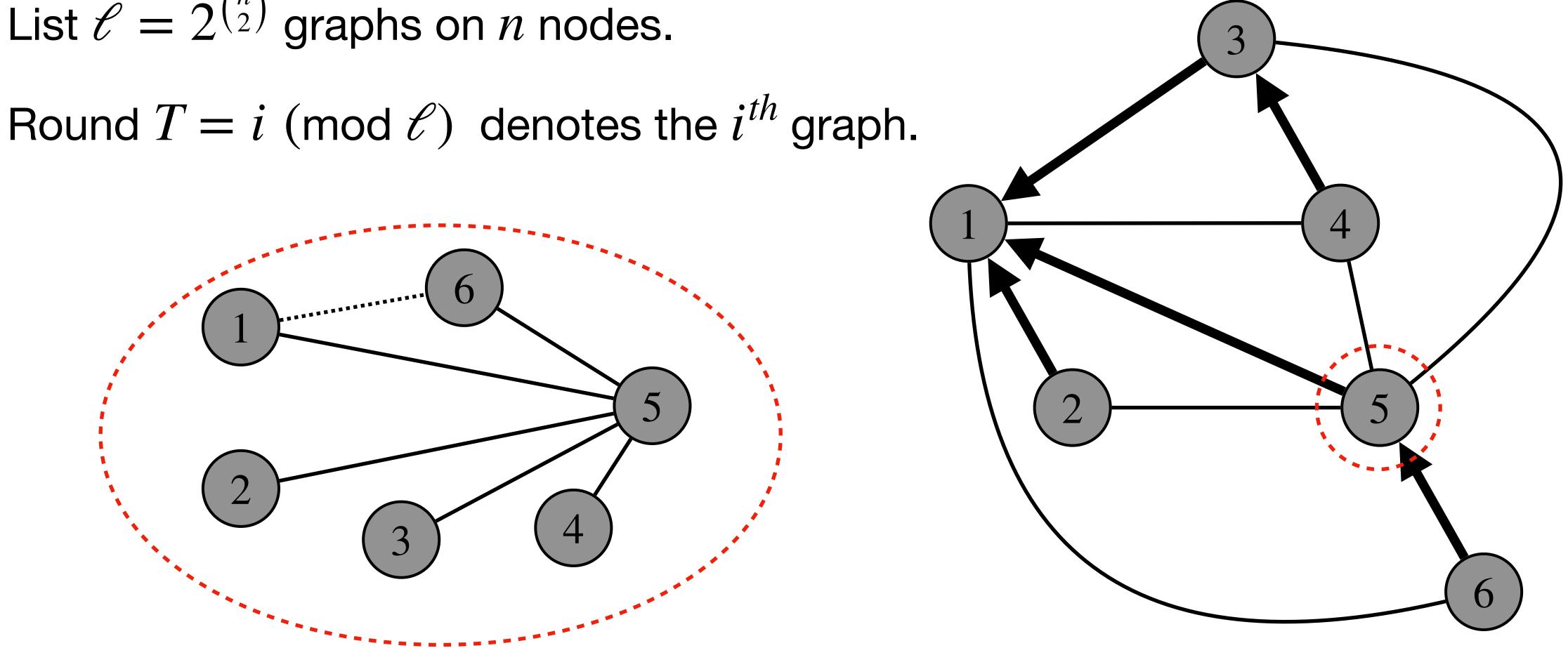
List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.



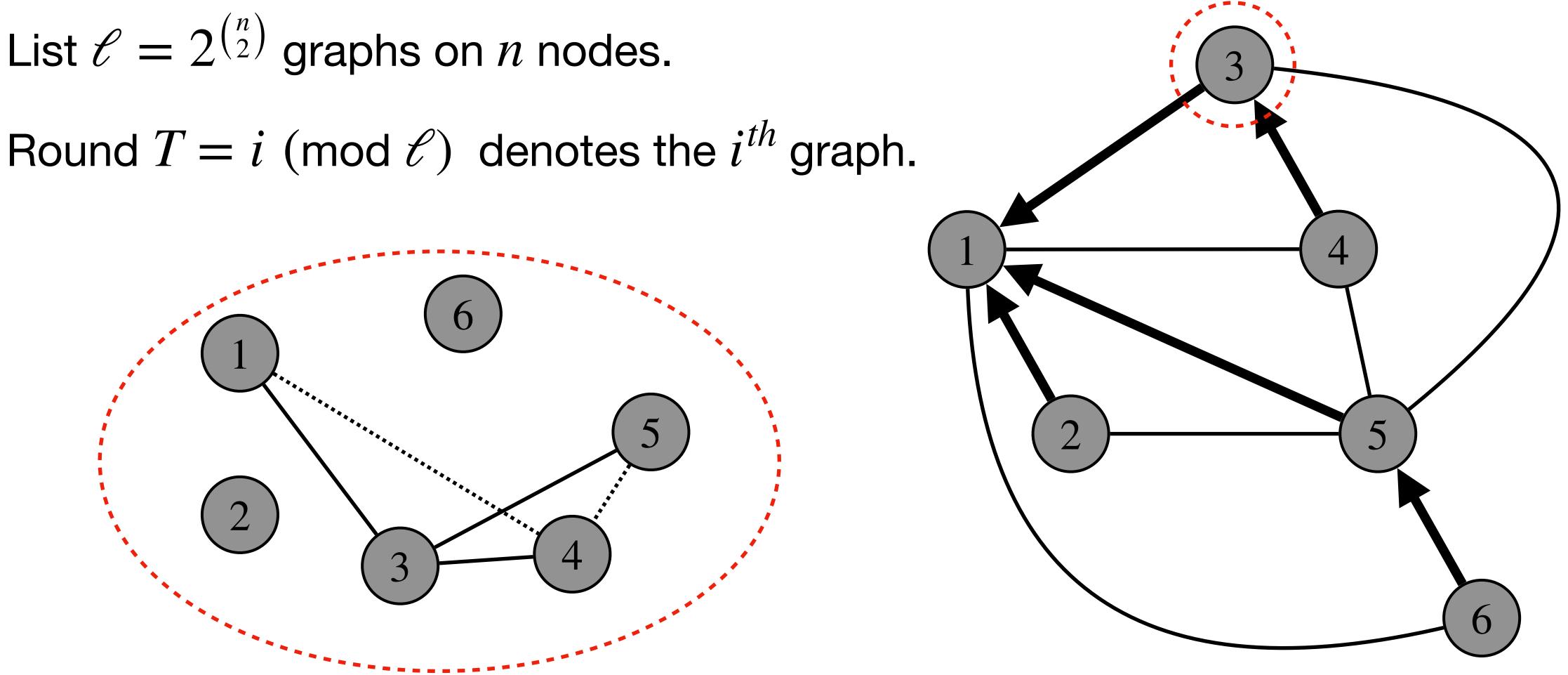
List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.



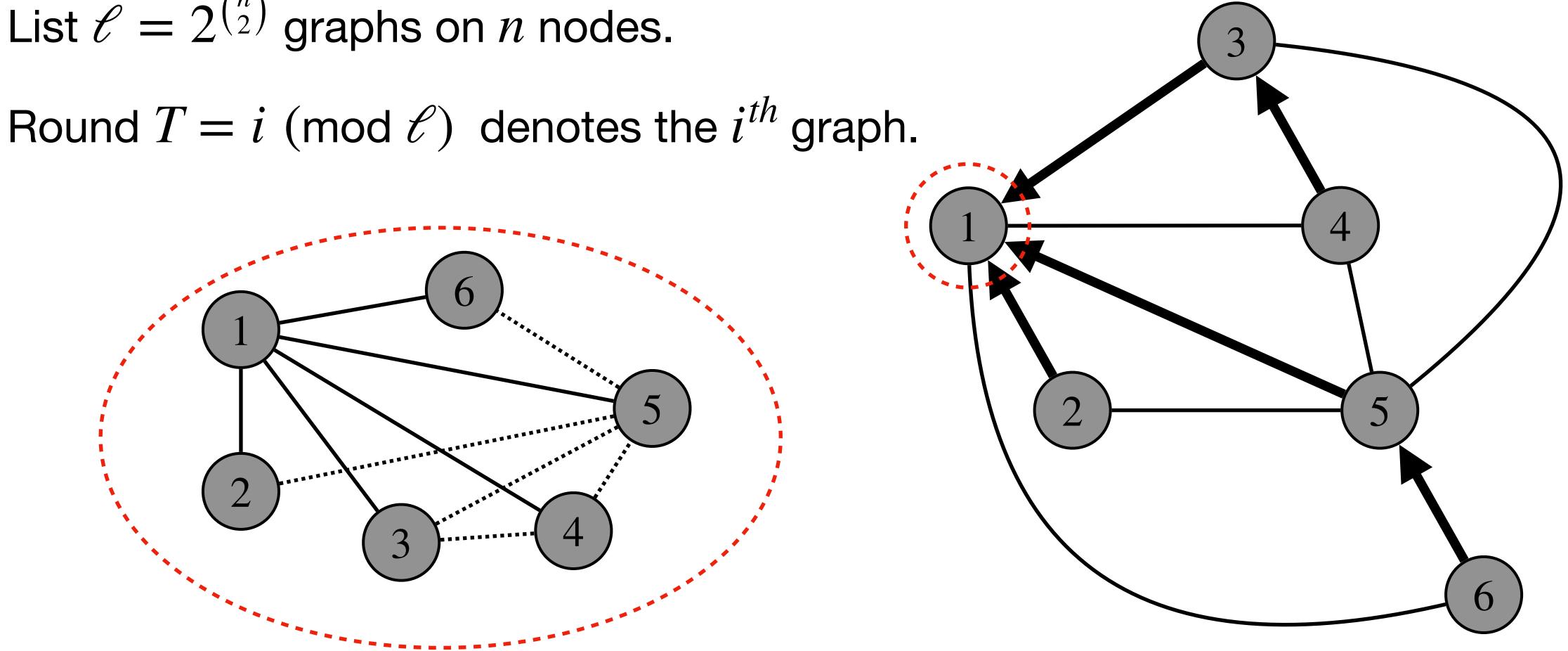
List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.



List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.

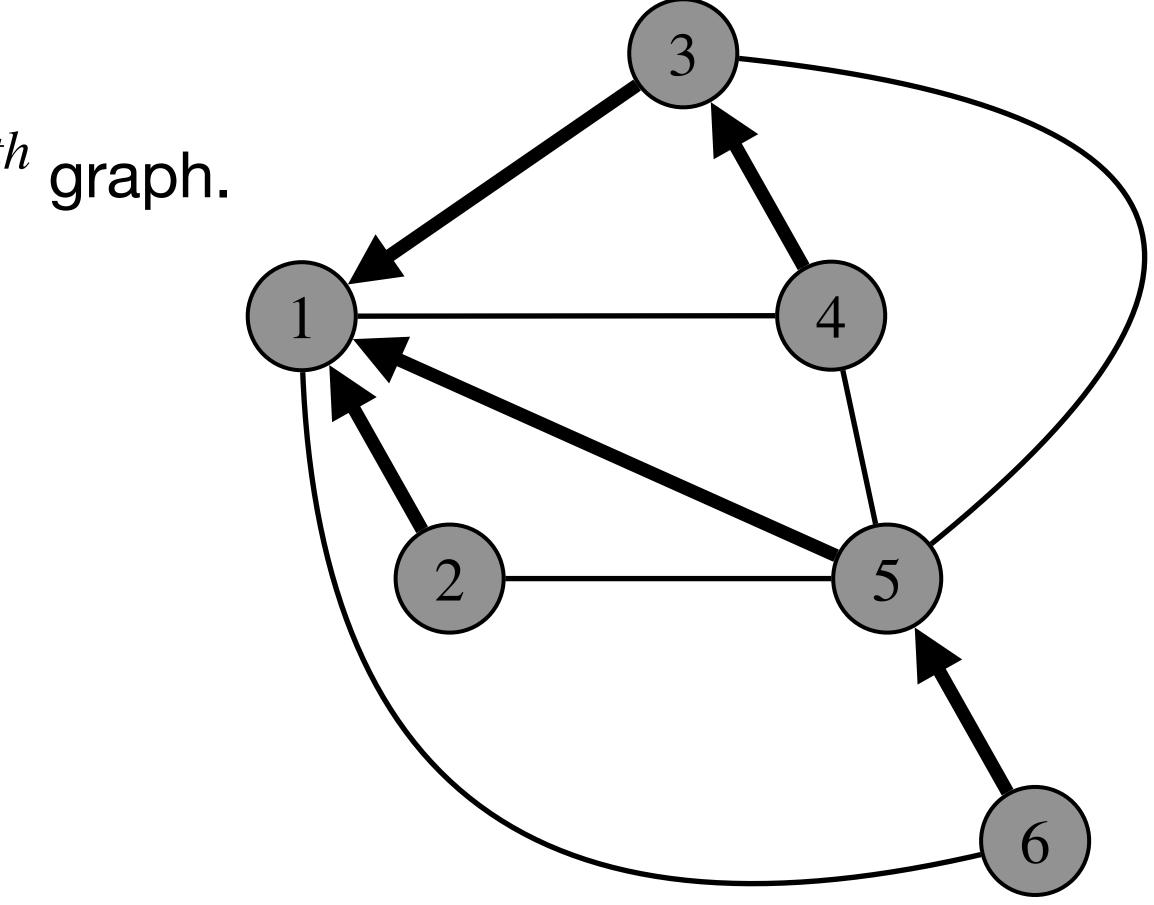


List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.



List $\ell = 2^{\binom{n}{2}}$ graphs on *n* nodes.

Round $T = i \pmod{\ell}$ denotes the i^{th} graph.



• If allowed $\exp(n^2)$ rounds, I can solve any graph problem in $\tilde{O}(n)$ messages.

- - This can also be made deterministic!

• If allowed $\exp(n^2)$ rounds, I can solve any graph problem in $\tilde{O}(n)$ messages.

- If allowed $\exp(n^2)$ rounds, I can solve any graph problem in $\tilde{O}(n)$ messages.
 - This can also be made deterministic!
- Cannot get good message lower bounds unconditionally in KT-1 CONGEST!

- If allowed $\exp(n^2)$ rounds, I can solve any graph problem in $\tilde{O}(n)$ messages.
 - This can also be made deterministic!
- Cannot get good message lower bounds unconditionally in KT-1 CONGEST!
- Under what conditions can we hope for message lower bounds?

• Restrict computation on KT-1 information.

- Restrict computation on KT-1 information.
 - Nodes can only do comparison operations on the ID's.

- Restrict computation on KT-1 information.
 - Nodes can only do comparison operations on the ID's.
 - This is the **comparison-based KT-1** model [AGPV90].

- Restrict computation on KT-1 information.
 - Nodes can only do comparison operations on the ID's.
 - This is the **comparison-based KT-1** model [AGPV90].
 - Here, we can still do indistinguishability type arguments.

- Restrict computation on KT-1 information.
 - Nodes can only do comparison operations on the ID's.
 - This is the comparison-based KT-1 model [AGPV90].
 - Here, we can still do indistinguishability type arguments.
- Restrict to algorithms that use few rounds (maybe poly(n) or log n rounds)

- Restrict computation on KT-1 information.
 - Nodes can only do comparison operations on the ID's.
 - This is the comparison-based KT-1 model [AGPV90].
 - Here, we can still do indistinguishability type arguments.
- Restrict to algorithms that use few rounds (maybe poly(n) or log n rounds)
 - Can be achieved by communication complexity reductions.

To $\Omega(m)$ and Beyond

To $\Omega(m)$ and Beyond

To $\Omega(m)$ and Beyond

- - $(\Delta + 1)$ -coloring.

Maximal Independent Set.

• For comparison based KT-1 algorithms, $\Omega(m)$ message lower bound for:

[PPP+21] Pai, Pandurangan, Pemmaraju, Robinson. PODC 2021

To $\Omega(m)$ and Beyond

- - $(\Delta + 1)$ -coloring.

Maximal Independent Set.

• For comparison based KT-1 algorithms, $\Omega(m)$ message lower bound for:

[PPP+21] Pai, Pandurangan, Pemmaraju, Robinson. PODC 2021

To $\Omega(m)$ and Beyond

- - $(\Delta + 1)$ -coloring.
 - Maximal Independent Set.
- For poly(n) round KT-1 algorithms, $\Omega(m \cdot D)$ message lower bound for:
 - Minimum Vertex Cover.

 - Minimum Dominating Set.

• For comparison based KT-1 algorithms, $\Omega(m)$ message lower bound for:

[PPP+21] Pai, Pandurangan, Pemmaraju, Robinson. PODC 2021

• Maximum Independent Set. [DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

To $\Omega(m)$ and Beyond

- - $(\Delta + 1)$ -coloring.

- Maximal Independent Set.
- For poly(n) round KT-1 algorithms, $\Omega(m \cdot D)$ message lower bound for:
 - Minimum Vertex Cover.

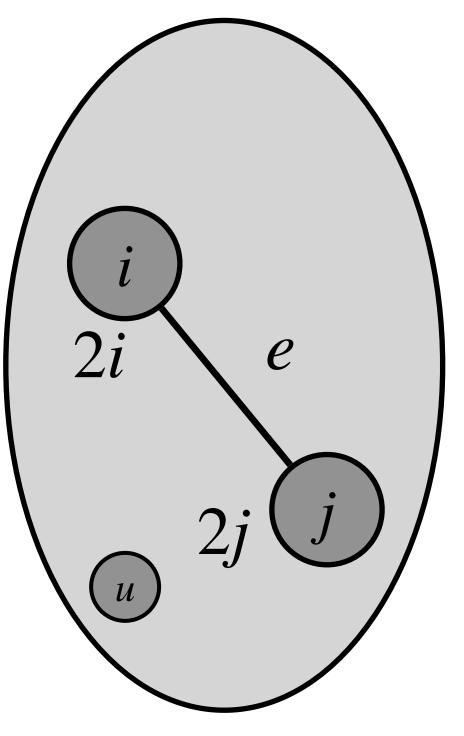
 - Minimum Dominating Set.

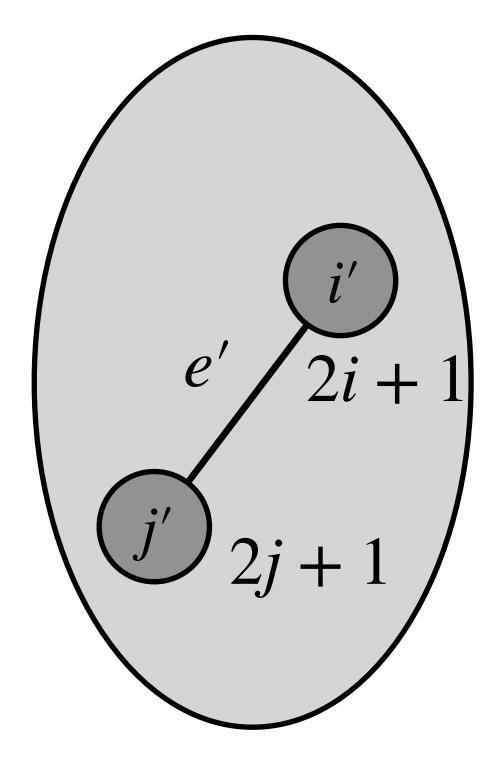
For comparison based KT-1 algorithms, $\Omega(m)$ message lower bound for:

[PPP+21] Pai, Pandurangan, Pemmaraju, Robinson. PODC 2021

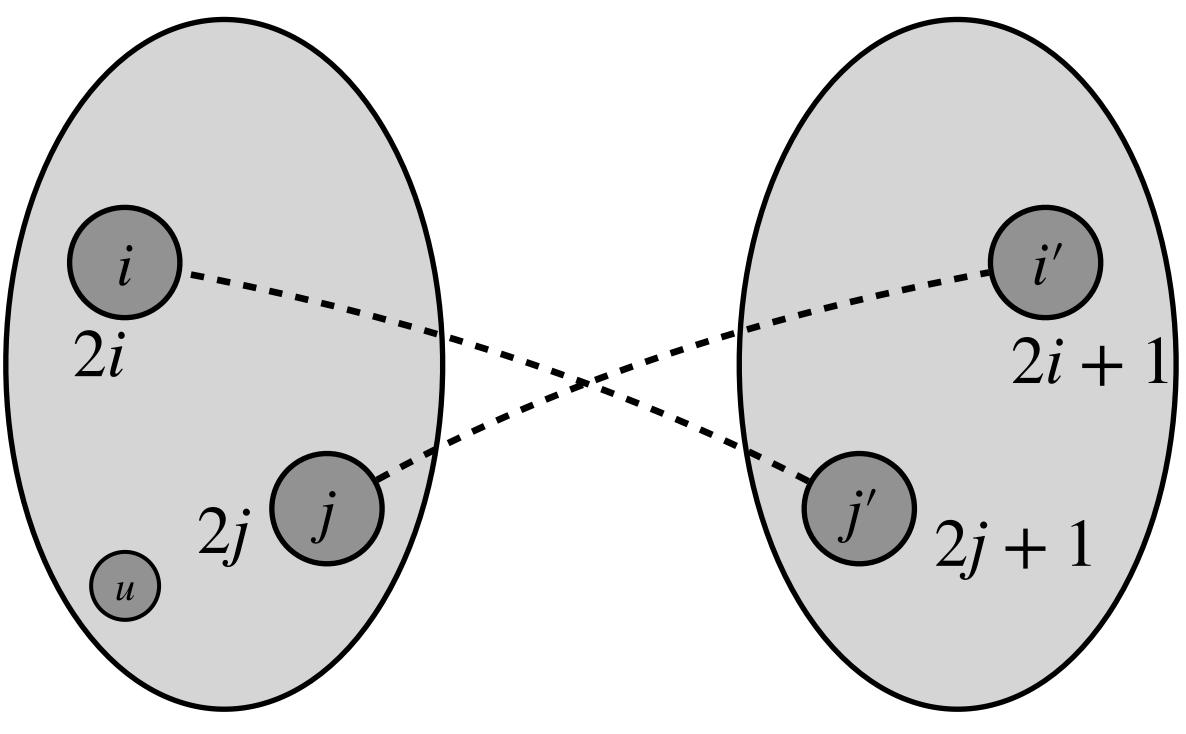
Maximum Independent Set. [DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

G



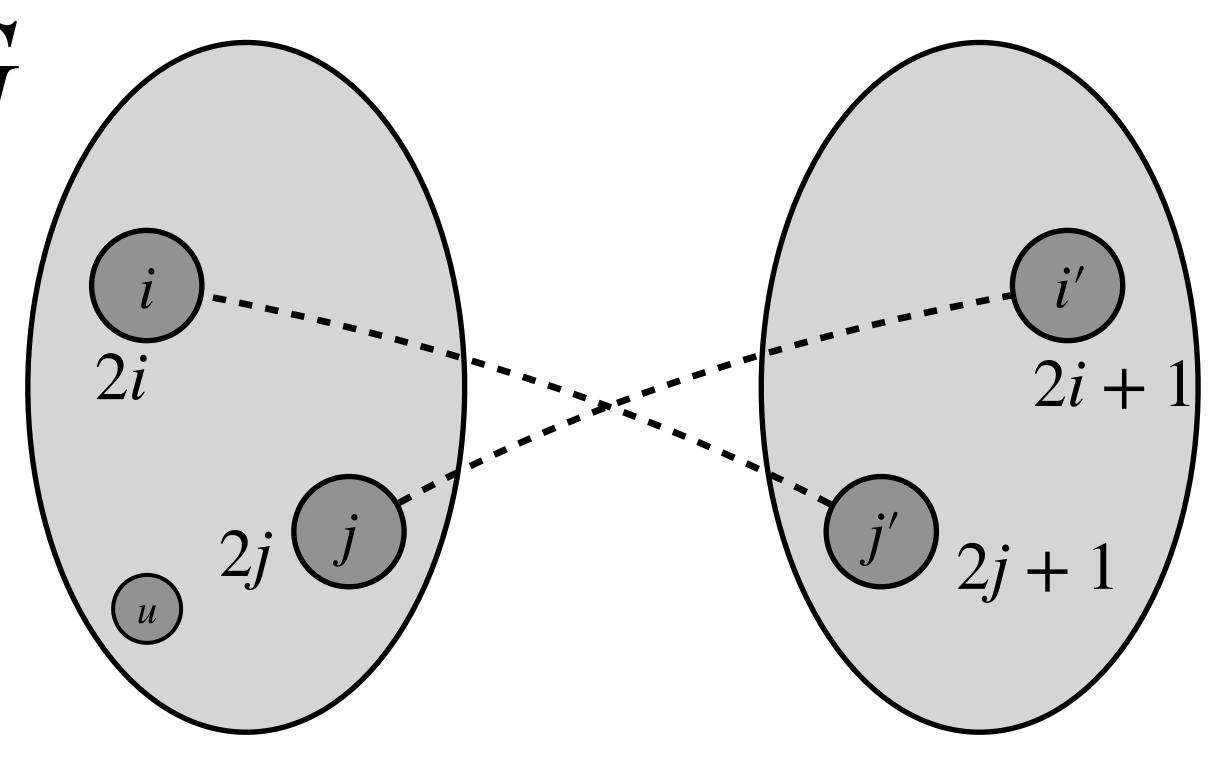


G

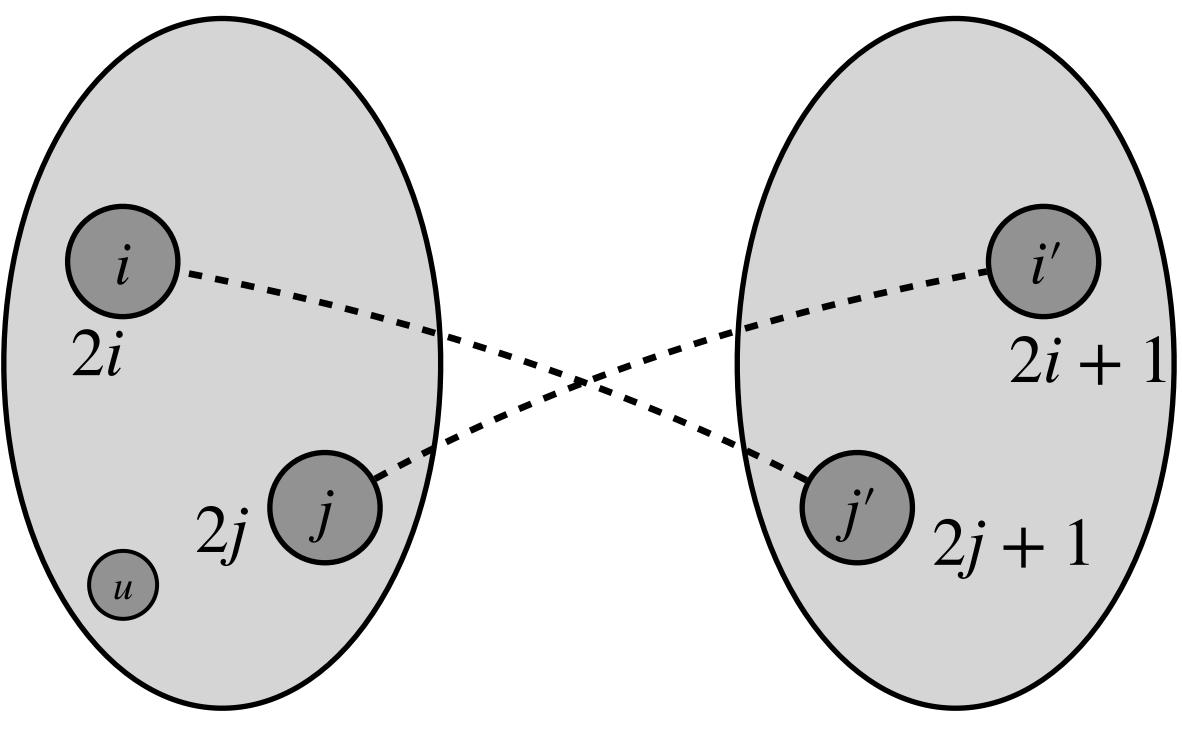


 (\mathbf{T}) • Initial knowledge is different!

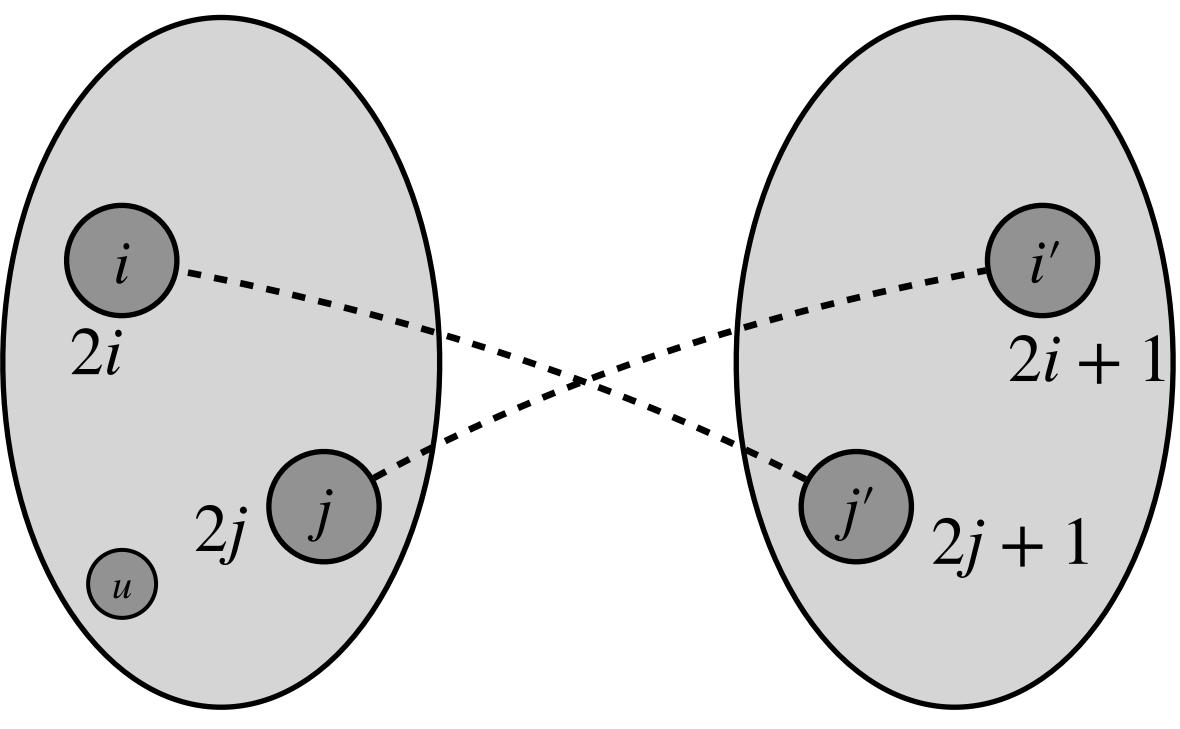
Comparison Based Broadcast



- Initial knowledge is different!
- G
- Node *i* sees ID 2j in one graph and ID 2j + 1 in the other.

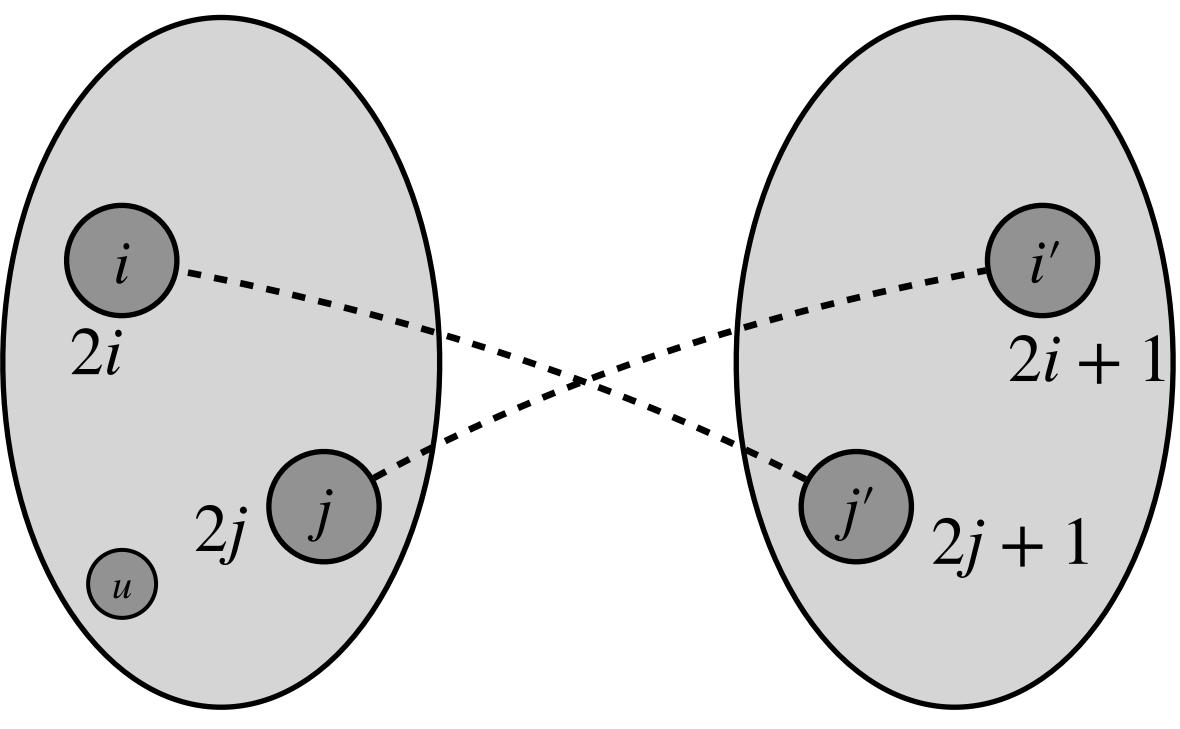


- Initial knowledge is different!
- G
- Node *i* sees ID 2j in one graph and ID 2j + 1 in the other.
- Order of IDs is the same!

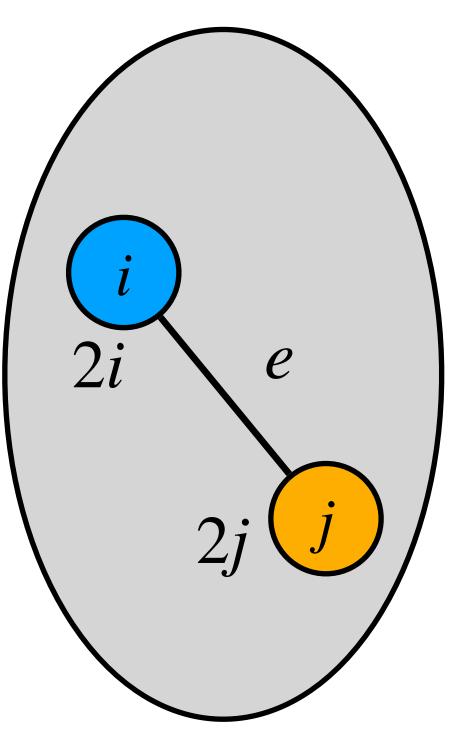


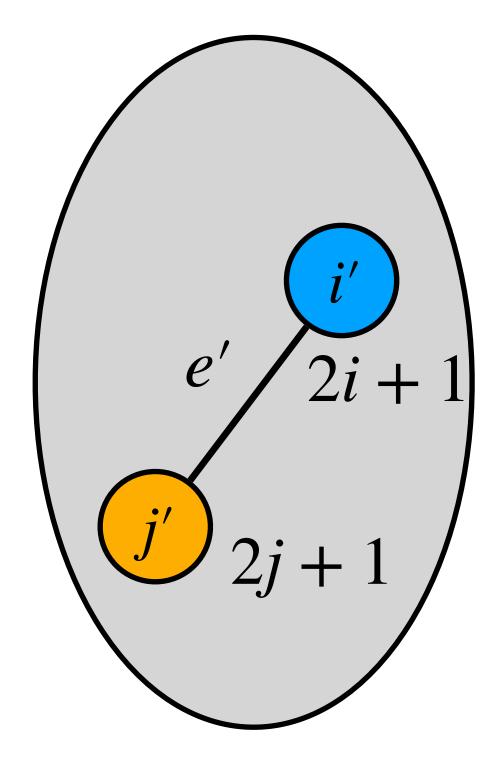
- Initial knowledge is different!
- G
- Node *i* sees ID 2j in one graph and ID 2j + 1 in the other.
- Order of IDs is the same!
- So we can get an $\Omega(m)$ message lower bound.

[AGPV90] Awerbuch, Peleg, Goldreich, Varnish. JACM

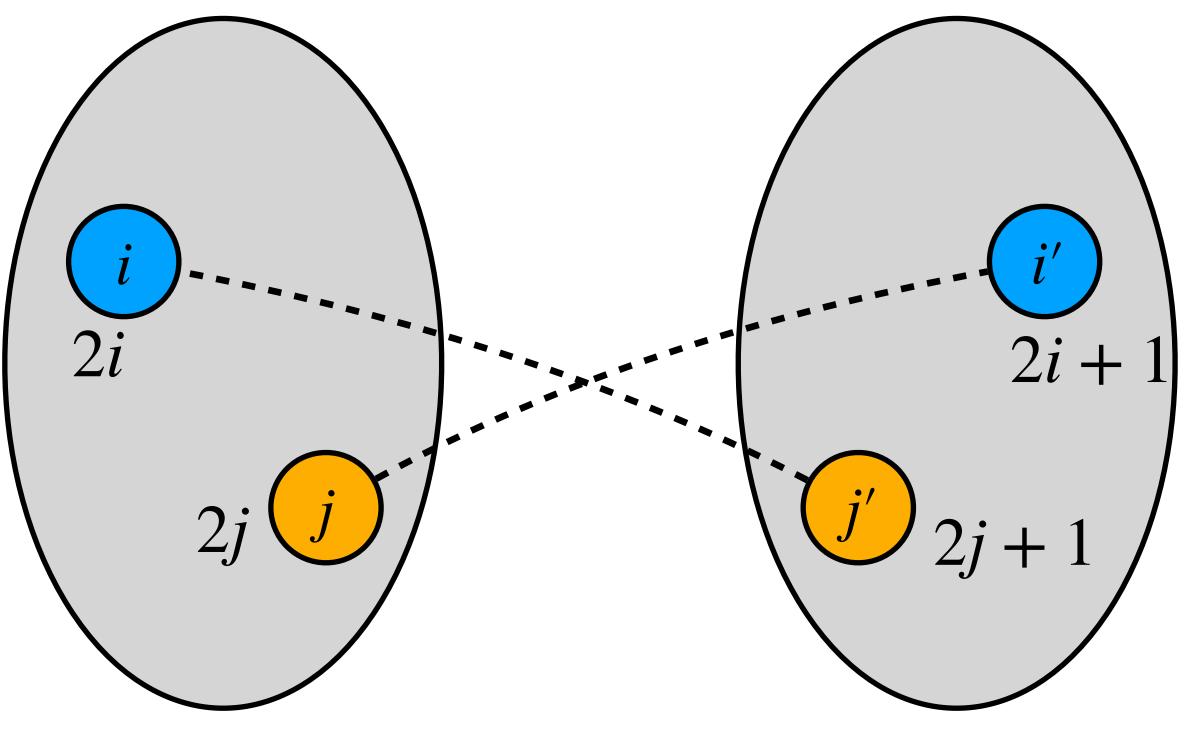


G

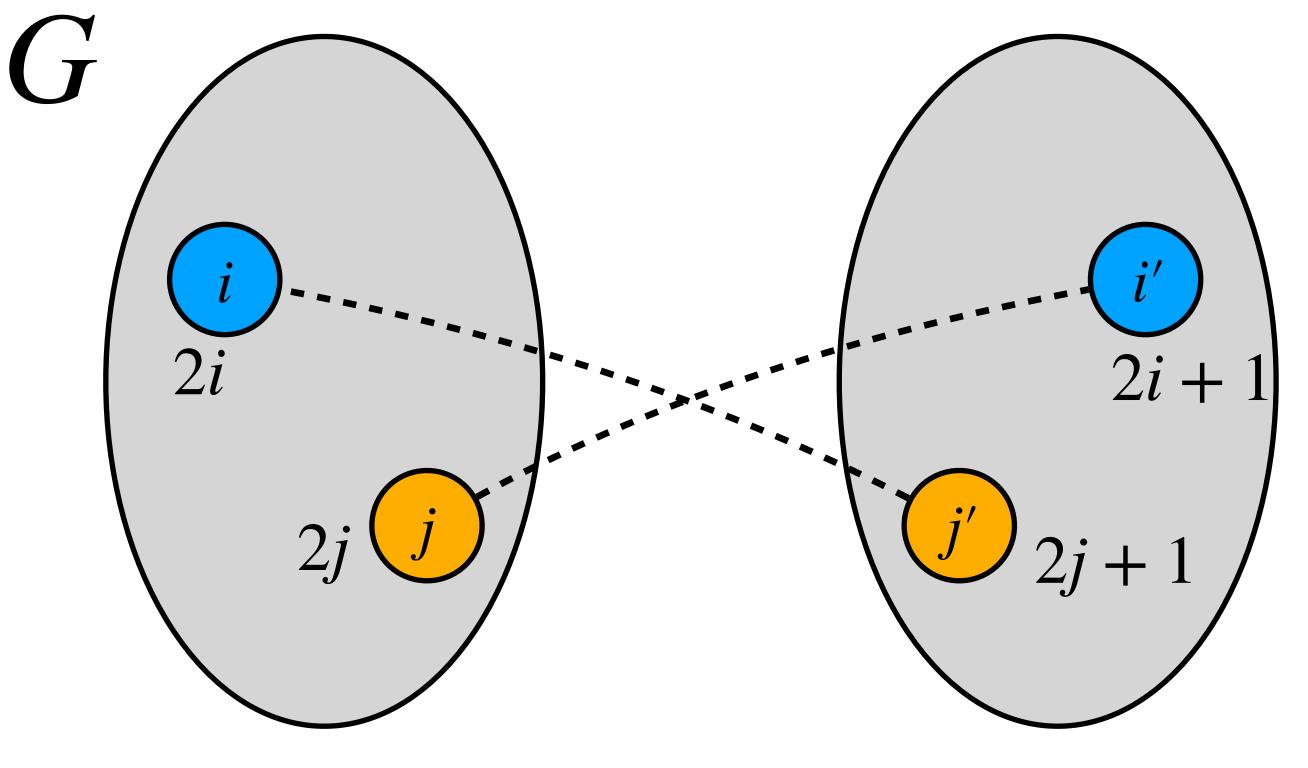




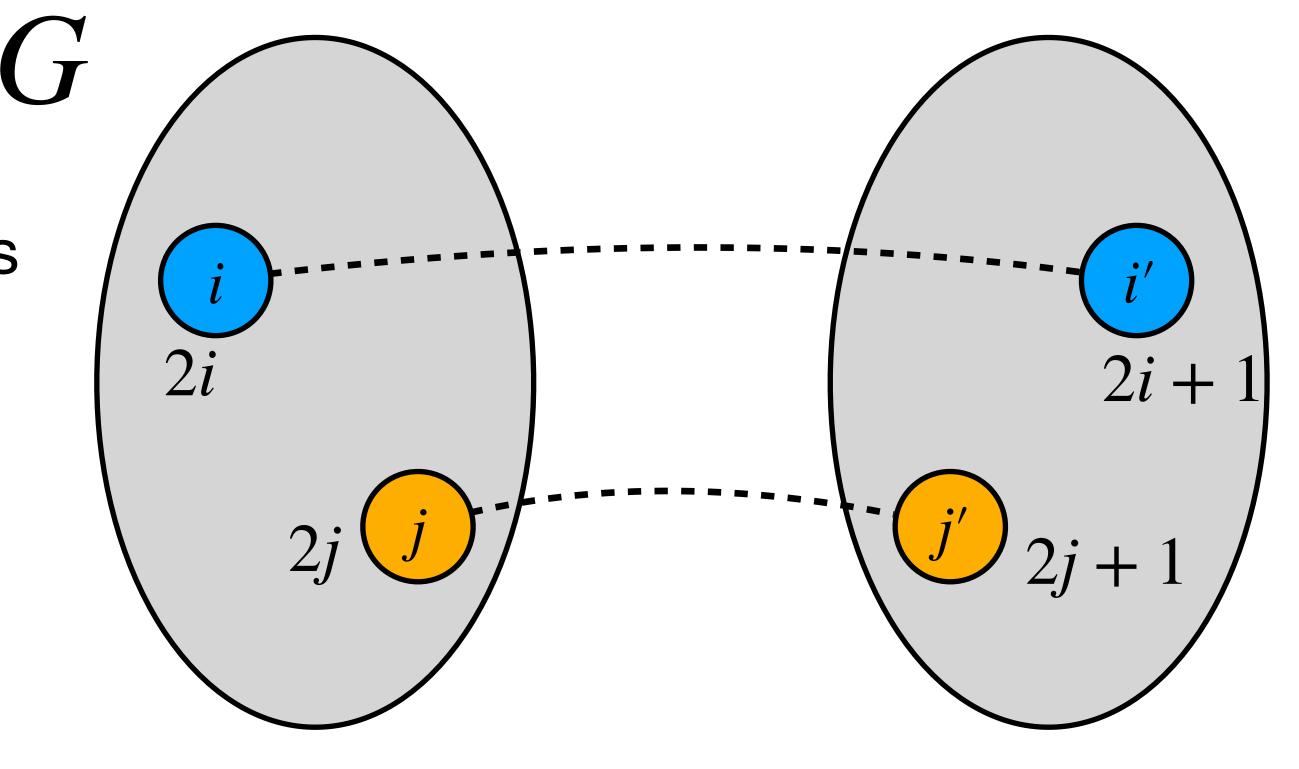
G



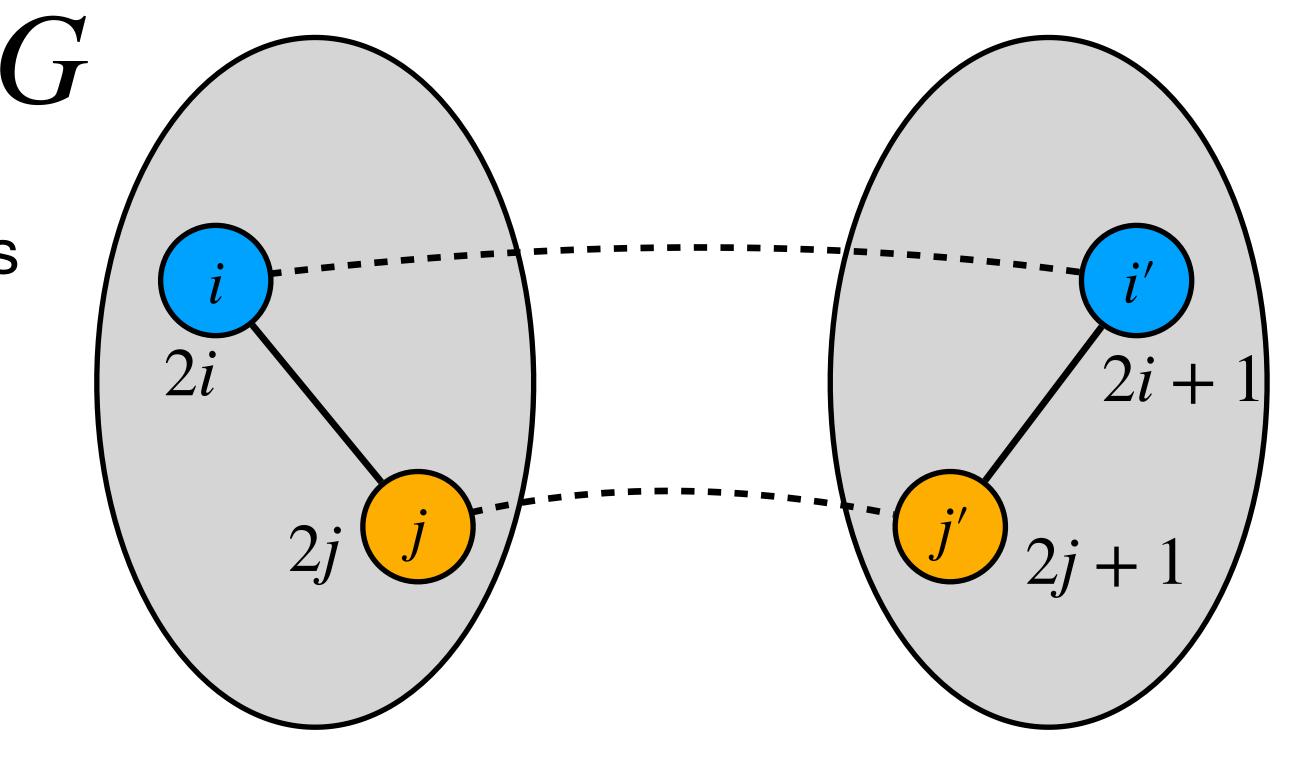
Don't get any contradiction :(



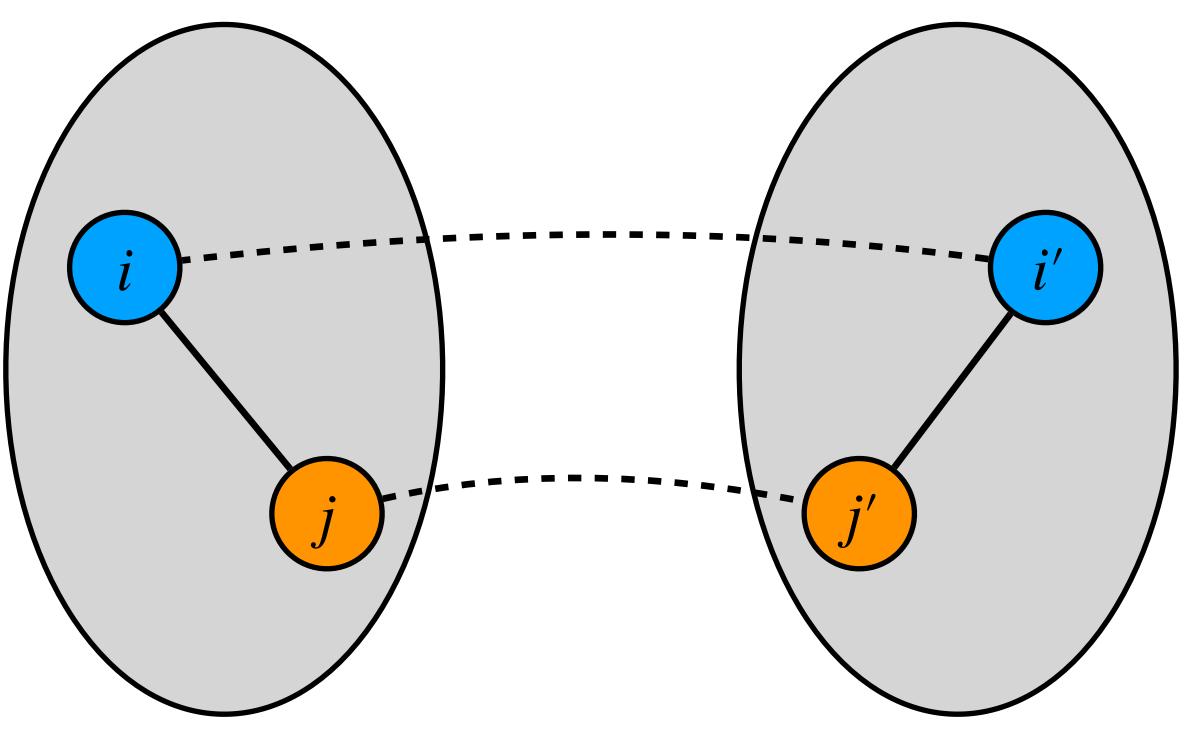
- Don't get any contradiction :(
- Want to add the "parallel" edges to get contradiction.



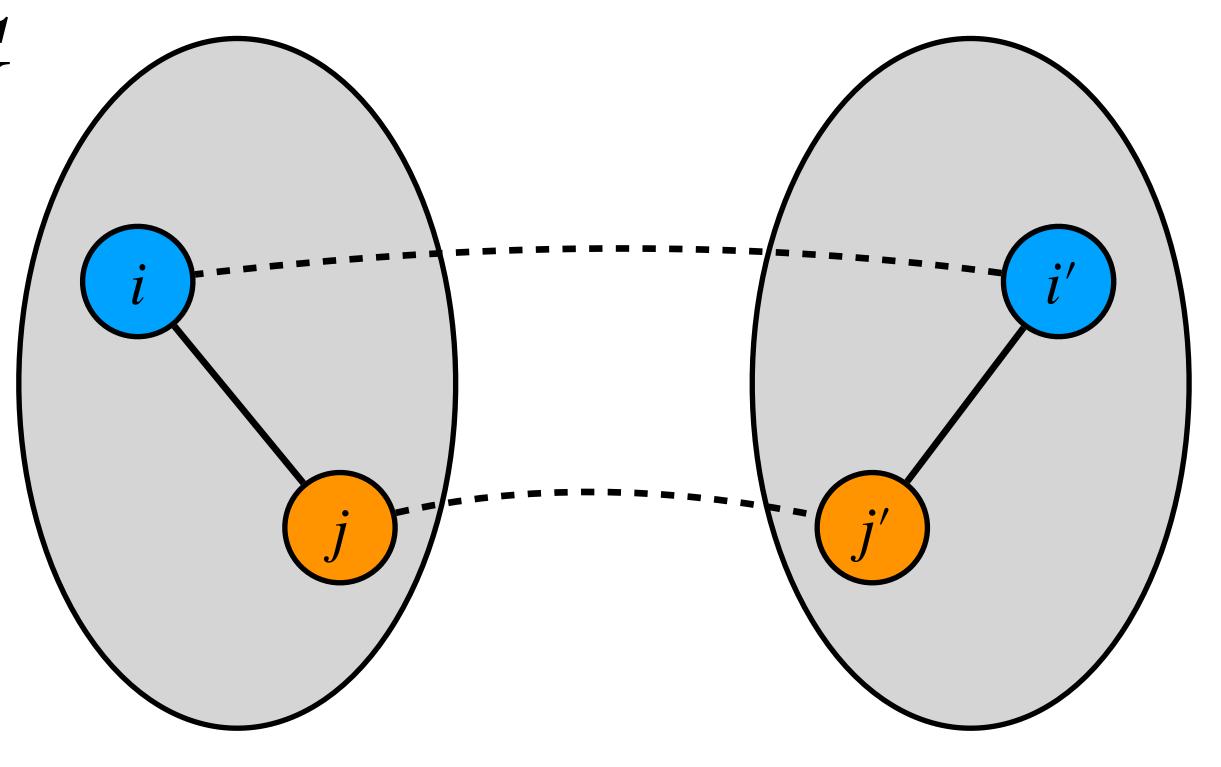
- Don't get any contradiction :(
- Want to add the "parallel" edges to get contradiction.
- But 2i + 1 can be way out of order compared to 2j...



G

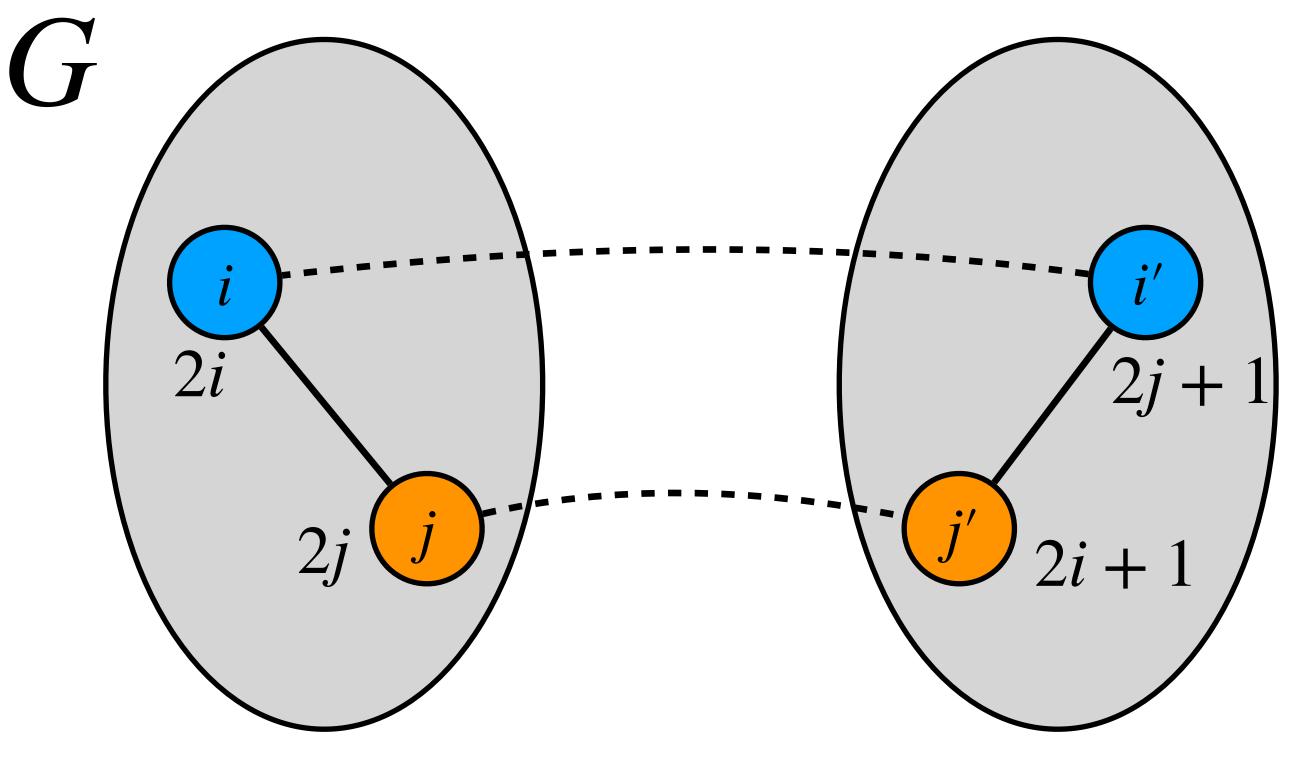


- "Shift" the IDs in G' such that



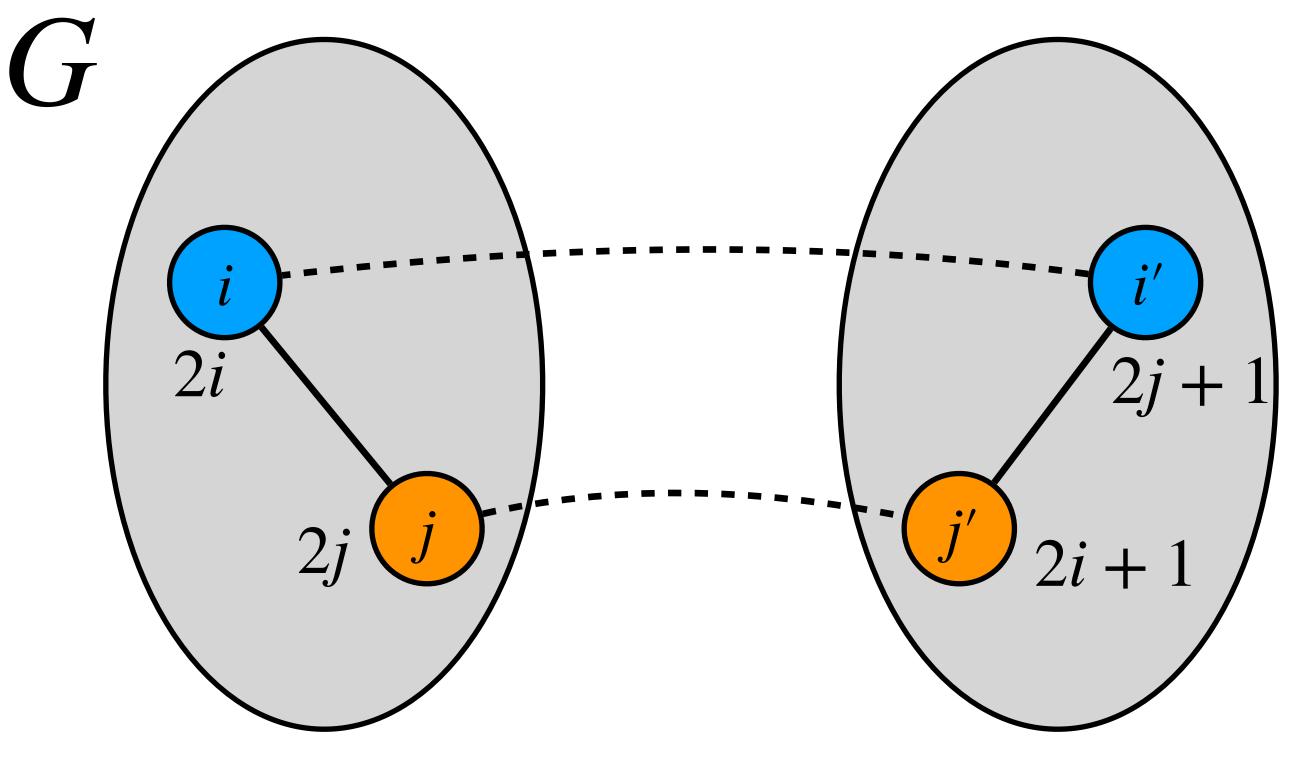
• "Shift" the IDs in G' such that

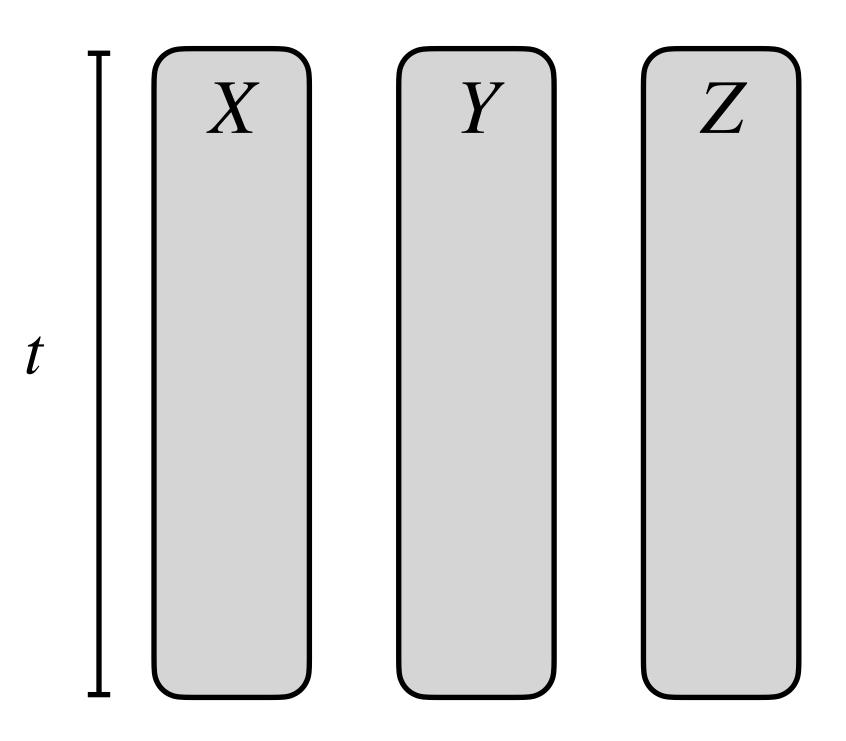
- i' gets ID 2j + 1 and
- j' gets ID 2i + 1.

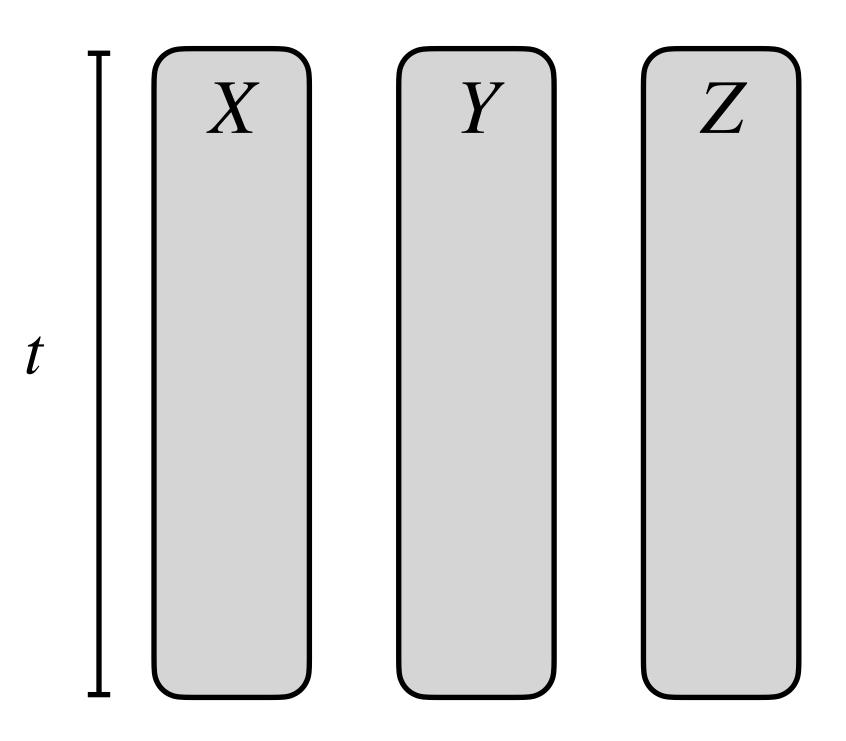


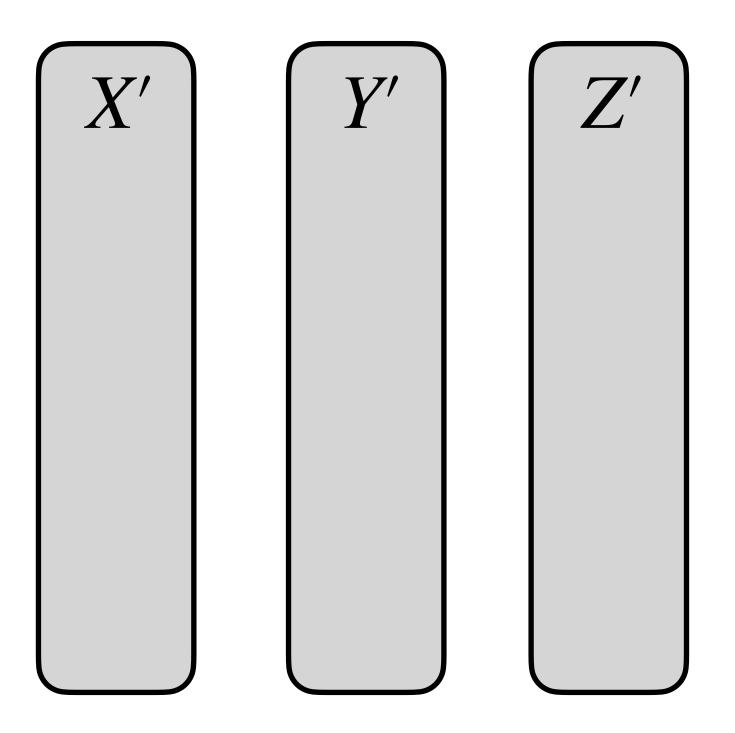
• "Shift" the IDs in G' such that

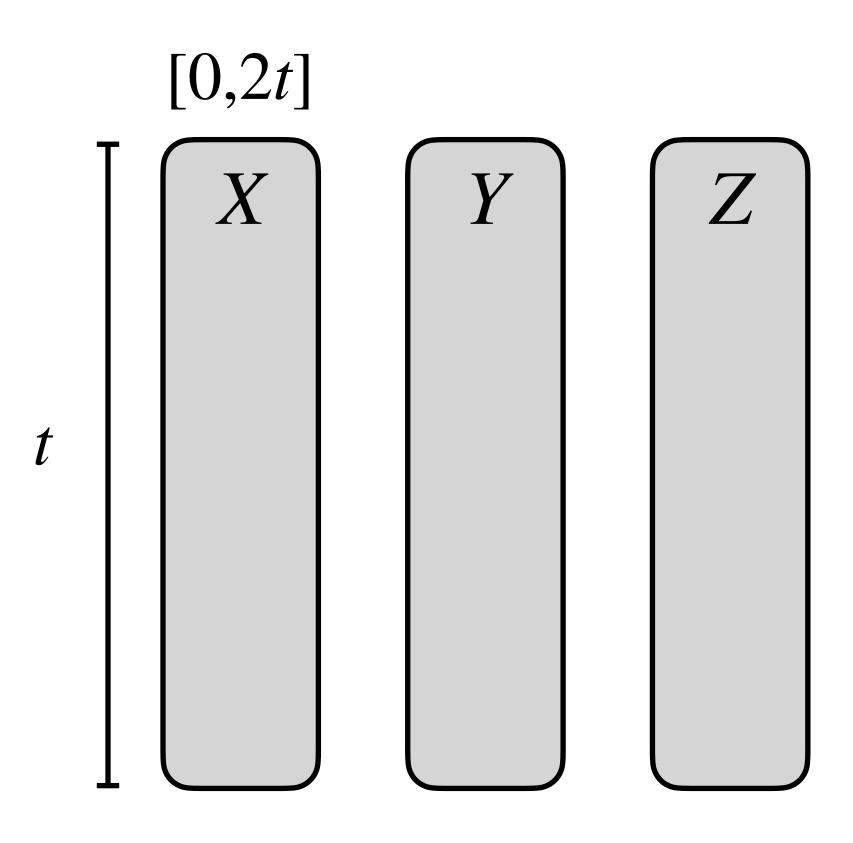
- i' gets ID 2j + 1 and
- j' gets ID 2i + 1.
- Is it always possible?

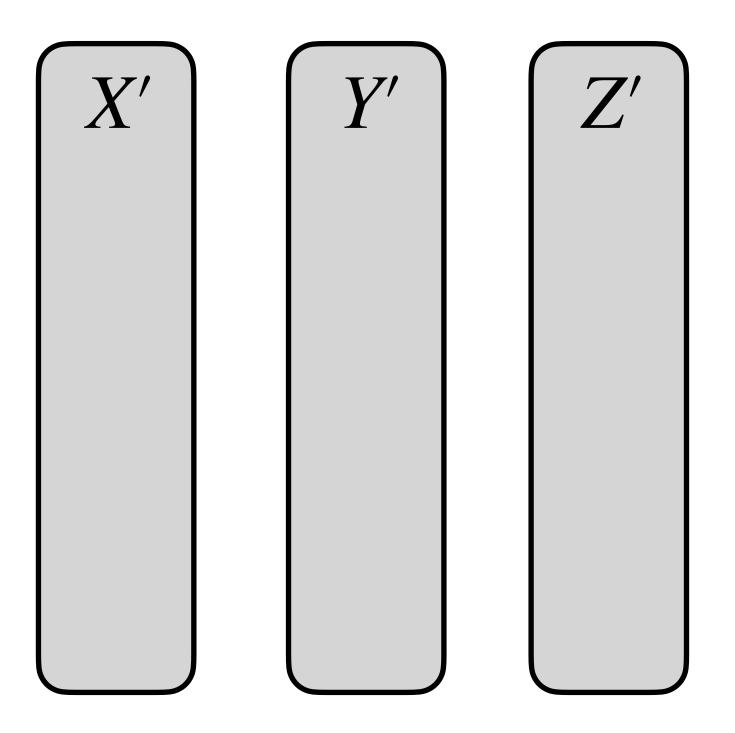




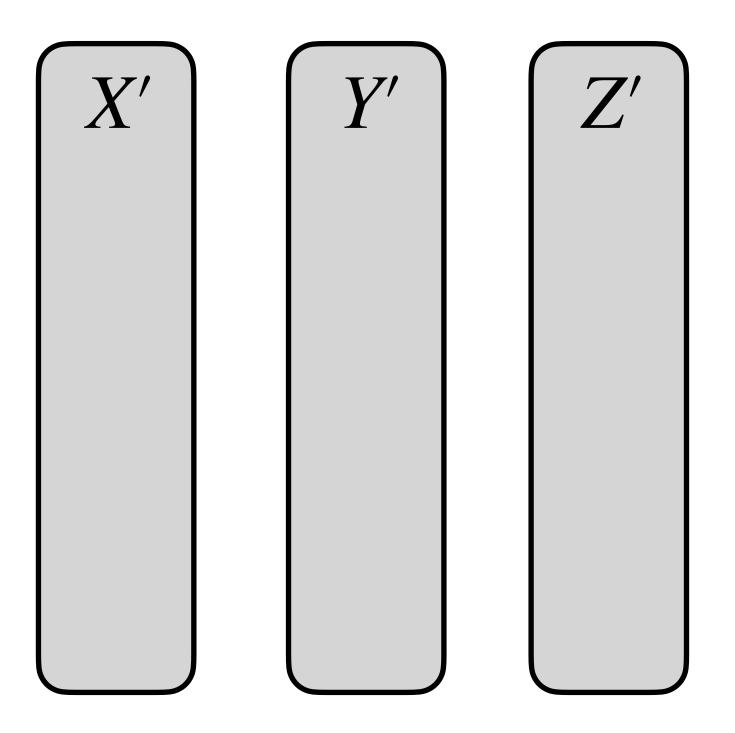




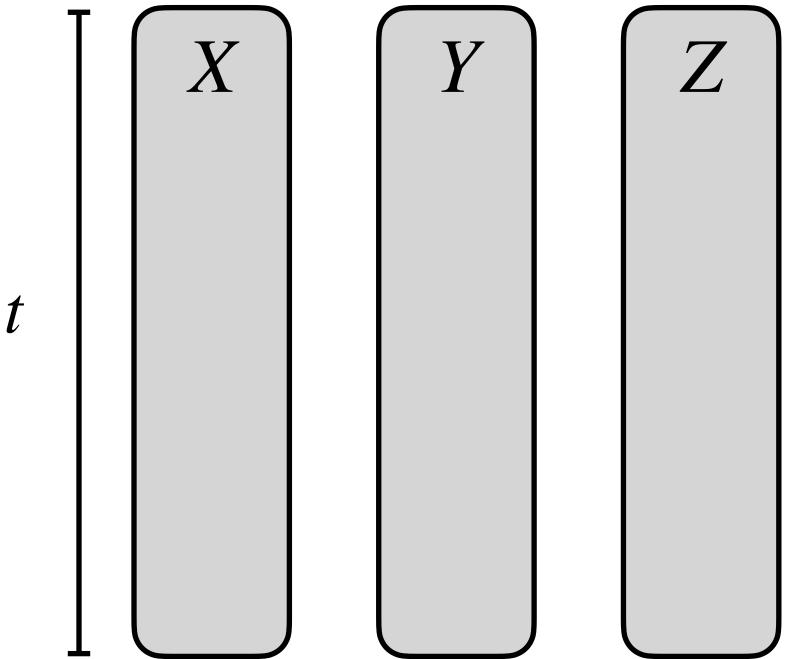




[0,2t] [10t,12t]XYΖ t

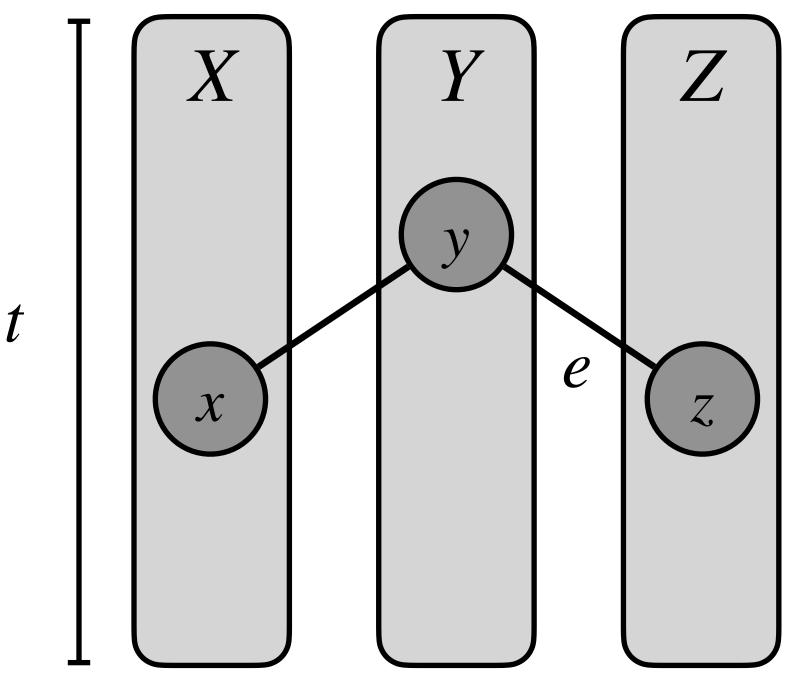


[0,2t] [10t,12t] [20t,22t]



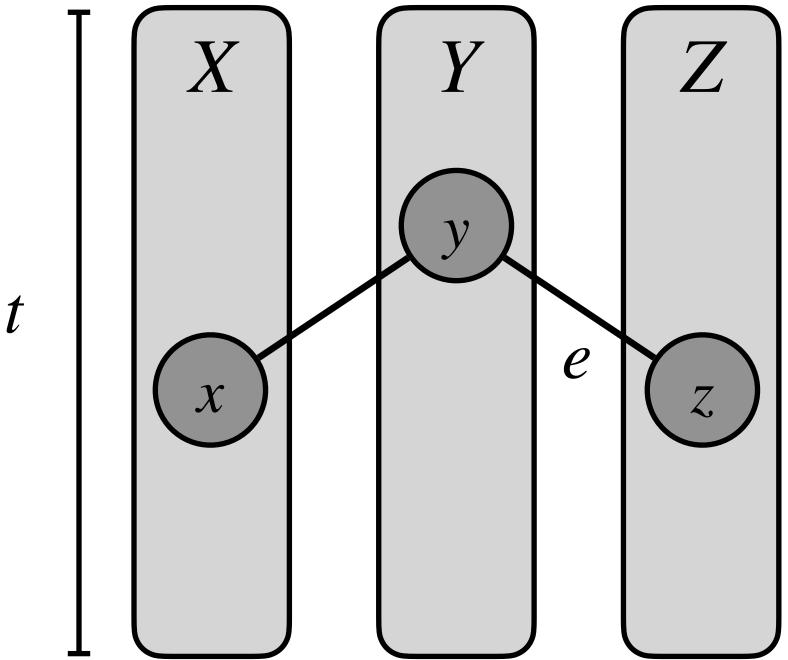
Z'X'Y'

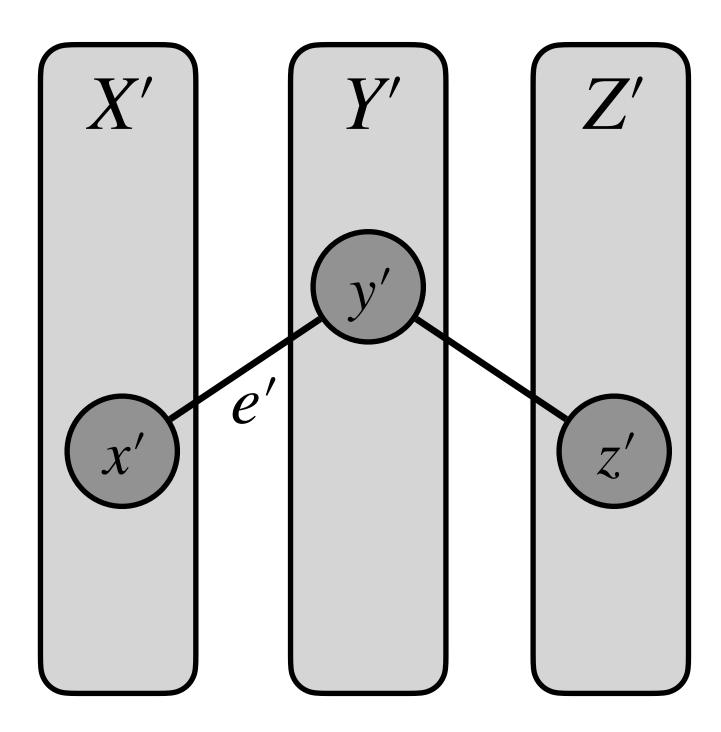
[0,2t] [10t,12t] [20t,22t]



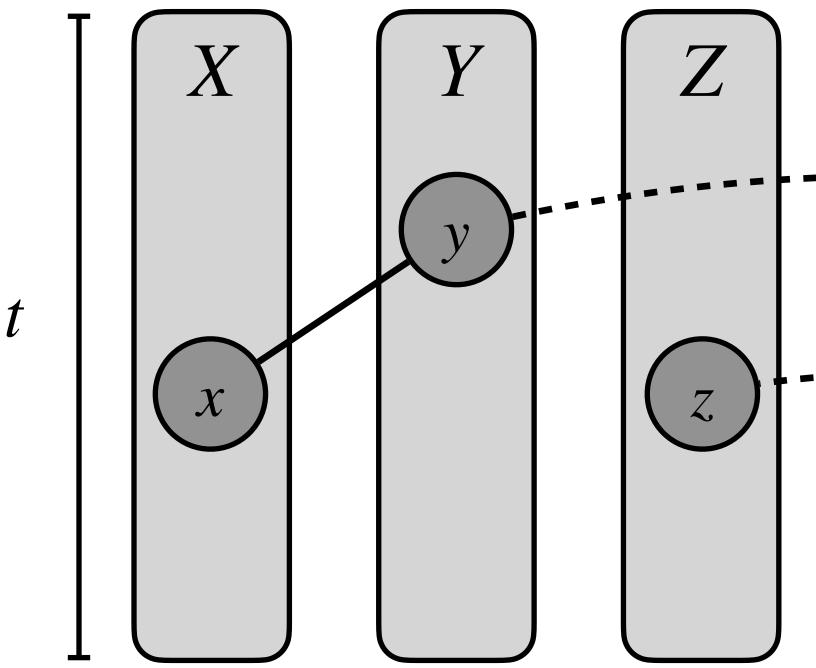
X'Z'Y'

[0,2t] [10t,12t] [20t,22t]





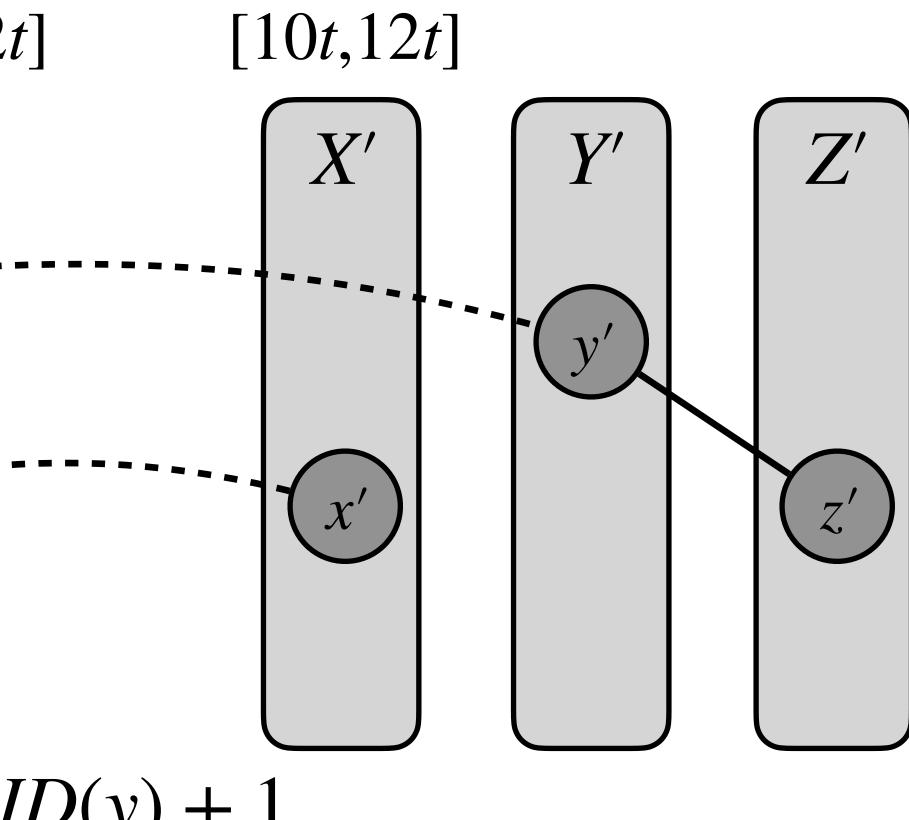
[0,2t] [10t,12t] [20t,22t]



X'Z'Y' χ' z'

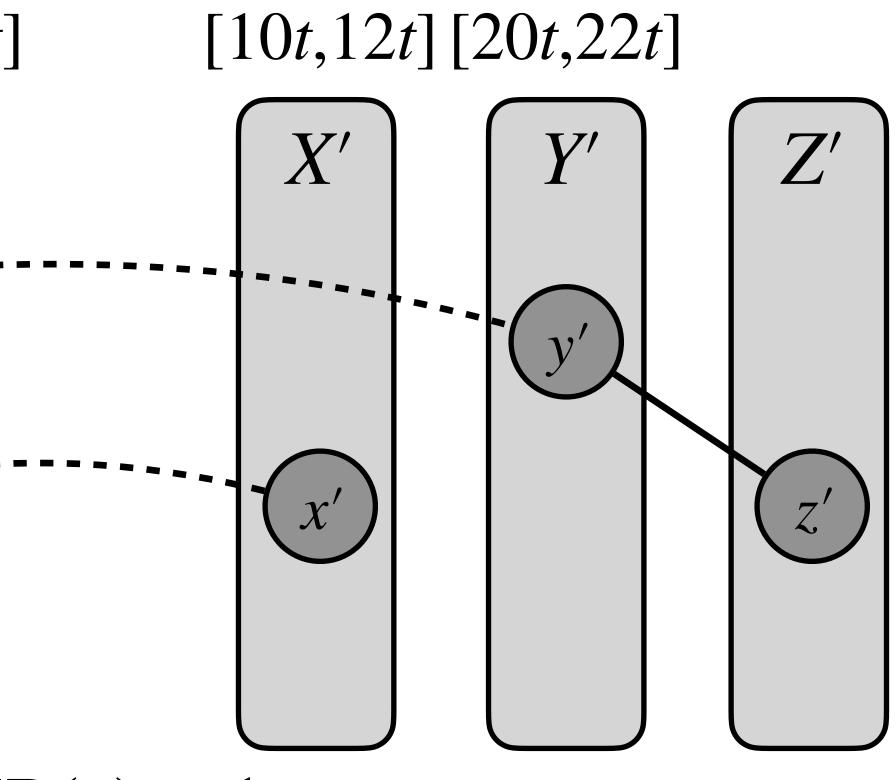
[0,2t] [10t,12t] [20t,22t]X Ζ t \boldsymbol{Z}

• Shift the ID's in X' to get ID(x') = ID(y) + 1



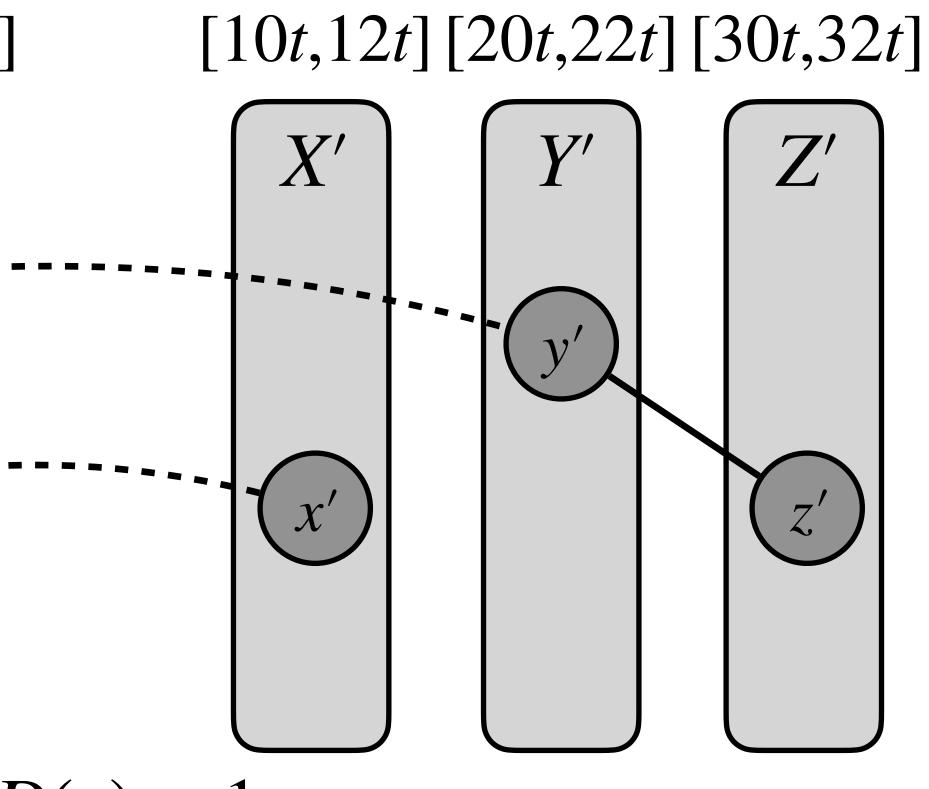
[10t, 12t] [20t, 22t][0,2t]Ζ X t Z

- Shift the ID's in X' to get ID(x') = ID(y) + 1
- Shift the ID's in Y' to get ID(y') = ID(z) + 1



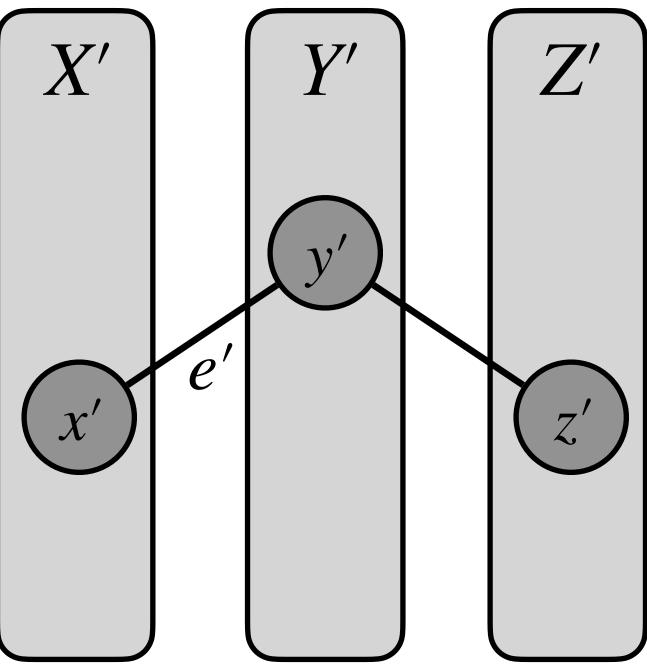
[10t, 12t] [20t, 22t][0,2t]Ζ X t Z.

- Shift the ID's in X' to get ID(x') = ID(y) + 1
- Shift the ID's in Y' to get ID(y') = ID(z) + 1



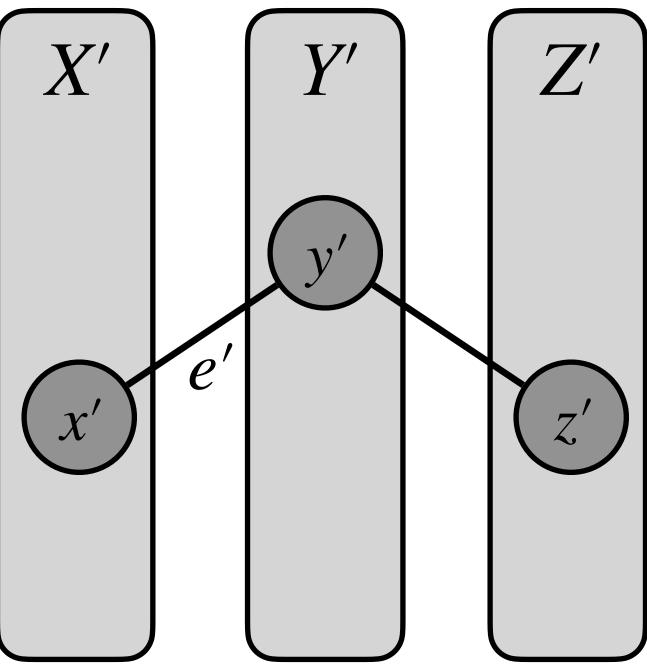
[10t, 12t] [20t, 22t] [30t, 32t][10t, 12t] [20t, 22t][0,2t]Z'X'Ζ X t e \boldsymbol{e} χ' Ζ.'

- Shift the ID's in X' to get ID(x') = ID(y) + 1
- Shift the ID's in Y' to get ID(y') = ID(z) + 1



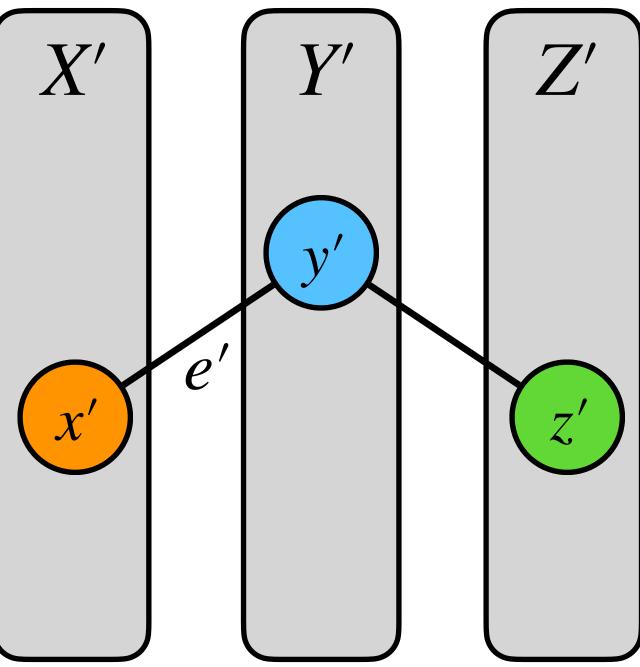
[10t, 12t] [20t, 22t] [30t, 32t][10t, 12t] [20t, 22t][0,2t]Z'Ζ X'X t e \boldsymbol{e} χ' Ζ.'

- Shift the ID's in X' to get ID(x') = ID(y) + 1
- Shift the ID's in Y' to get ID(y') = ID(z) + 1



[10t, 12t] [20t, 22t] [30t, 32t][10t, 12t] [20t, 22t][0,2t]Z'Ζ X'X t e \boldsymbol{e} χ'

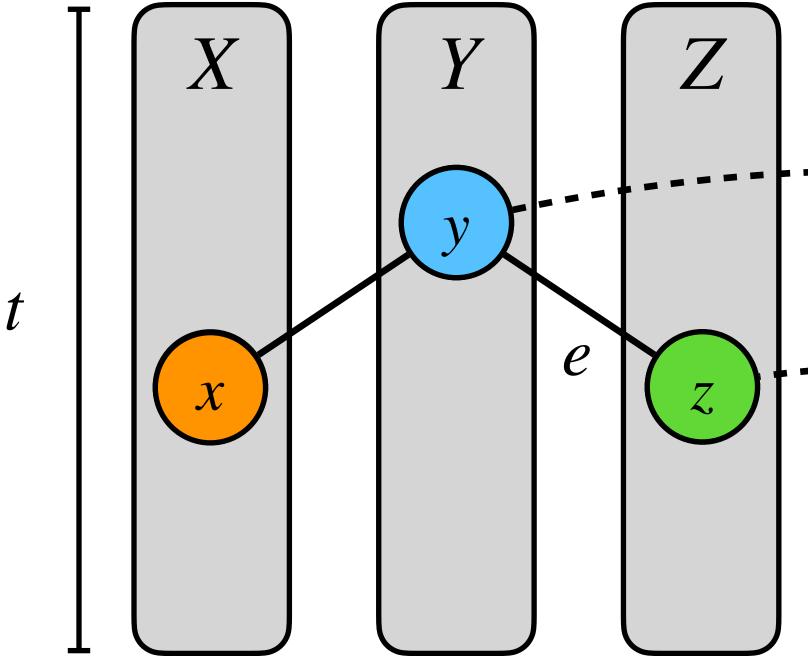
- Shift the ID's in X' to get ID(x') = ID(y) + 1
- Shift the ID's in Y' to get ID(y') = ID(z) + 1

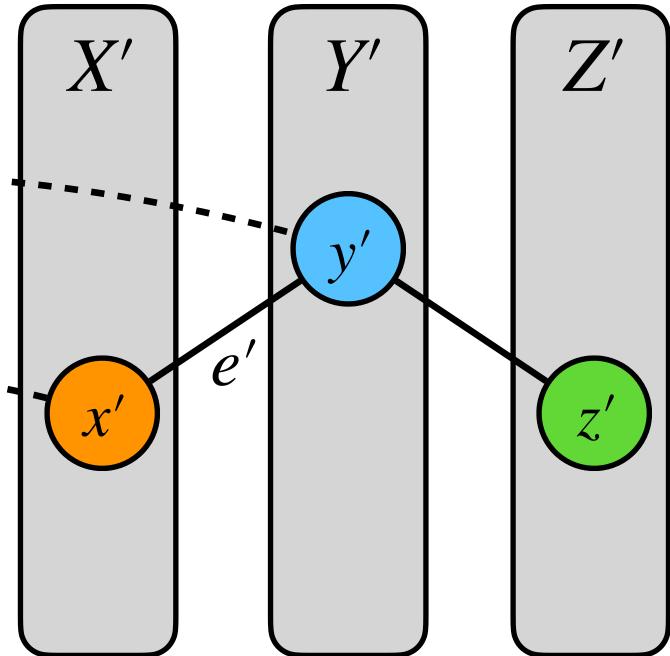


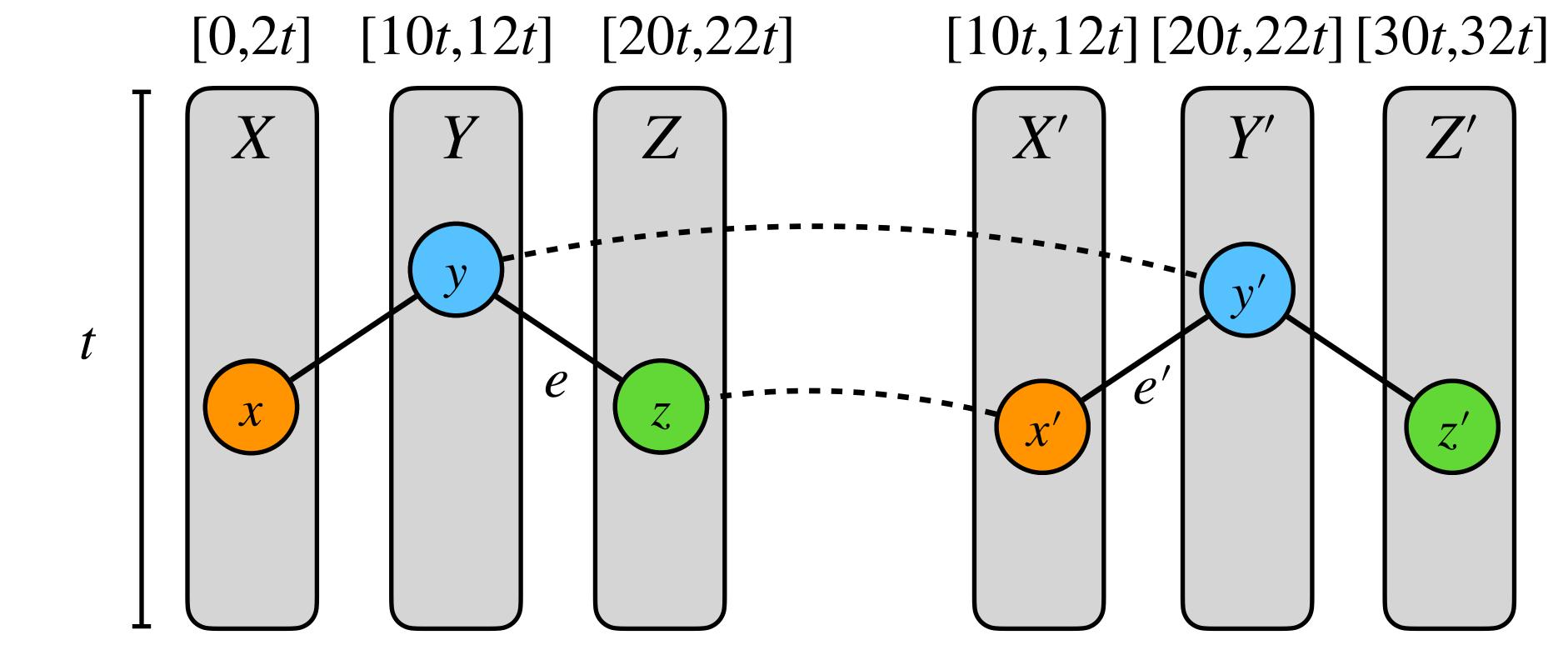
[10t, 12t] [20t, 22t] [30t, 32t][10t, 12t] [20t, 22t][0,2t]Z'Ζ X'X t e \boldsymbol{e} χ'

- Shift the ID's in X' to get ID(x') = ID(y) + 1
- Shift the ID's in Y' to get ID(y') = ID(z) + 1

[0,2t] [10t,12t] [20t,22t][10t, 12t] [20t, 22t] [30t, 32t]





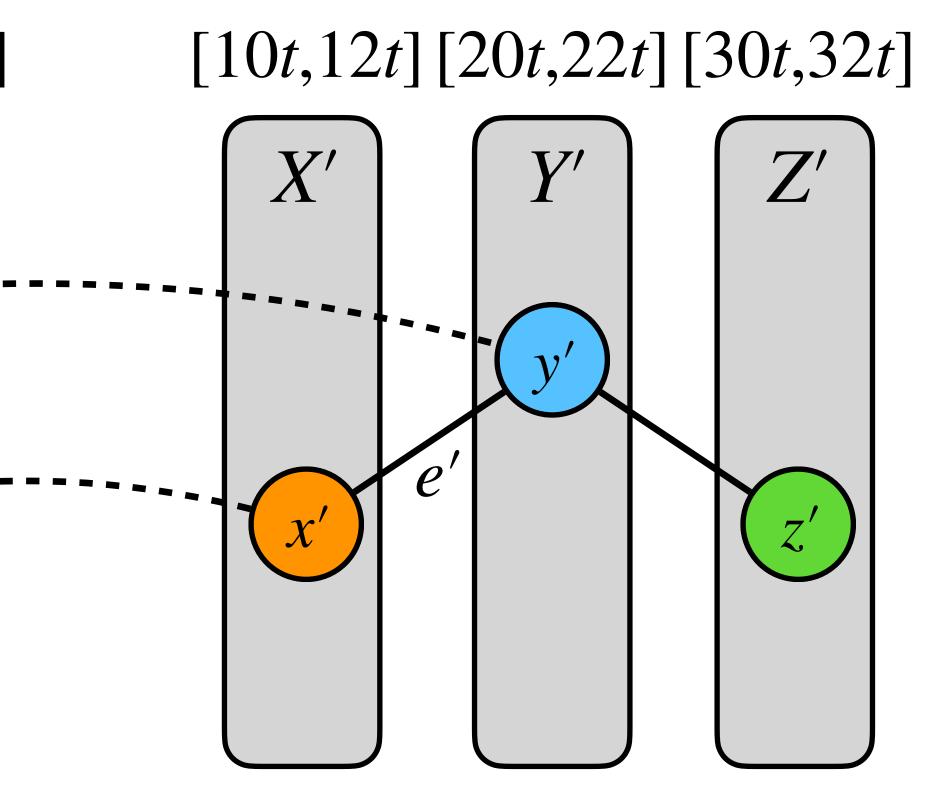


• If there is a o(m) message algorithm, we can find many such edges e, e'.

DAssignments

[10t, 12t] [20t, 22t][0,2t]X Ζ t e

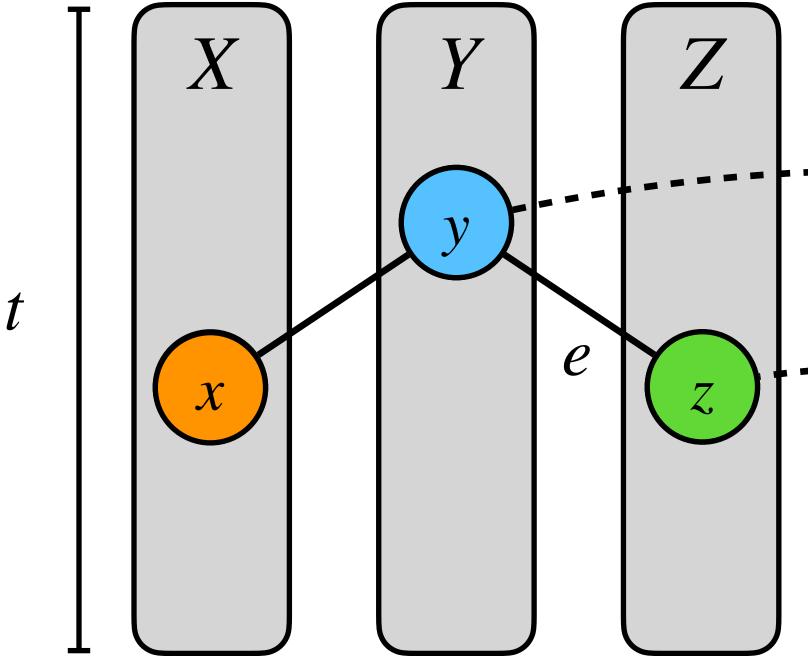
- $\Omega(m) = \Omega(n^2)$ message lower bound for $(\Delta + 1)$ -coloring.

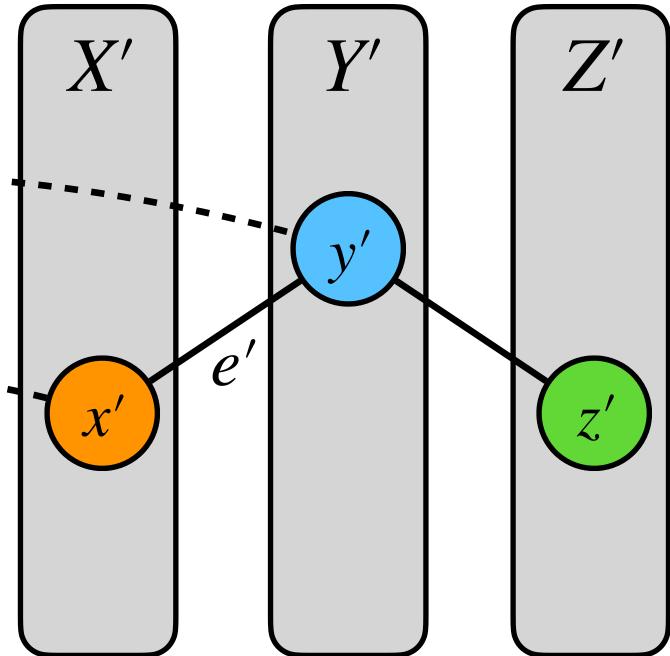


• If there is a o(m) message algorithm, we can find many such edges e, e'.

ID Assignments

[0,2t] [10t,12t] [20t,22t][10t, 12t] [20t, 22t] [30t, 32t]

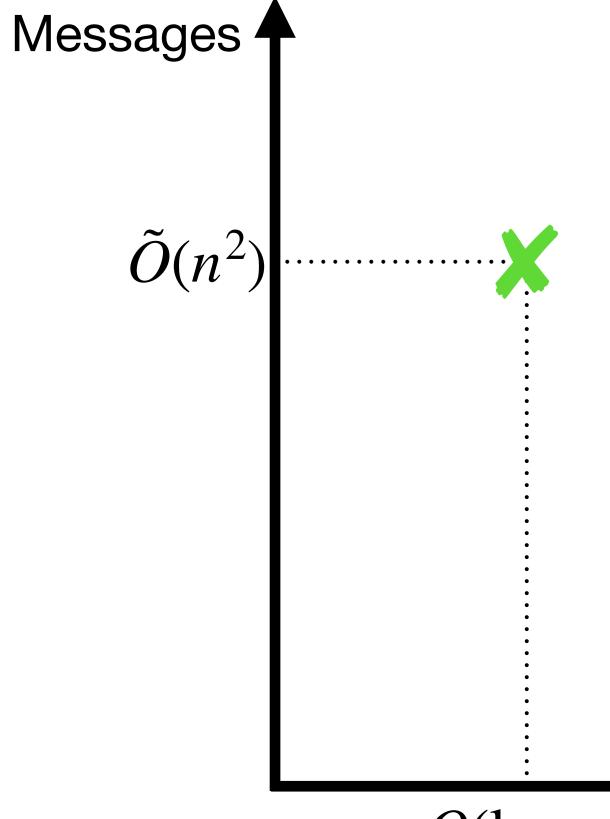




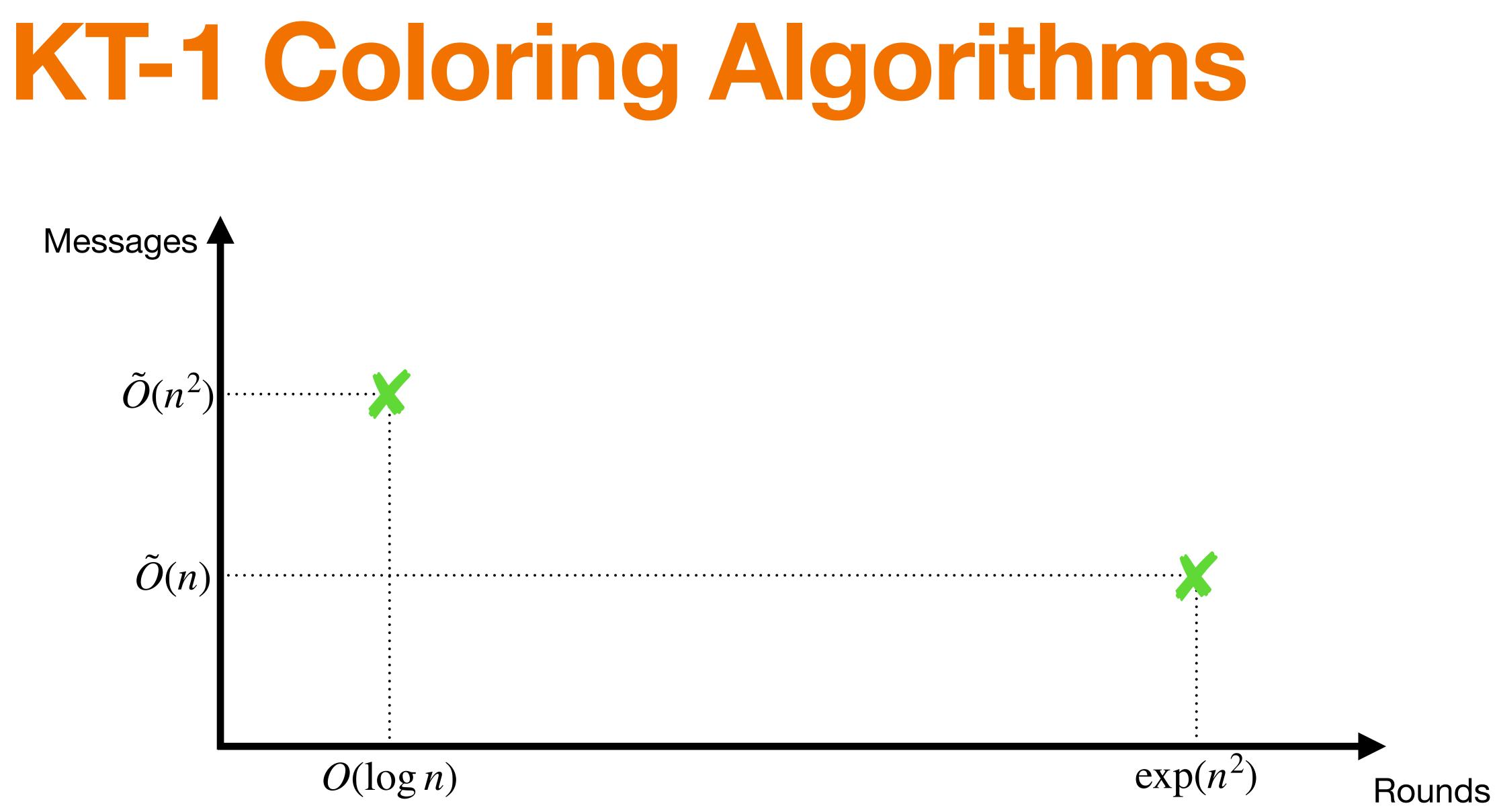
KT-1 Coloring Algorithms

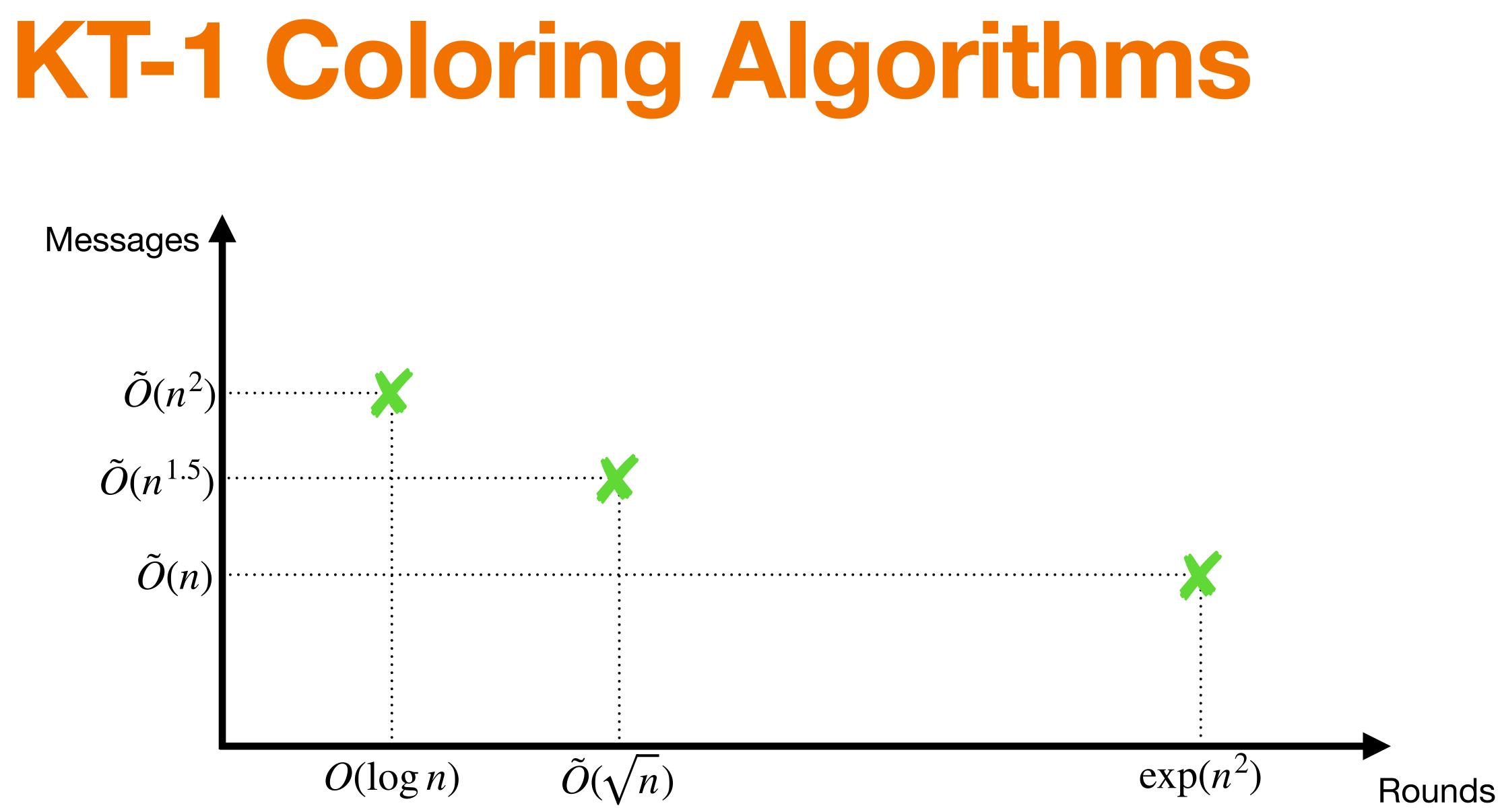
Messages

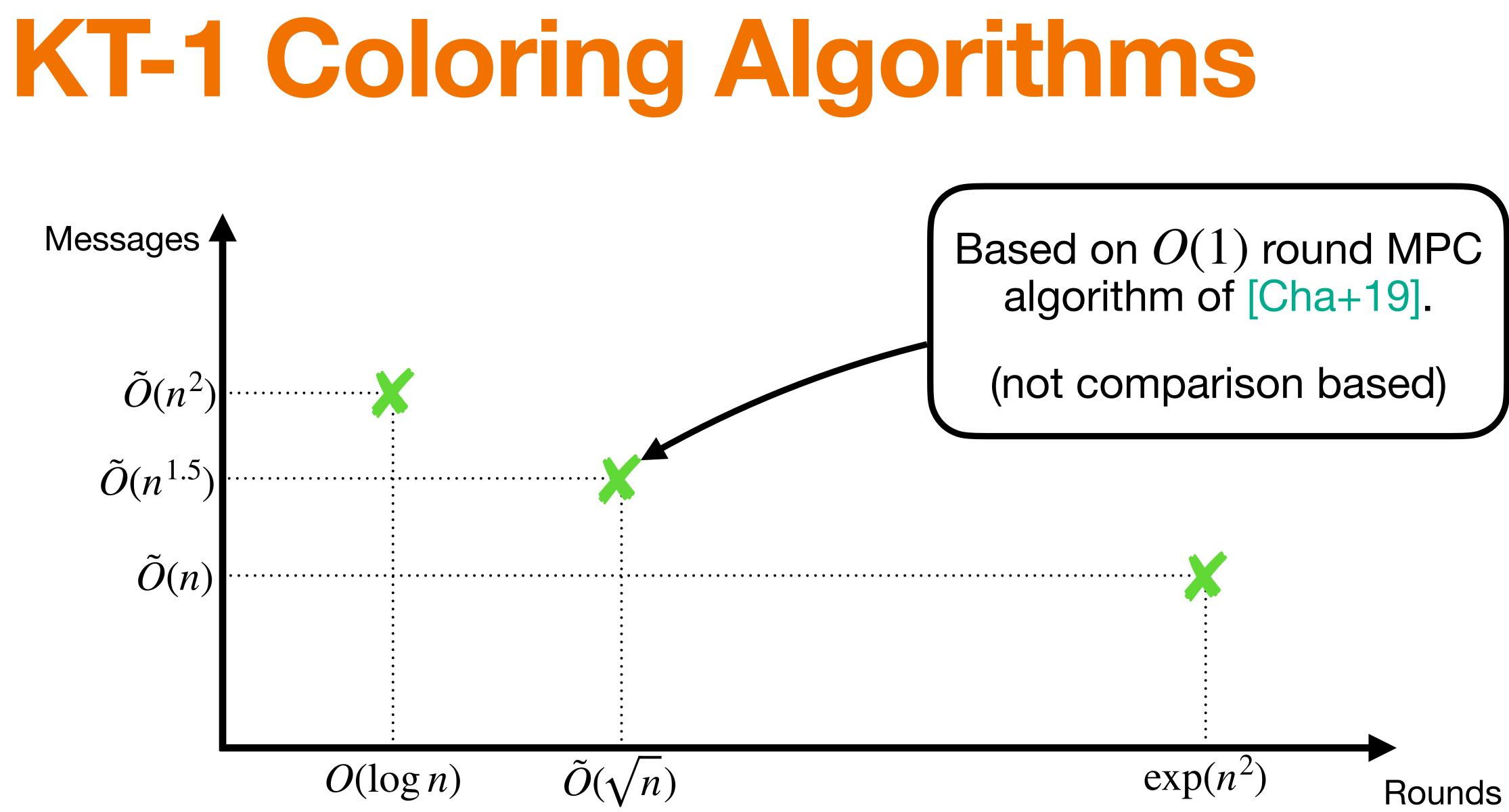
KT-1 Coloring Algorithms

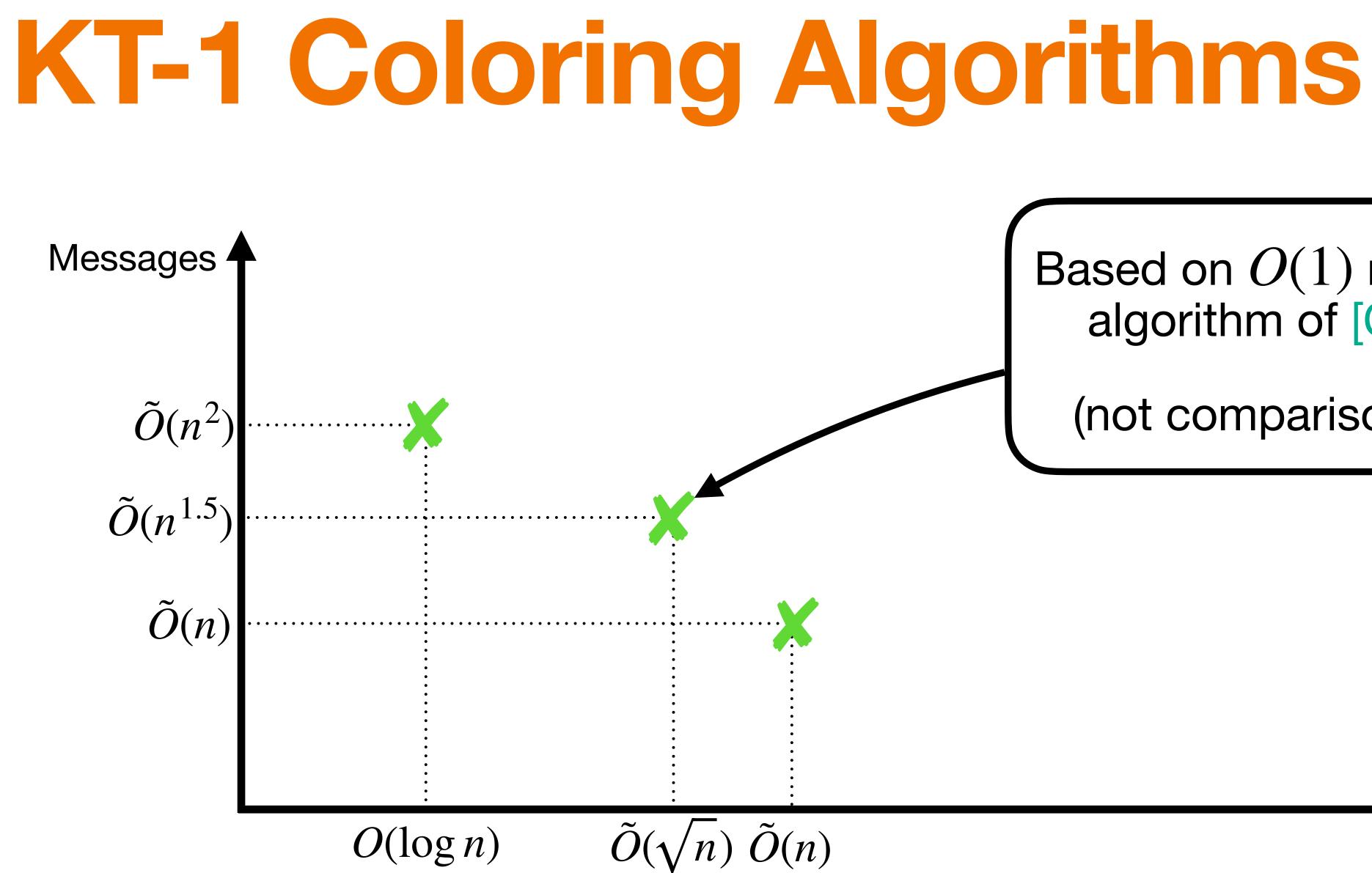


 $O(\log n)$





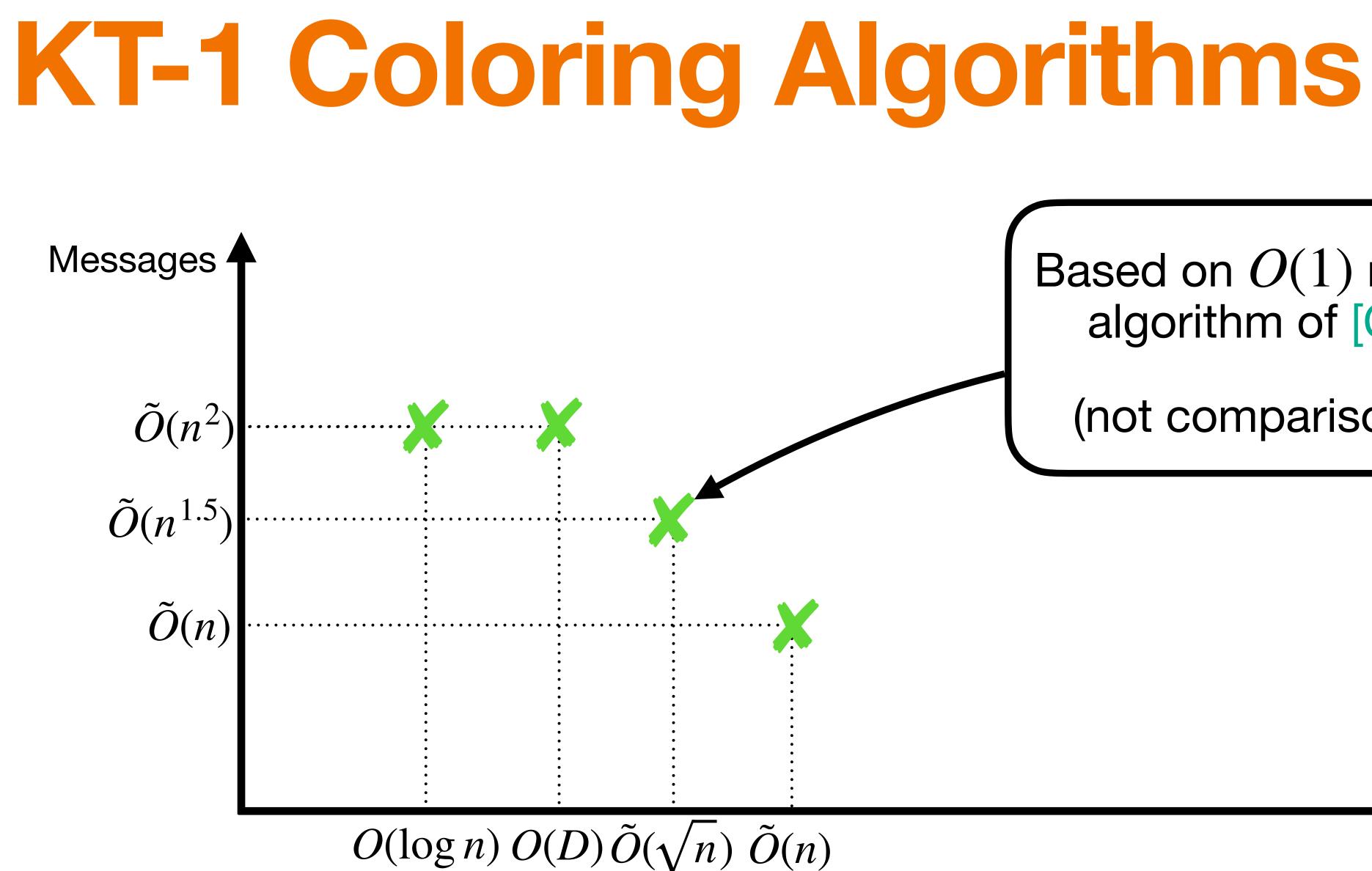




Based on O(1) round MPC algorithm of [Cha+19].

(not comparison based)

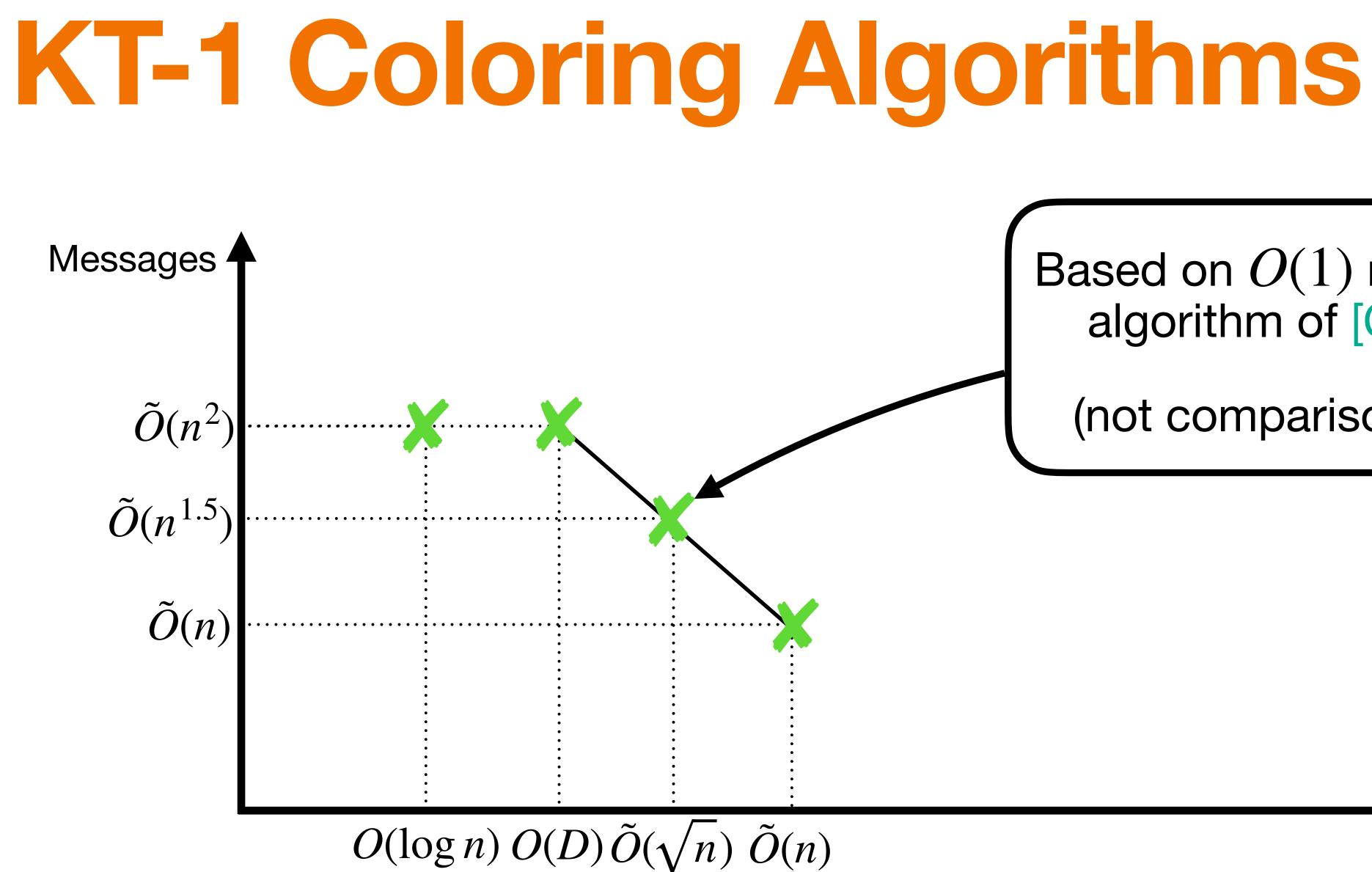




Based on O(1) round MPC algorithm of [Cha+19].

(not comparison based)





Based on O(1) round MPC algorithm of [Cha+19].

(not comparison based)



Open Questions

- Can we get singularly optimal algorithms for local symmetry breaking problems like MIS, $(\Delta + 1)$ -coloring, Maximal Matching?
 - Such algorithms are known for problems like leader election.
- Can we rule out singularly optimal algorithms in KT-1 CONGEST?
- Can we design an algorithm for MIS in KT-1 CONGEST that uses poly(n)rounds and o(m) messages?

To $\Omega(m)$ and Beyond

- - $(\Delta + 1)$ -coloring.

- Maximal Independent Set.
- For poly(n) round KT-1 algorithms, $\Omega(m \cdot D)$ message lower bound for:
 - Minimum Vertex Cover.
 - Maximum Independent Set.
 - Minimum Dominating Set.

• For comparison based KT-1 algorithms, $\Omega(m)$ message lower bound for:

[PPP+21] Pai, Pandurangan, Pemmaraju, Robinson. PODC 2021

[DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

To $\Omega(m)$ and Beyond

- - $(\Delta + 1)$ -coloring.

- Maximal Independent Set.
- For poly(n) round KT-1 algorithms, $\Omega(m \cdot D)$ message lower bound for:
 - Minimum Vertex Cover.
 - Maximum Independent Set.
 - Minimum Dominating Set.

• For comparison based KT-1 algorithms, $\Omega(m)$ message lower bound for:

[PPP+21] Pai, Pandurangan, Pemmaraju, Robinson. PODC 2021

[DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

 Based on the 2-party communication complexity reduction framework of [CKP17].

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

Alice

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

Alice

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

Alice

Bob

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

Bob

$x \in \{0,1\}^k$

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

$x \in \{0,1\}^k$

$y \in \{0,1\}^k$

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.
 - $SD(x, y) = False if x_i = y_i = 1.$

$x \in \{0,1\}^k$

$y \in \{0,1\}^k$

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.
 - $SD(x, y) = False if x_i = y_i = 1.$
 - SD(x, y) = True otherwise

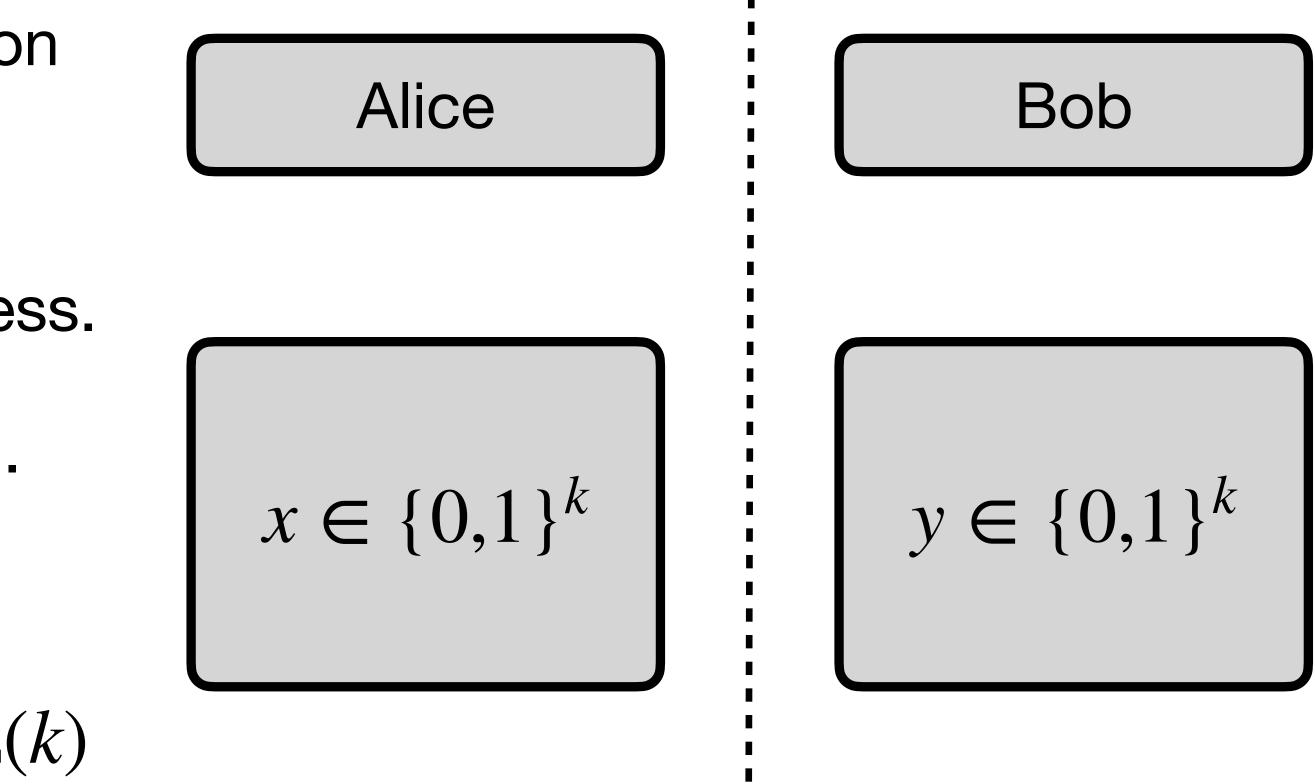
[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

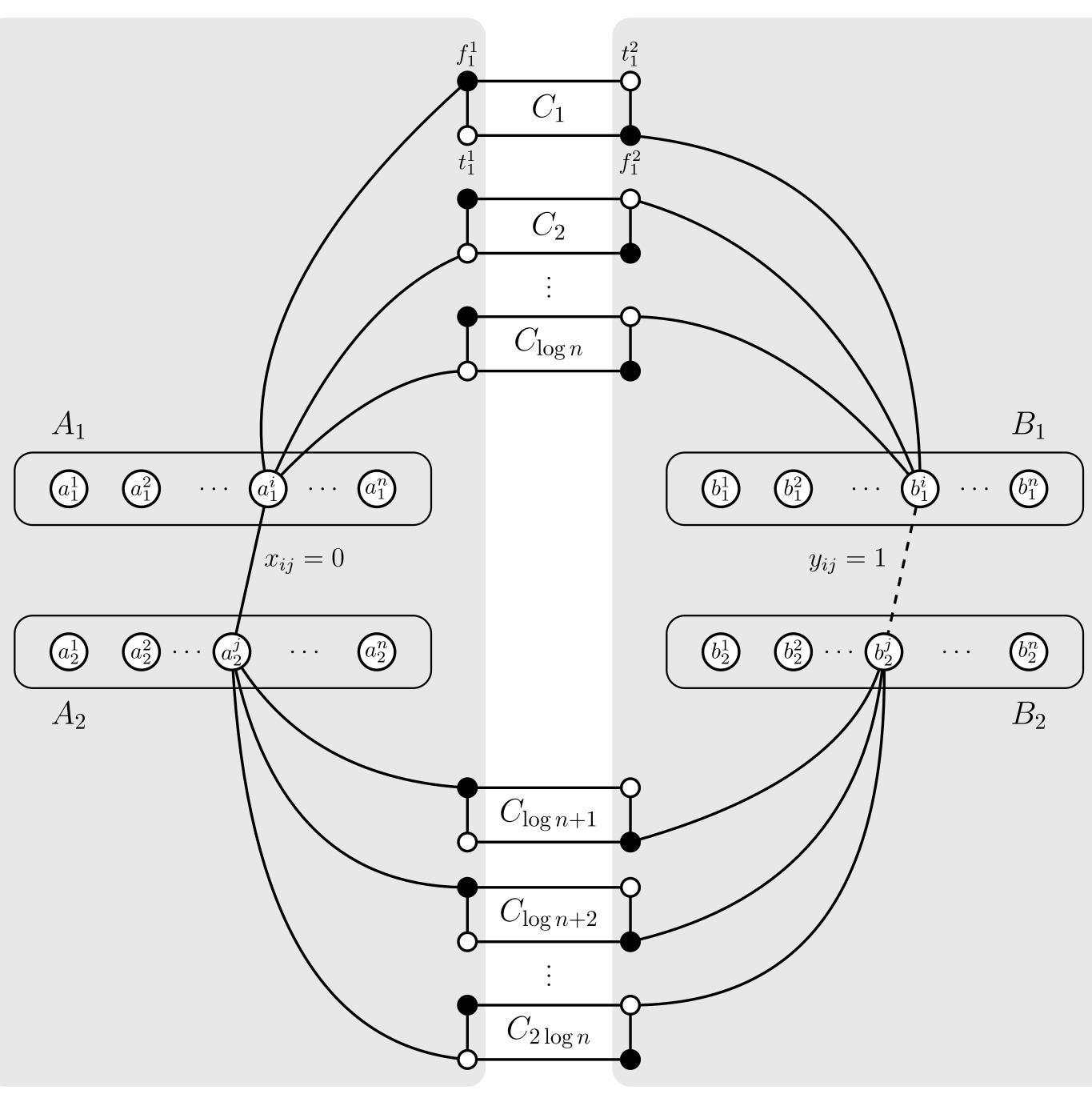
$x \in \{0,1\}^k$

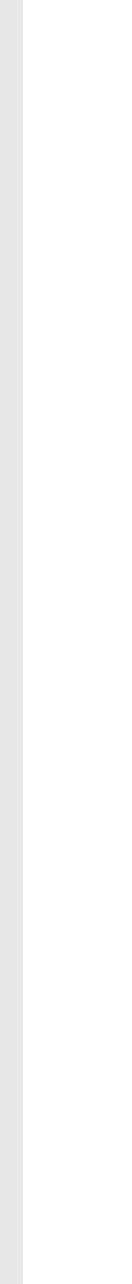
$y \in \{0,1\}^k$

- Based on the 2-party communication complexity reduction framework of [CKP17].
- Typically reduce from Set Disjointness.
 - $SD(x, y) = False if x_i = y_i = 1.$
 - SD(x, y) = True otherwise
- Alice and Bob need to exchange $\Omega(k)$ bits to compute SD(x, y).

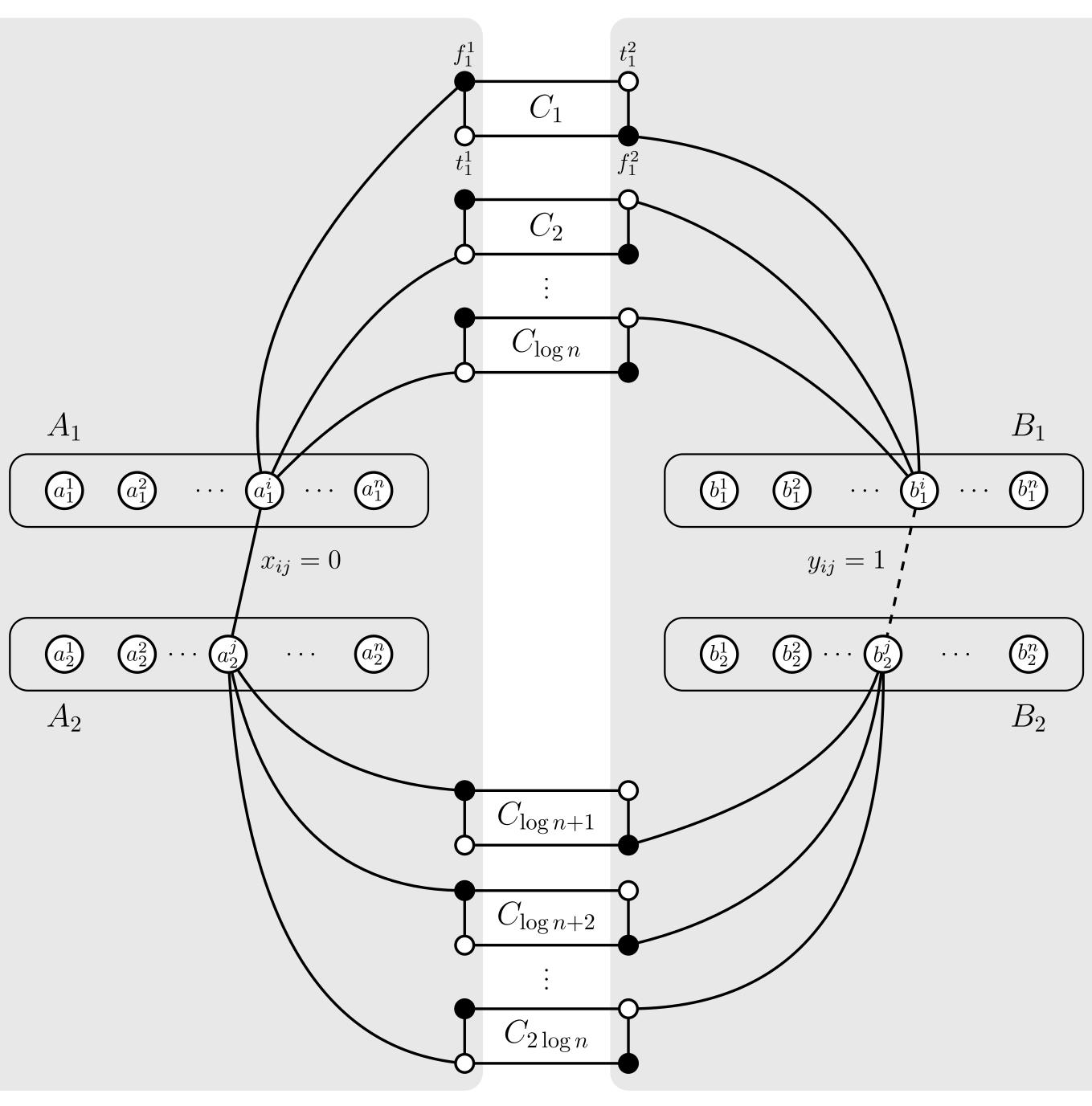
[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017

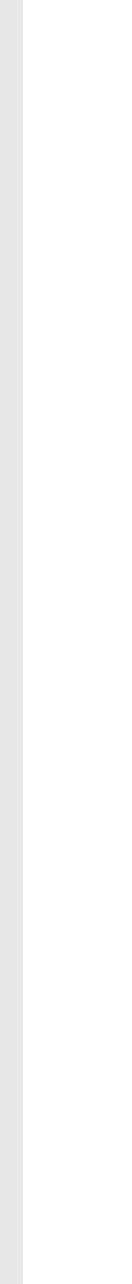






 $SD(x, y) = True iff G_{x,y}$ has an MVC of size at least C(n).





 $SD(x, y) = True iff G_{x,y}$ has an MVC of size at least C(n).

 A_1

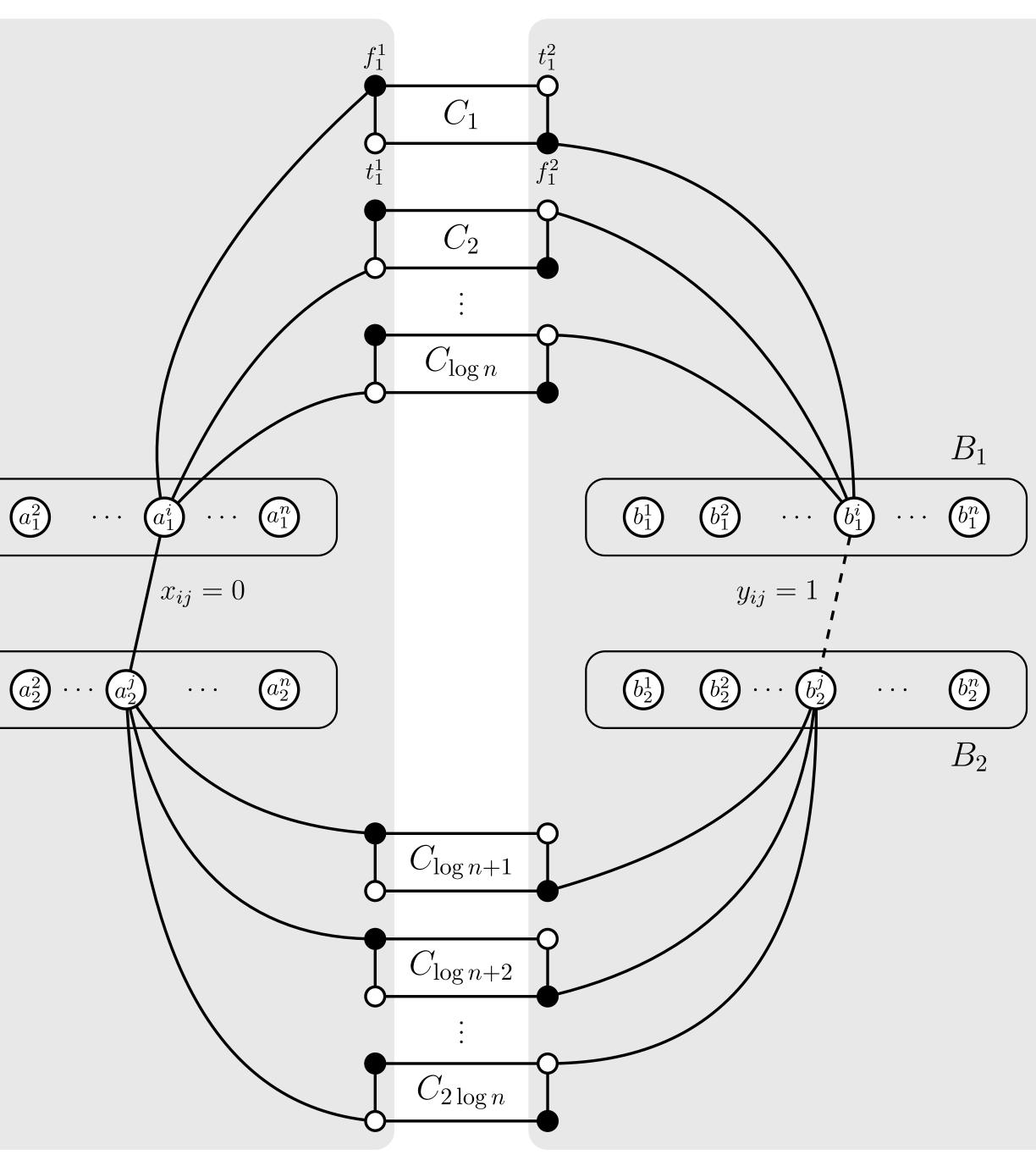
 (a_1^1)

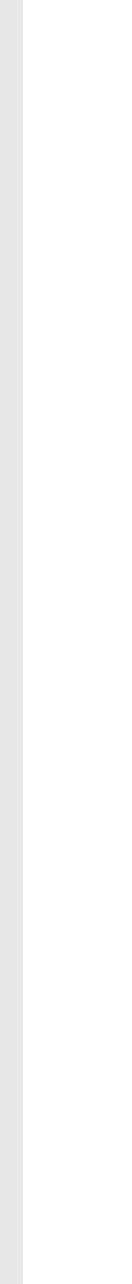
 (a_2^1)

 A_2

Computing MVC of $G_{x,y}$ requires $\tilde{\Omega}(n^2)$ rounds.

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017



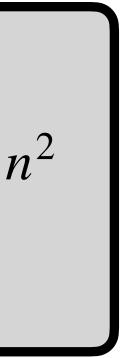


Alice

$x \in \{0,1\}^{n^2}$



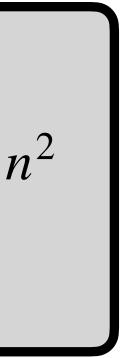
$y \in \{0,1\}^{n^2}$



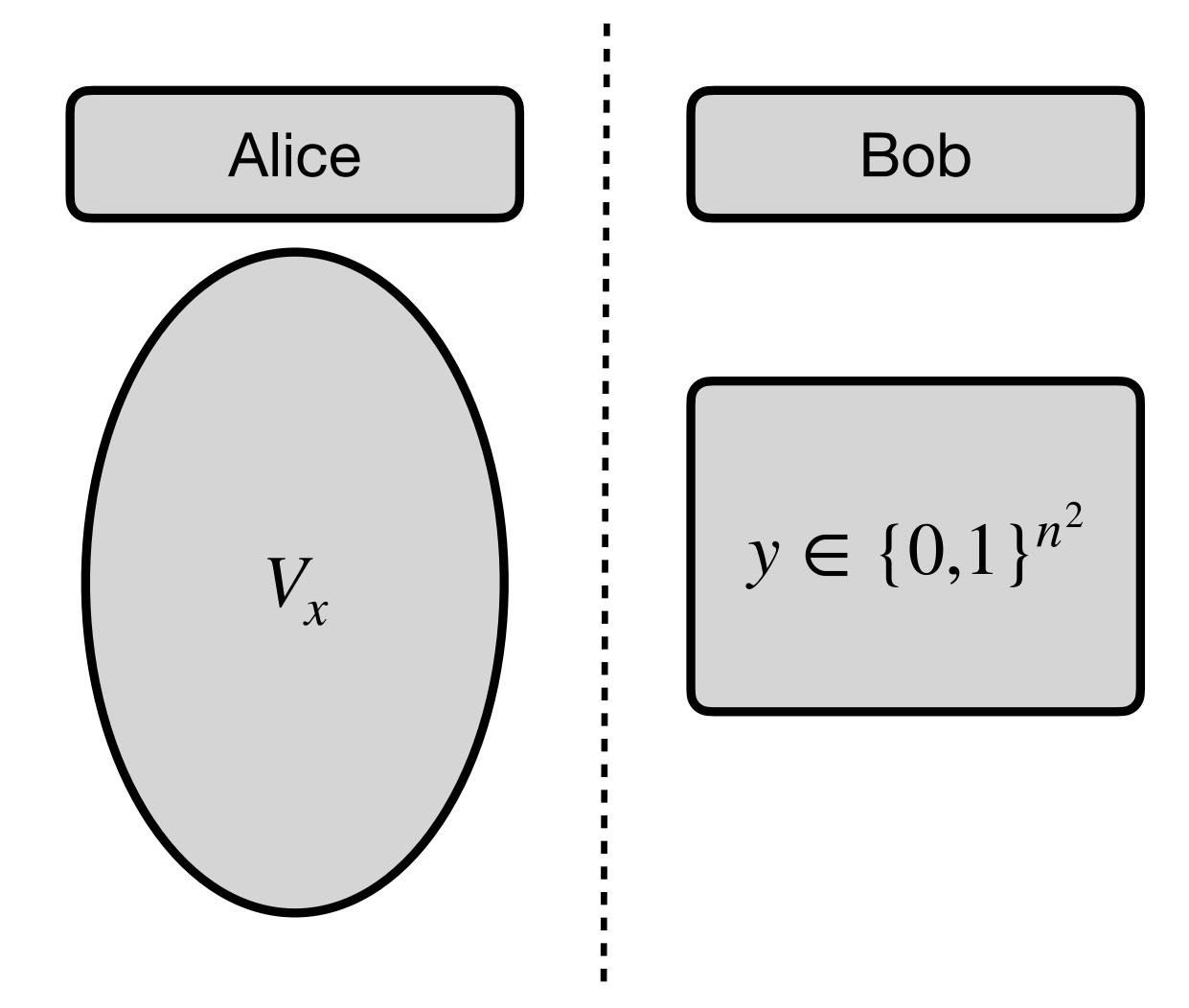
• Alice and Bob first construct $G_{x,y}$

Alice

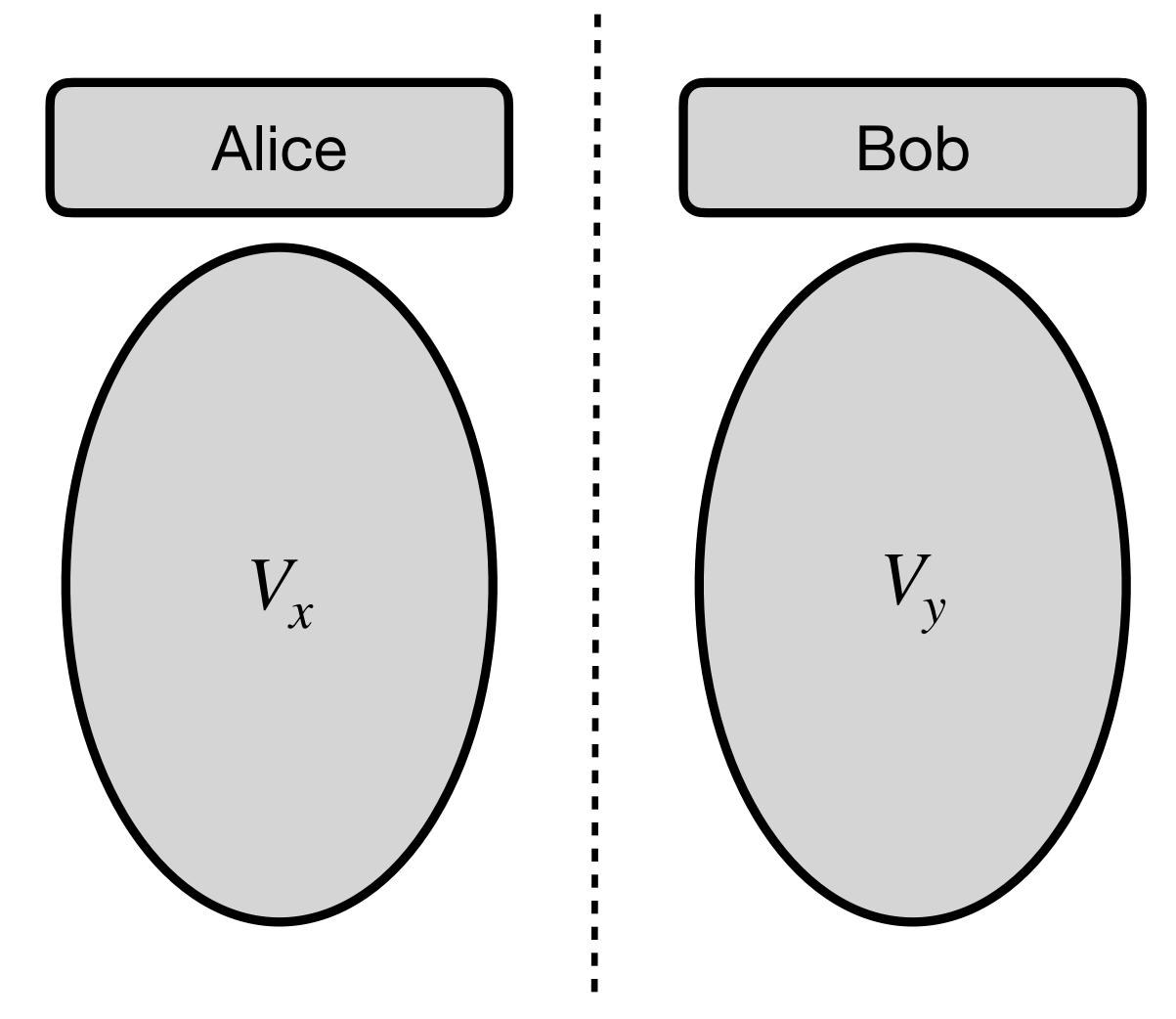
$x \in \{0,1\}^{n^2}$ $y \in \{0,1\}^{n^2}$



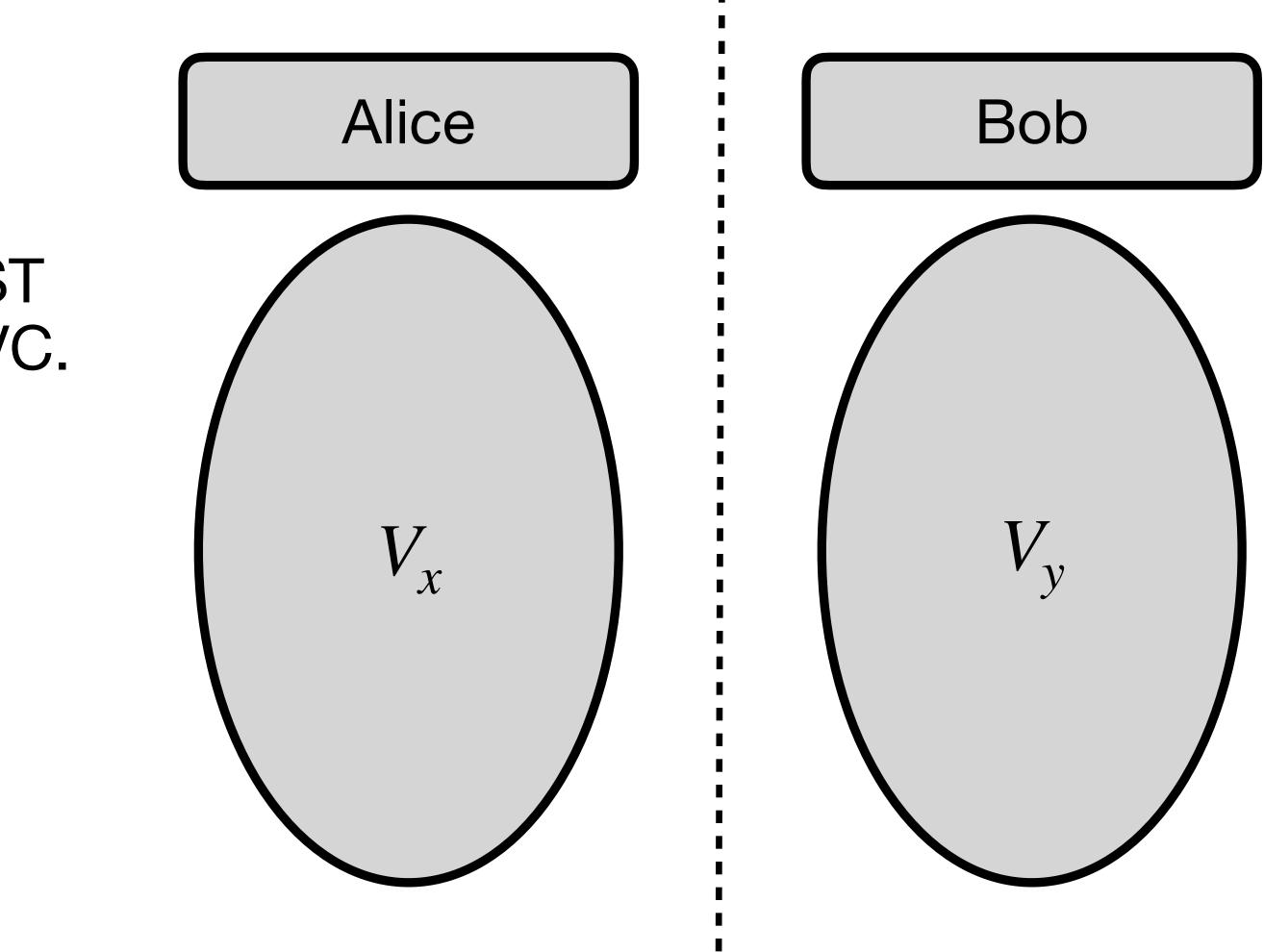
• Alice and Bob first construct $G_{x,y}$



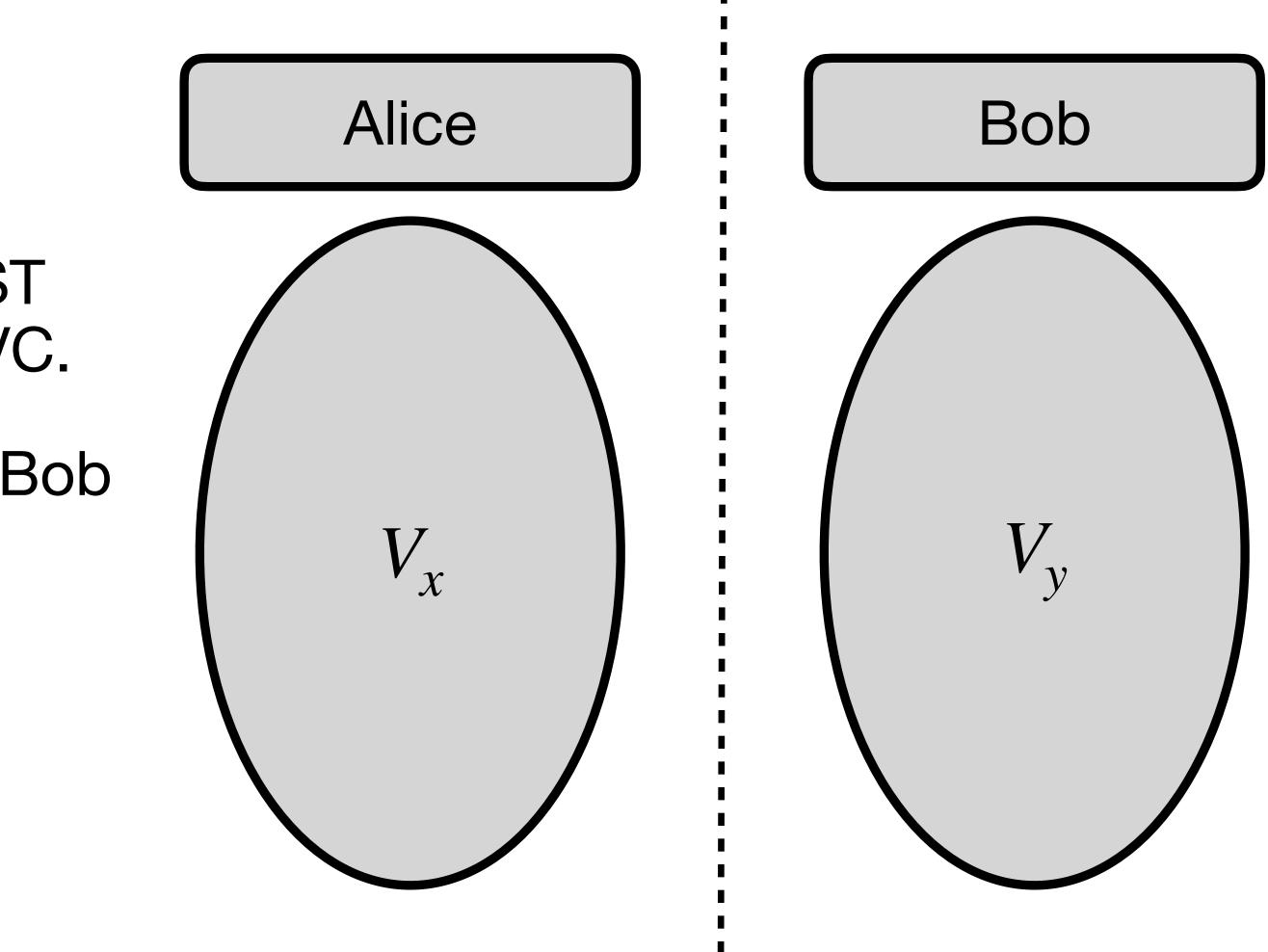
• Alice and Bob first construct $G_{x,y}$



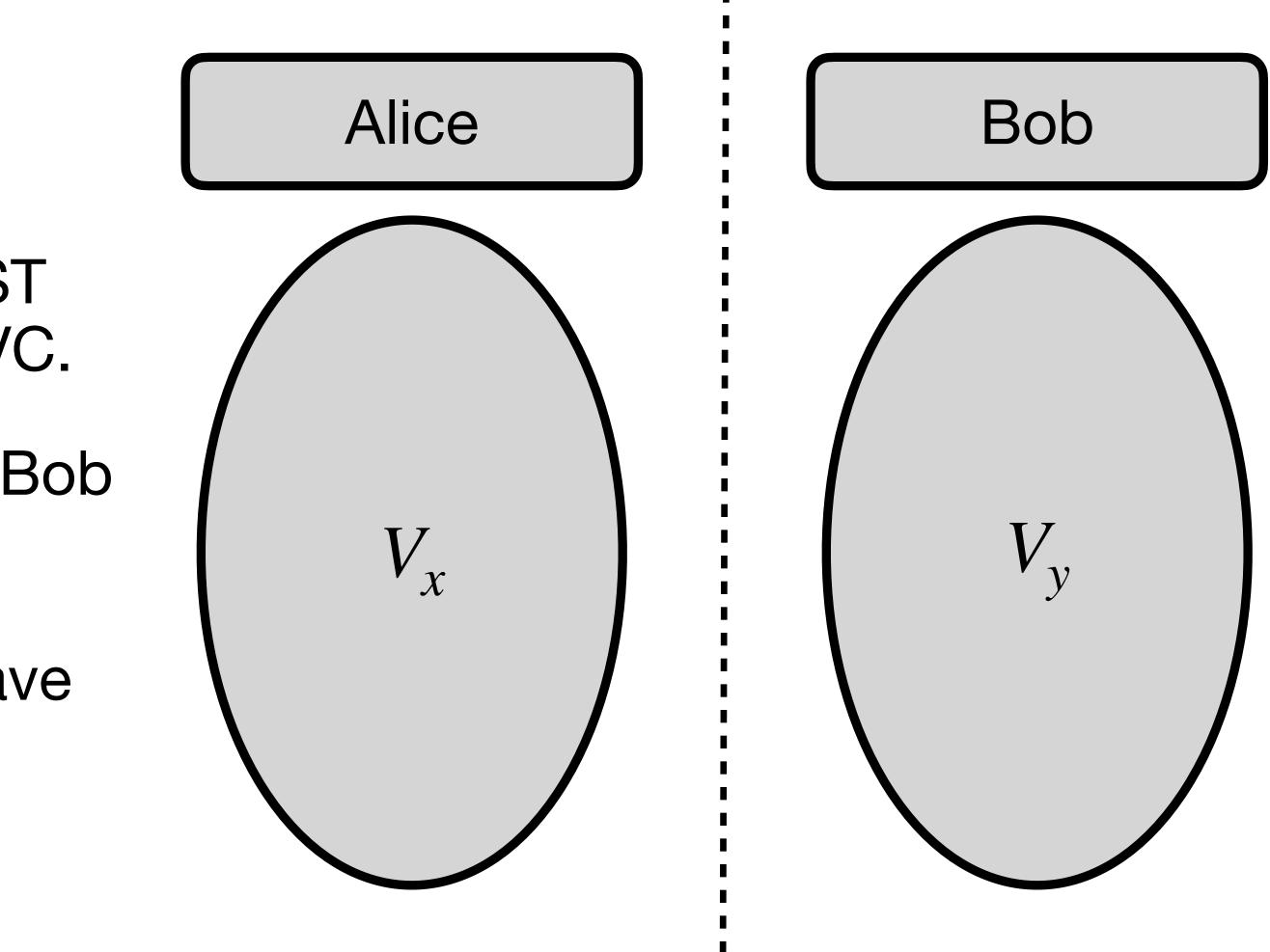
- Alice and Bob first construct $G_{x,y}$
- Then simulate an *r*-round CONGEST algorithm that computes size of MVC.

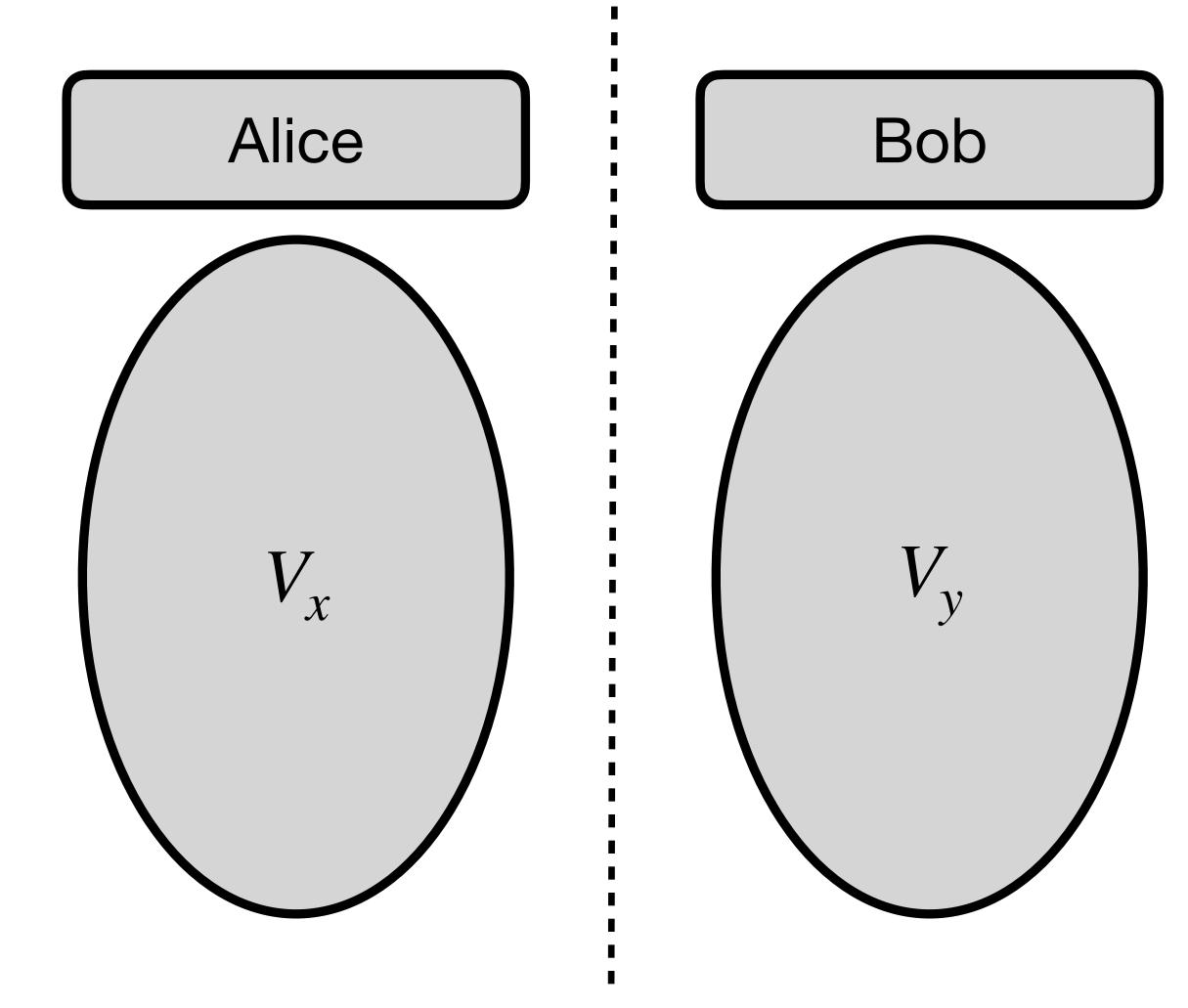


- Alice and Bob first construct $G_{x,y}$
- Then simulate an *r*-round CONGEST algorithm that computes size of MVC.
 - Each round requires Alice and Bob to exchange $O(\log^2 n)$ bits.

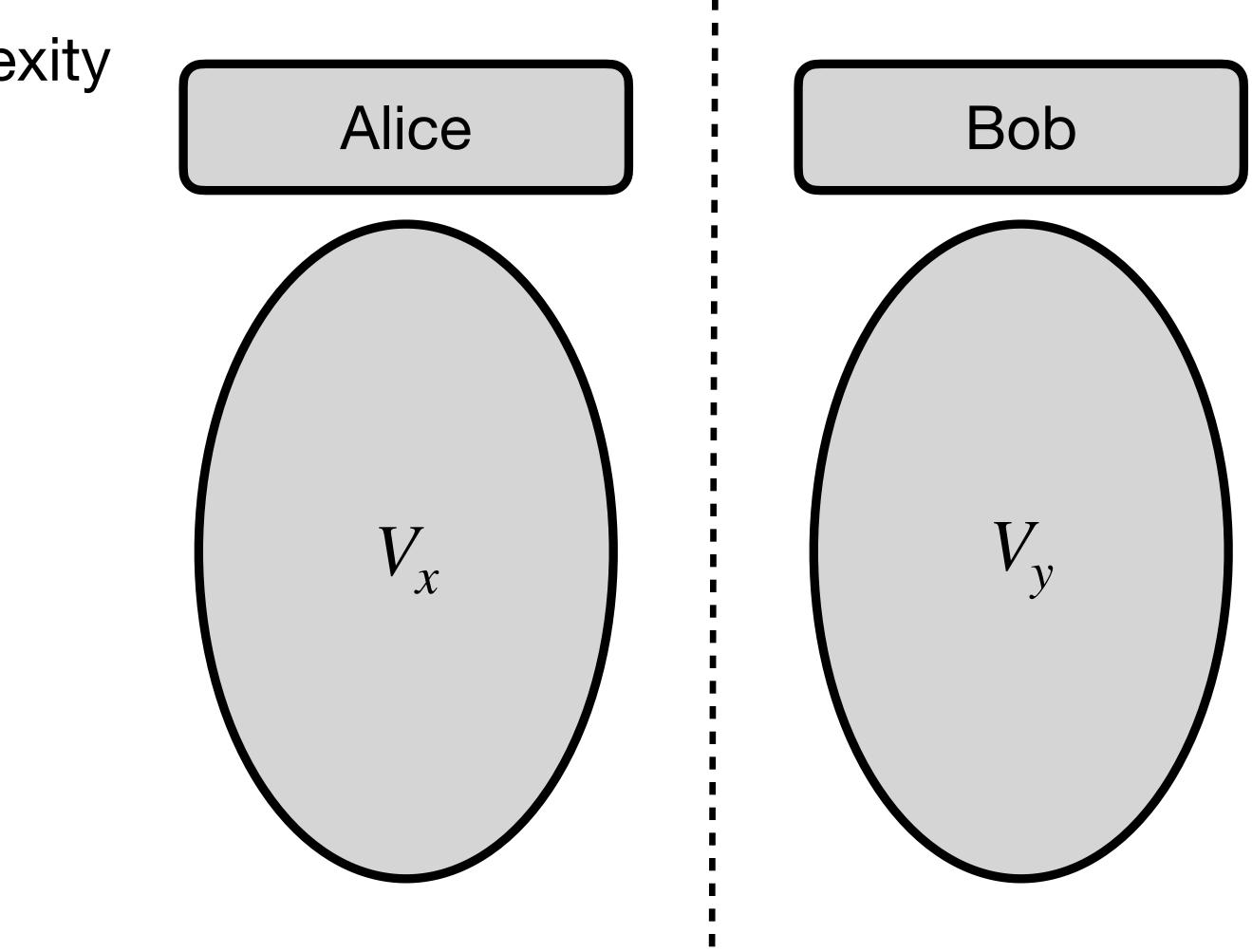


- Alice and Bob first construct $G_{\chi,\nu}$
- Then simulate an *r*-round CONGEST algorithm that computes size of MVC.
 - Each round requires Alice and Bob to exchange $O(\log^2 n)$ bits.
- By the SD lower bound we must have $r \cdot \log^2 n \ge n^2$.

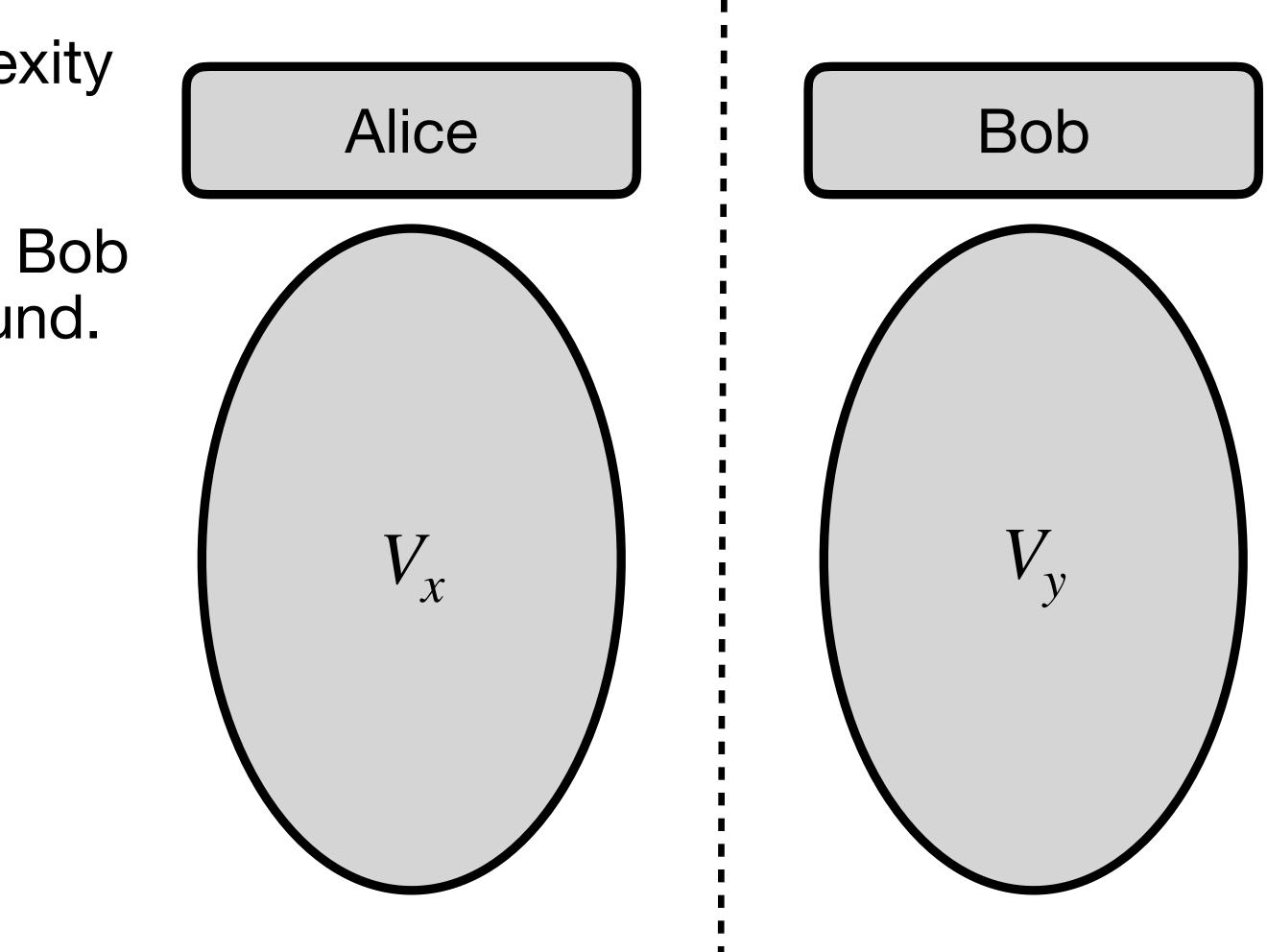




 The 2-party communication complexity model is asynchronous.

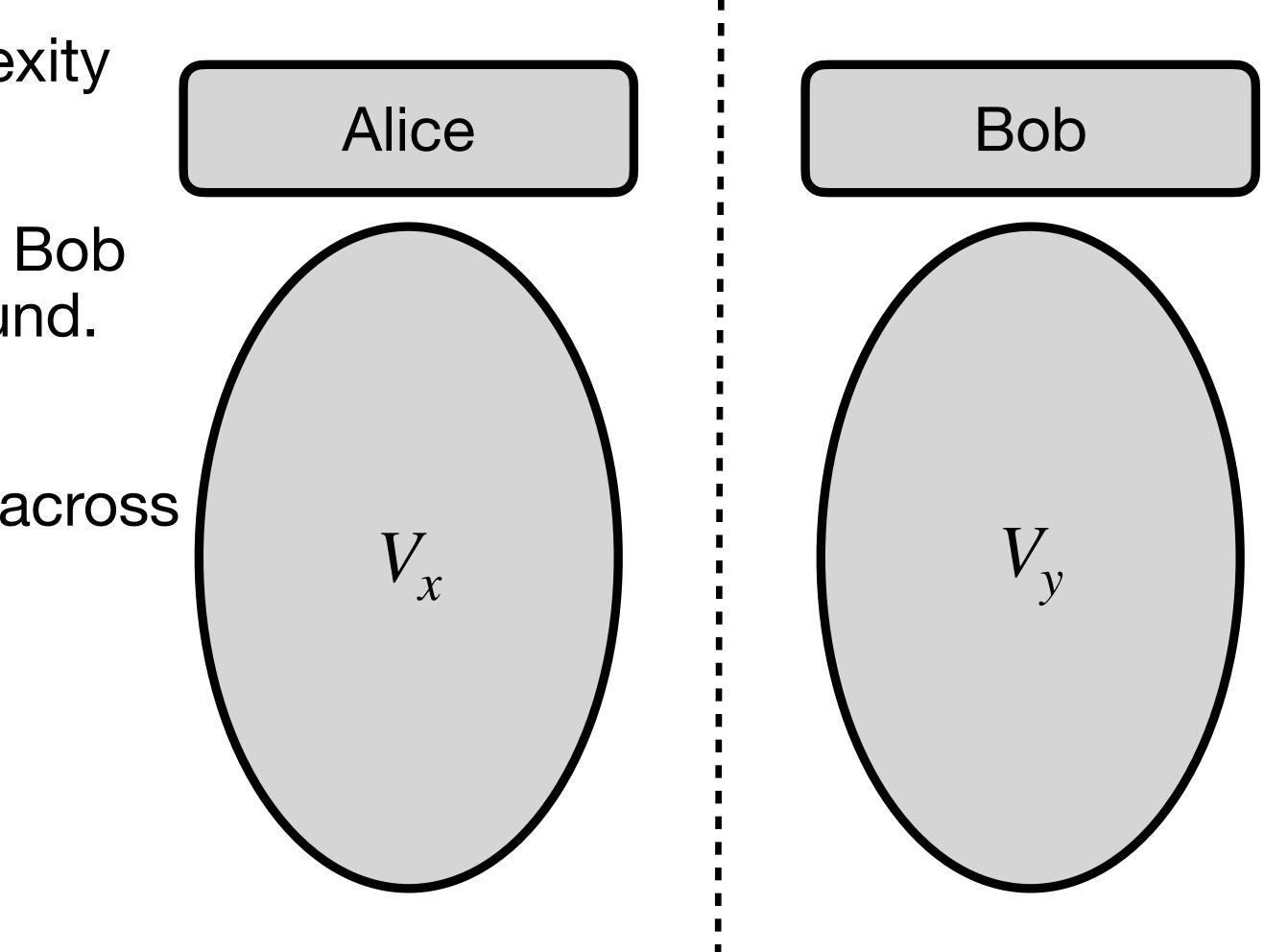


- The 2-party communication complexity model is asynchronous.
- Naive simulation requires Alice and Bob to send at least one bit for each round.



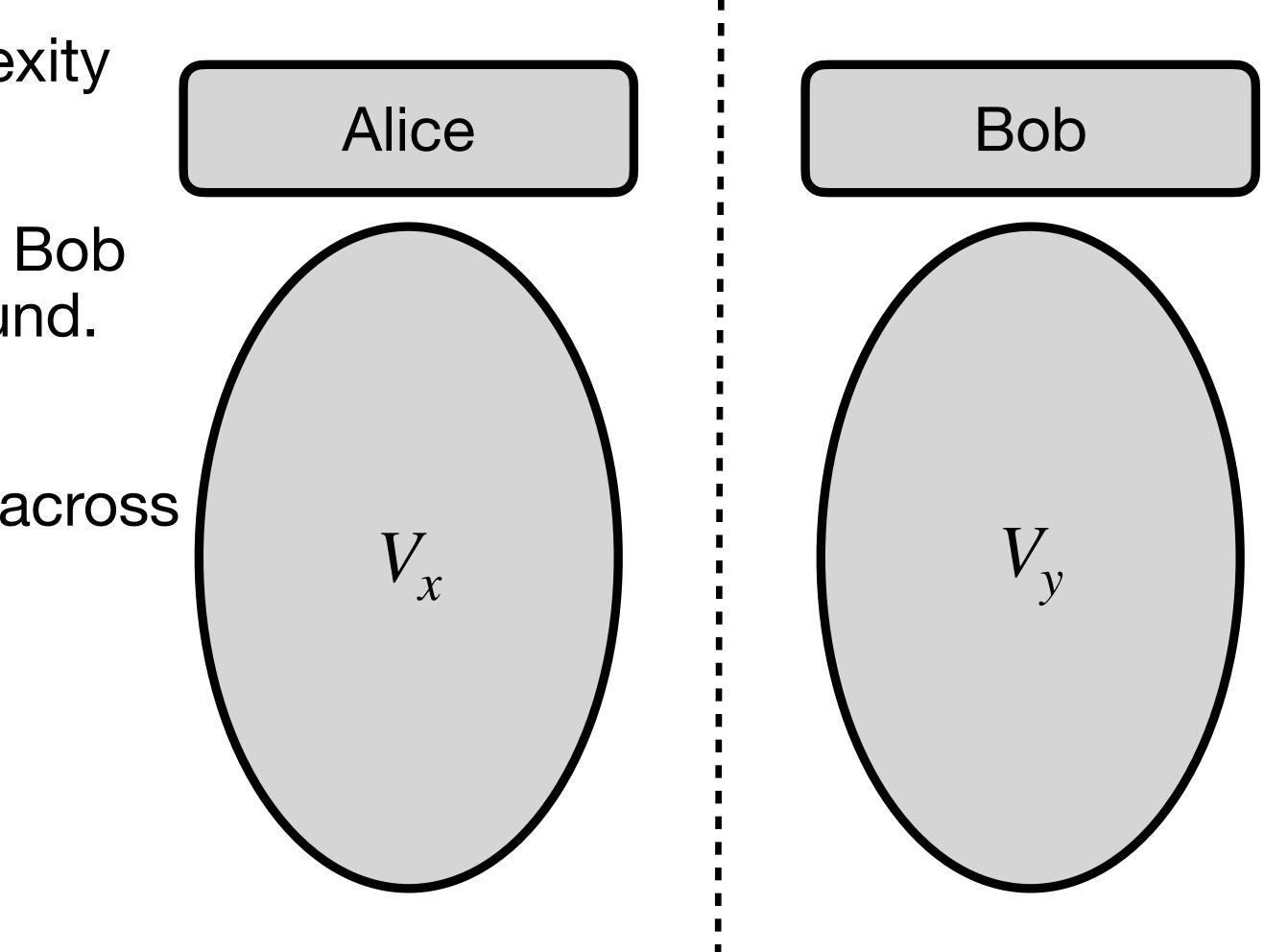
Message Lower Bound?

- The 2-party communication complexity model is asynchronous.
- Naive simulation requires Alice and Bob to send at least one bit for each round.
 - Even though the CONGEST algorithm sends no messages across the cut!



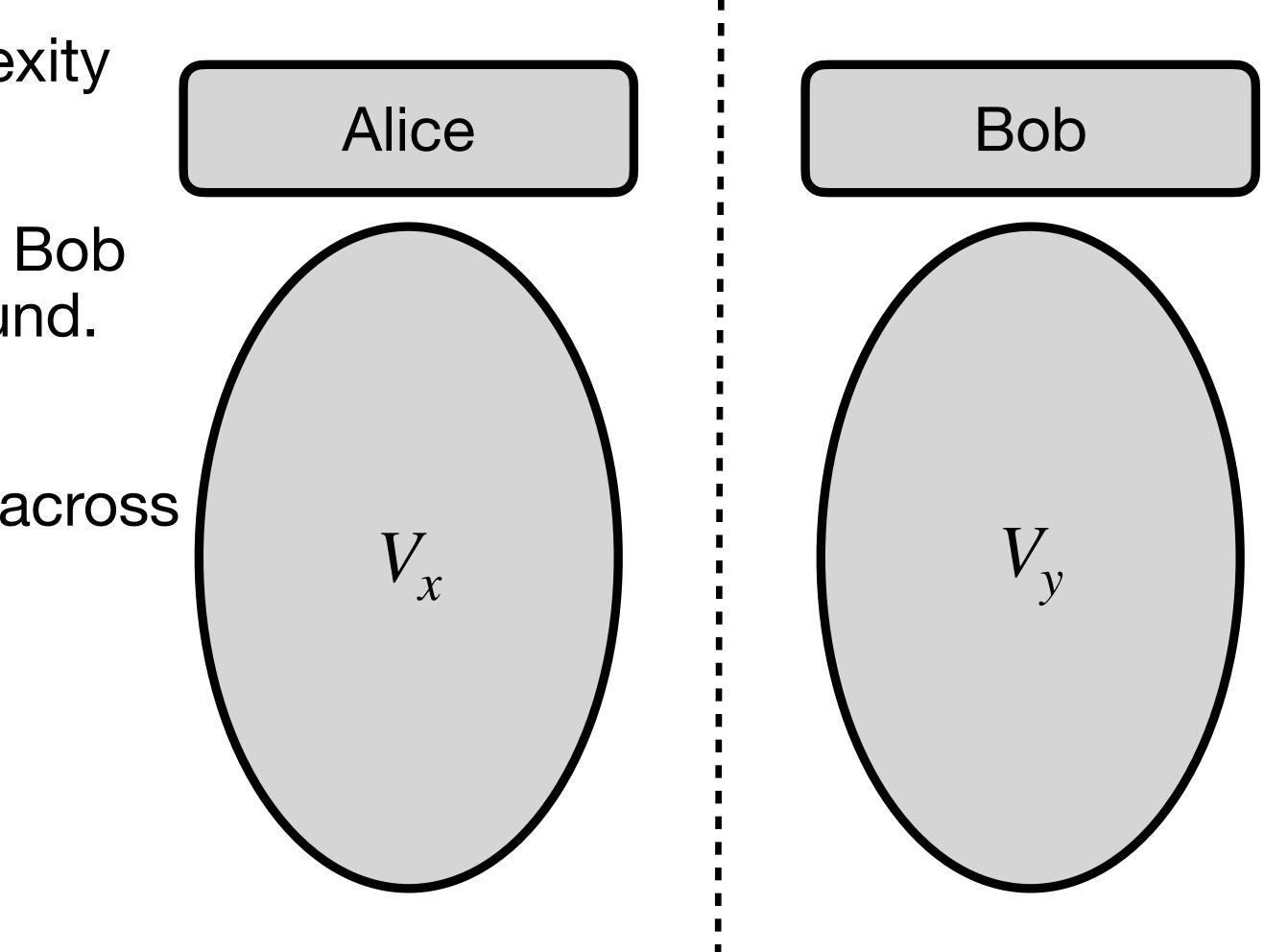
Message Lower Bound?

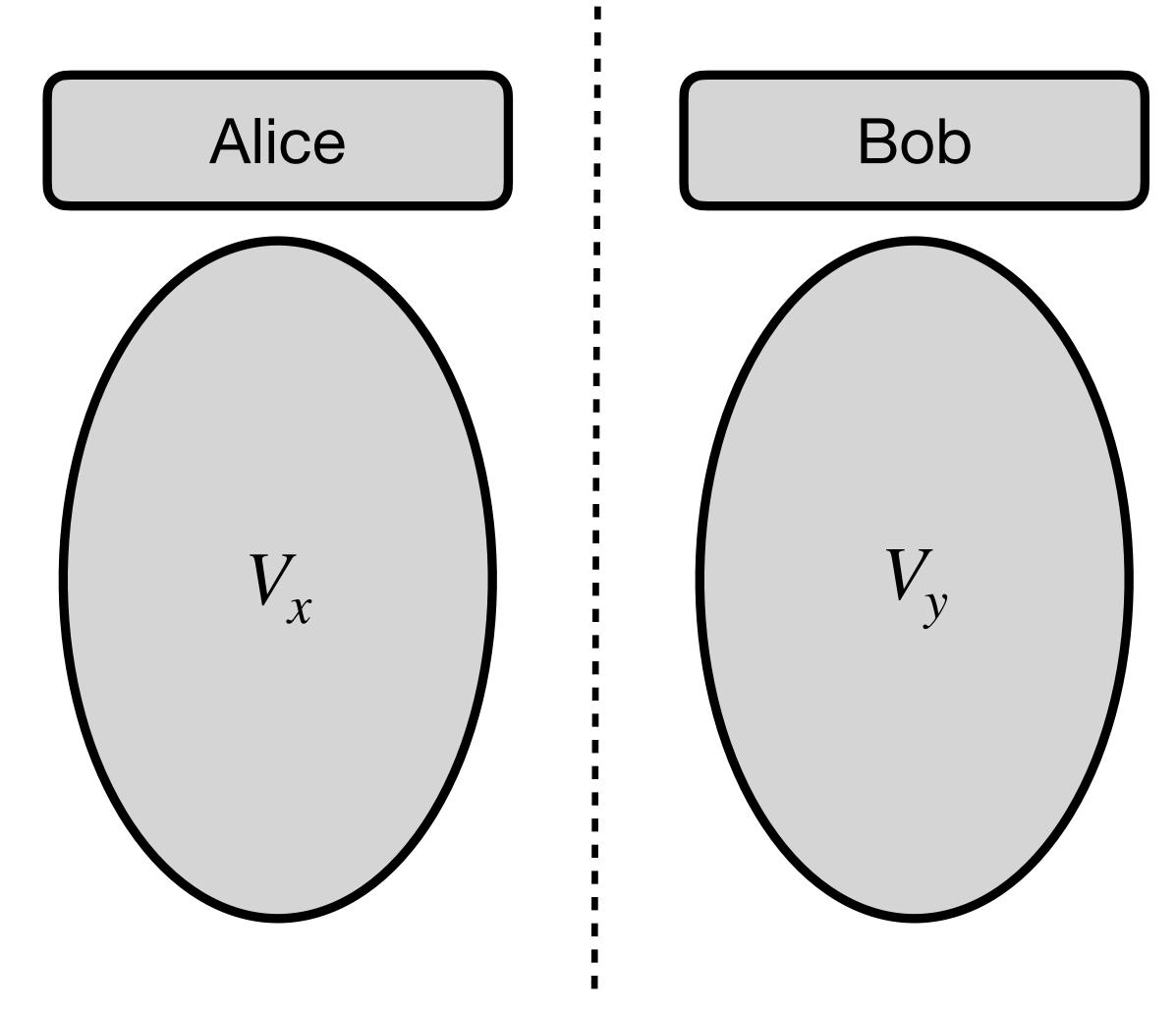
- The 2-party communication complexity model is asynchronous.
- Naive simulation requires Alice and Bob to send at least one bit for each round.
 - Even though the CONGEST algorithm sends no messages across the cut!
 - Need $o(n^2)$ round budget.

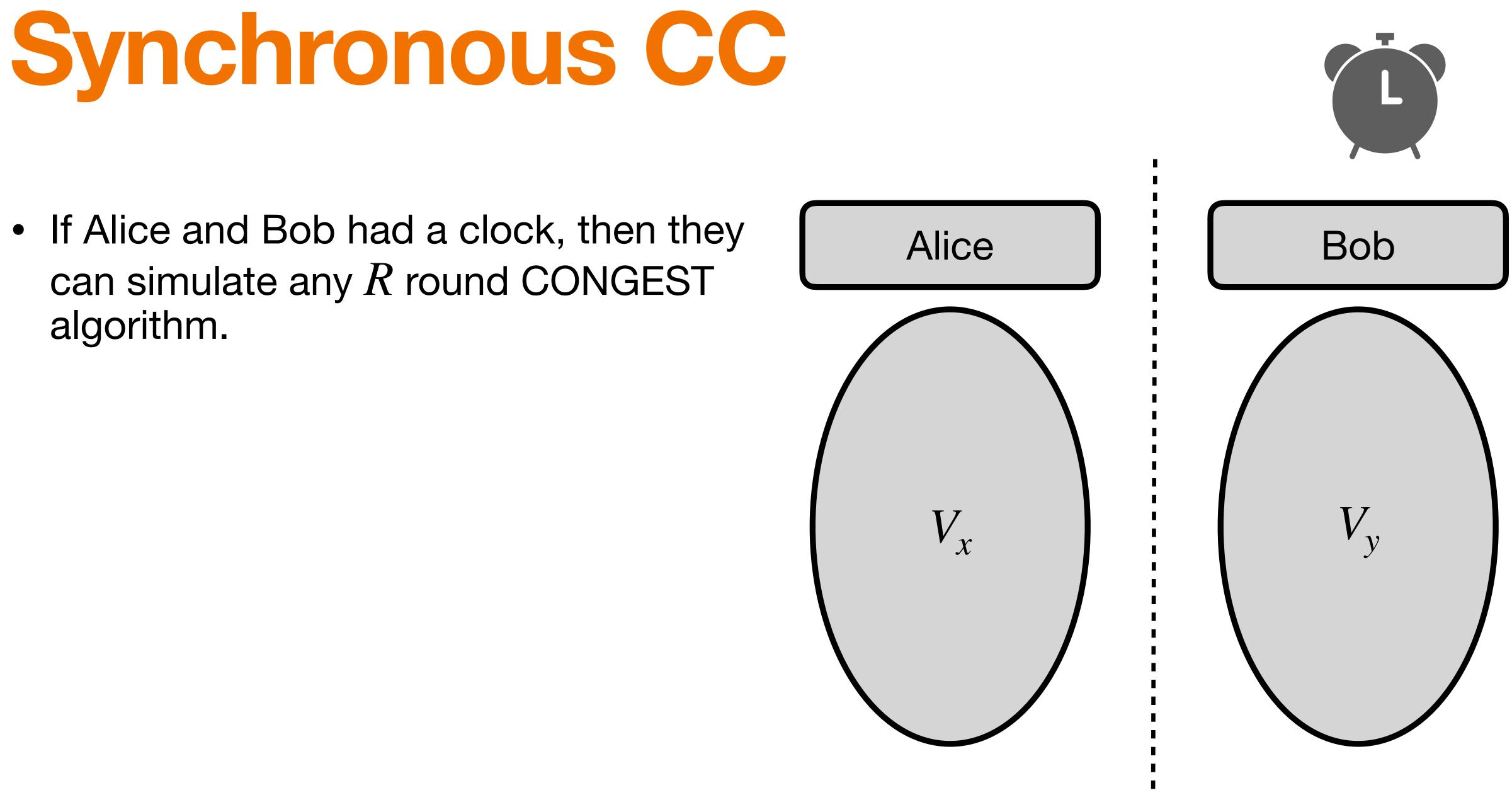


Message Lower Bound?

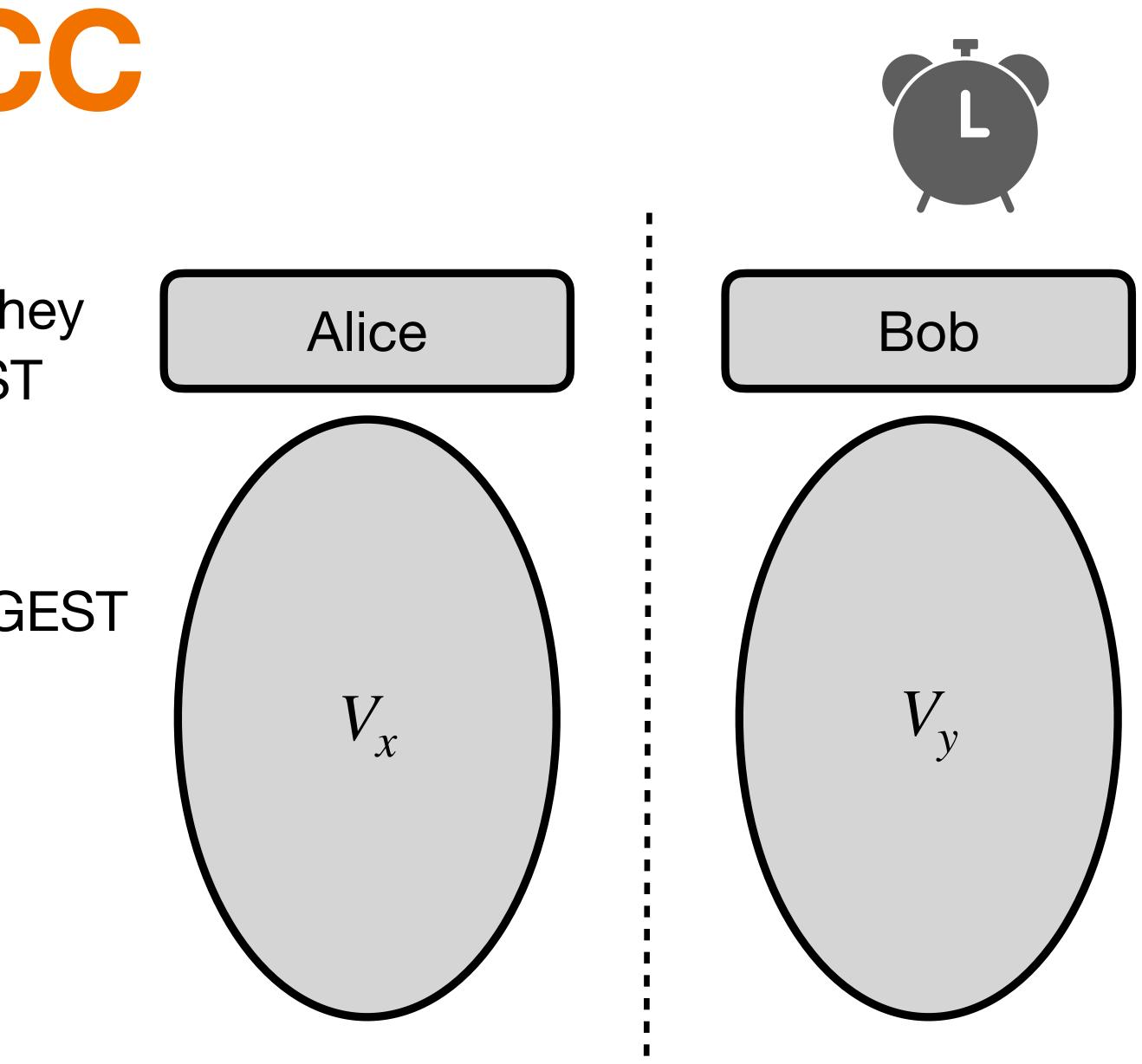
- The 2-party communication complexity model is asynchronous.
- Naive simulation requires Alice and Bob to send at least one bit for each round.
 - Even though the CONGEST algorithm sends no messages across the cut!
 - Need $o(n^2)$ round budget.
 - Can we do better?



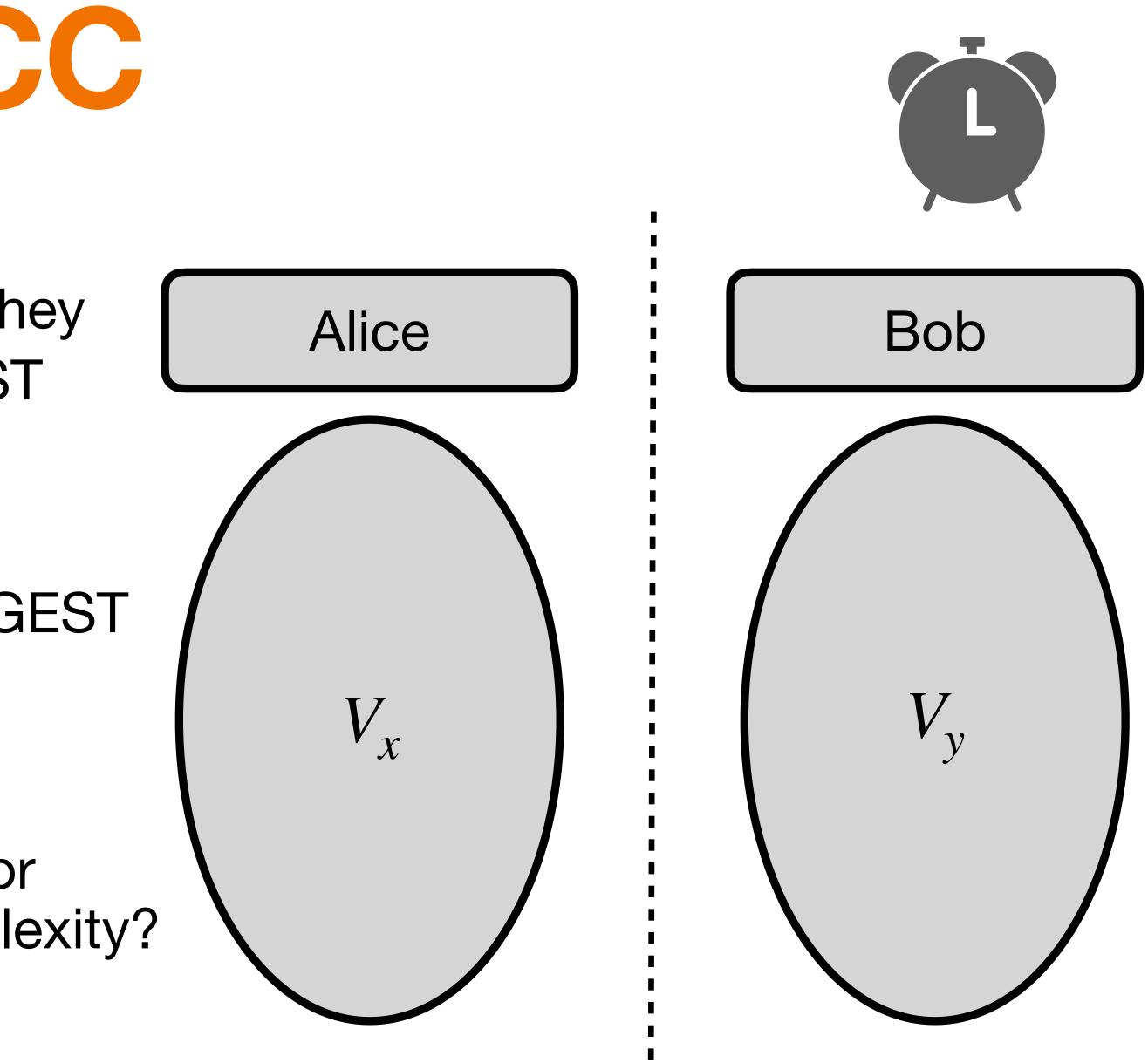


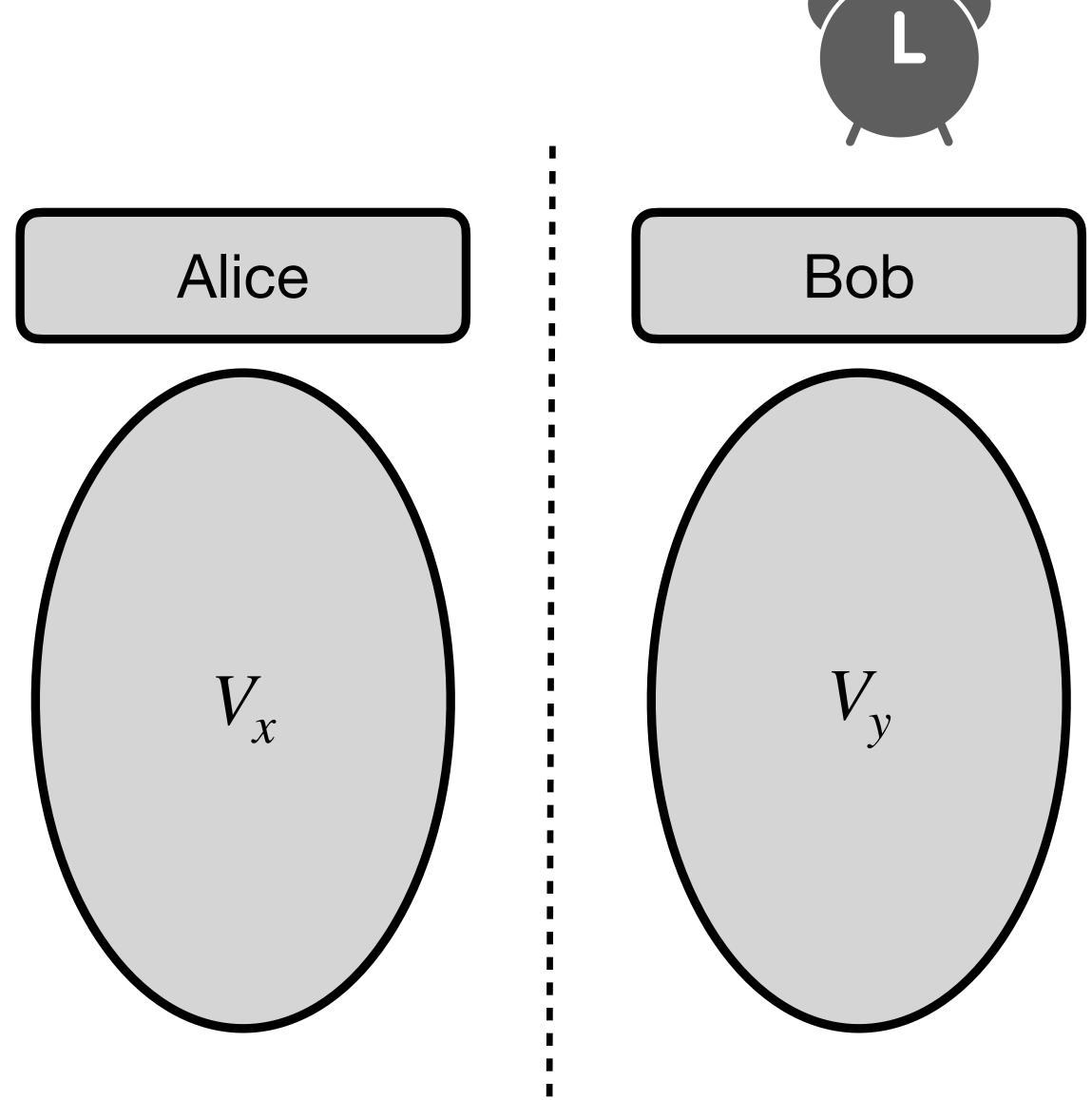


- If Alice and Bob had a clock, then they can simulate any *R* round CONGEST algorithm.
 - Alice and Bob don't need to communicate at all if the CONGEST algorithm does not send any messages from V_x to V_y .



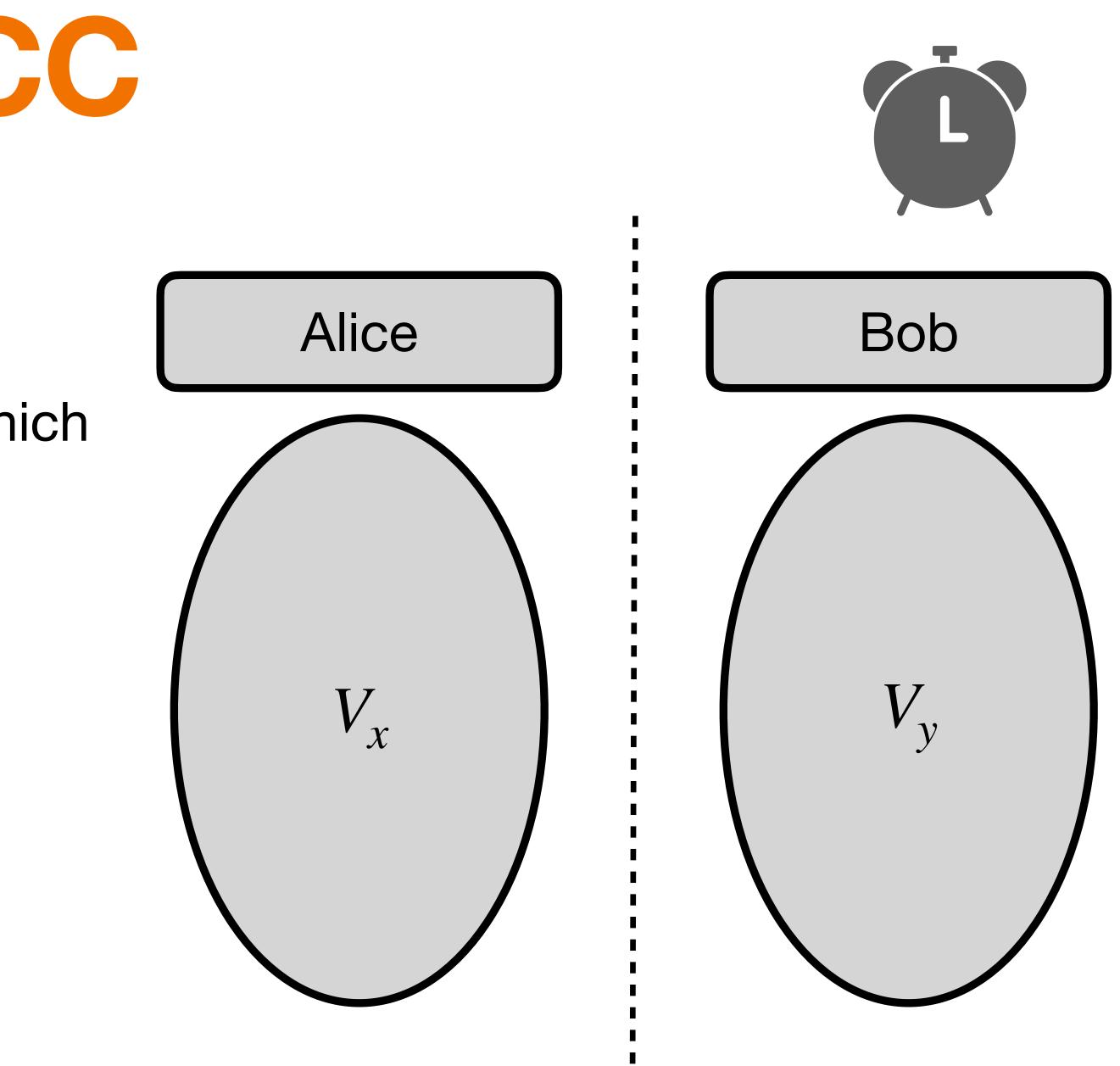
- If Alice and Bob had a clock, then they can simulate any *R* round CONGEST algorithm.
 - Alice and Bob don't need to communicate at all if the CONGEST algorithm does not send any messages from V_x to V_y .
- How strong are the lower bounds for synchronous communication complexity?





 [PPS20] give a message efficient synchronizer for clique networks which implies:

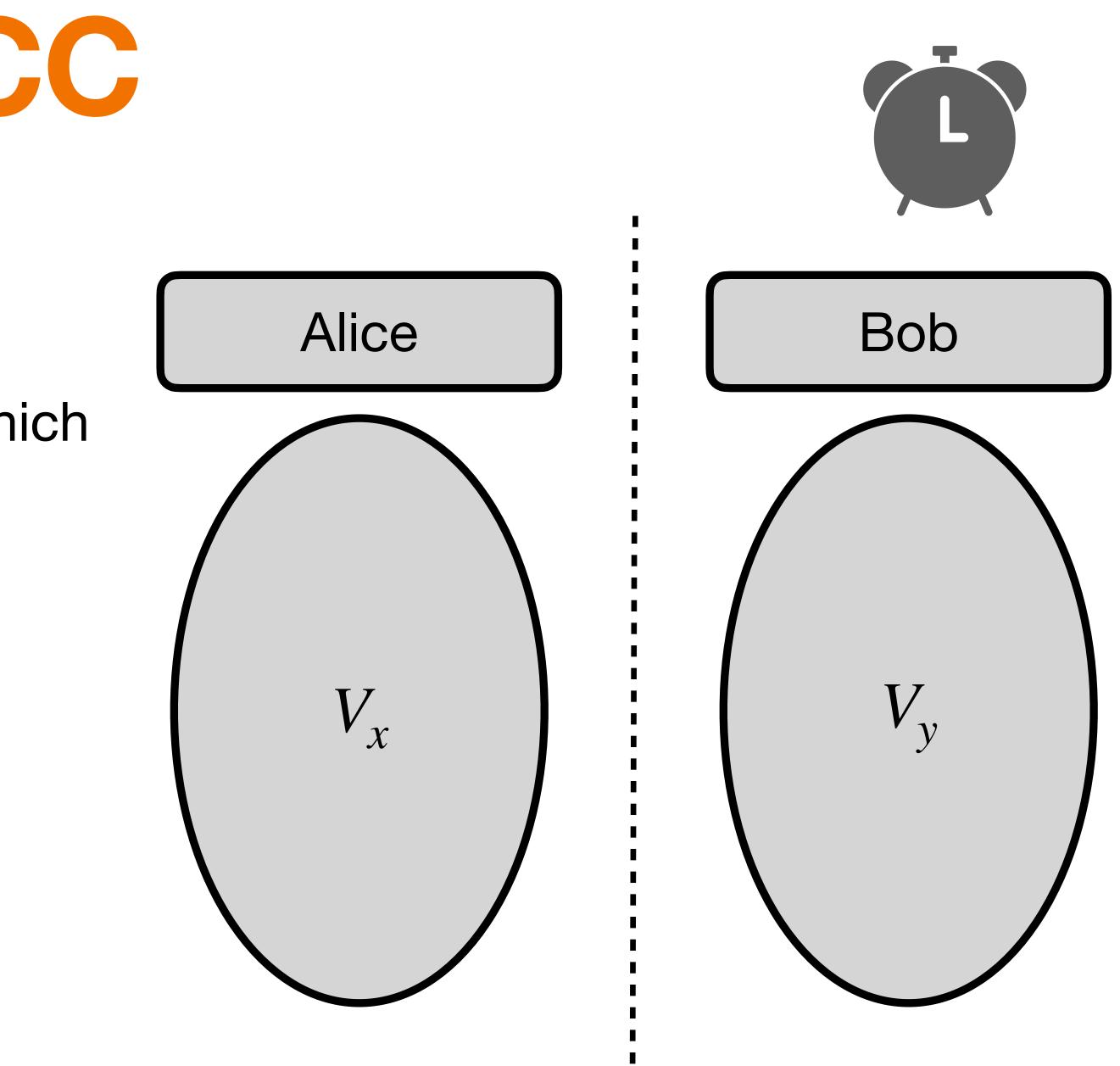
[PPS20] Pandurangan, Peleg, Squizatto. TCS 2020



 [PPS20] give a message efficient synchronizer for clique networks which implies:

 $SCC_r(f) \ge \Omega\left(\frac{CC(f)}{1 + \log r}\right)$

[PPS20] Pandurangan, Peleg, Squizatto. TCS 2020

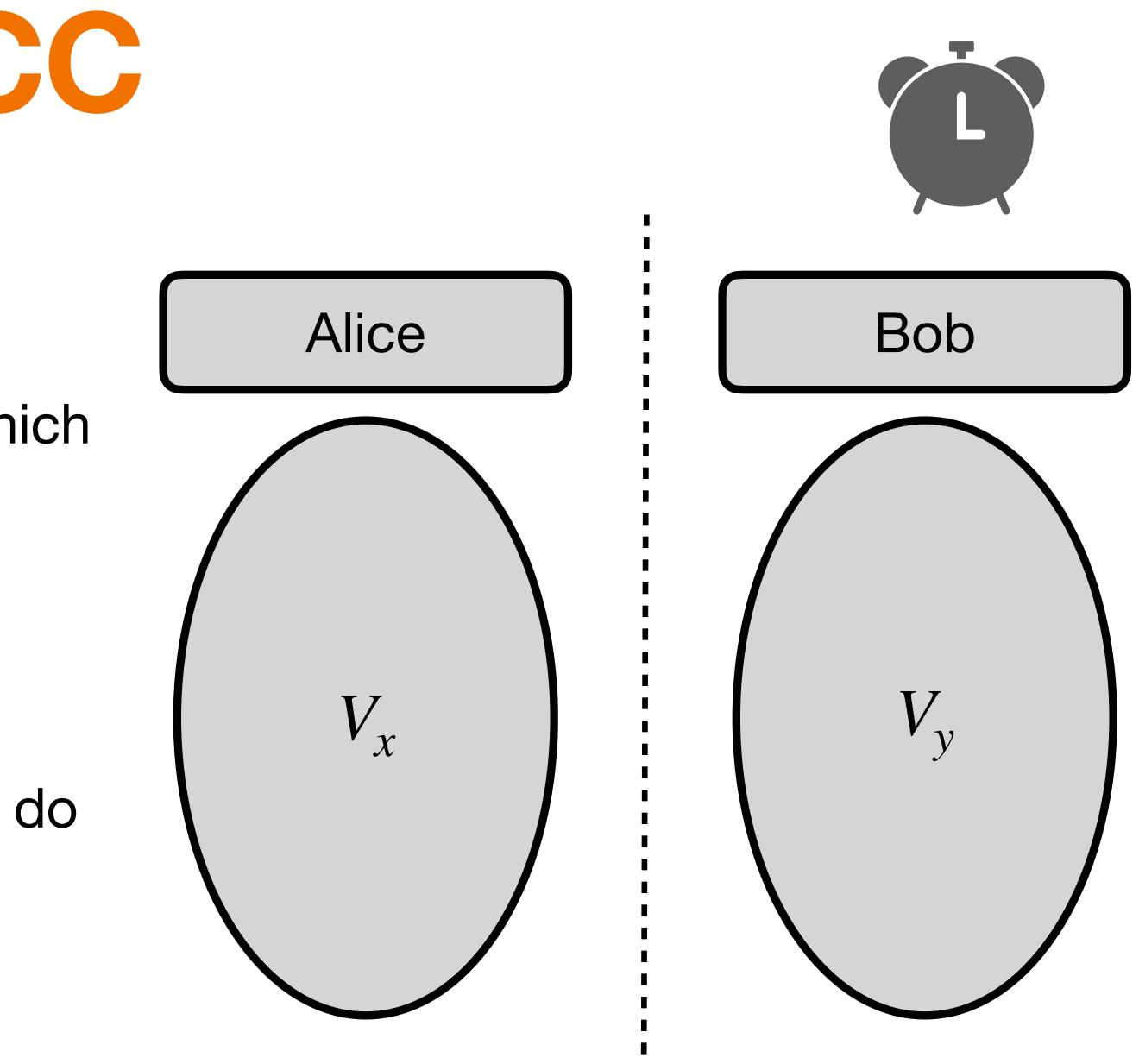


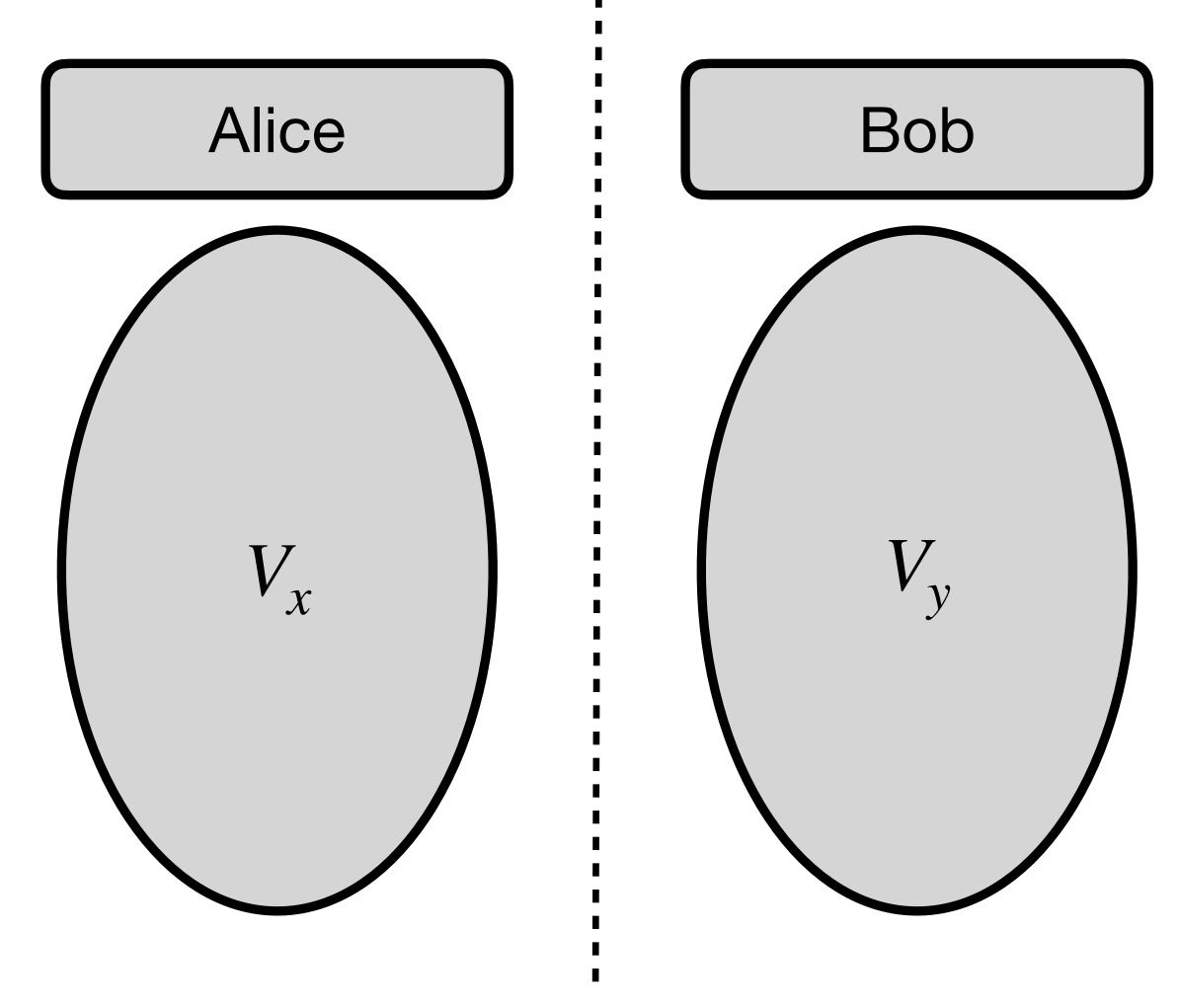
 [PPS20] give a message efficient synchronizer for clique networks which implies:

$$SCC_r(f) \ge \Omega\left(\frac{CC(f)}{1 + \log r}\right)$$

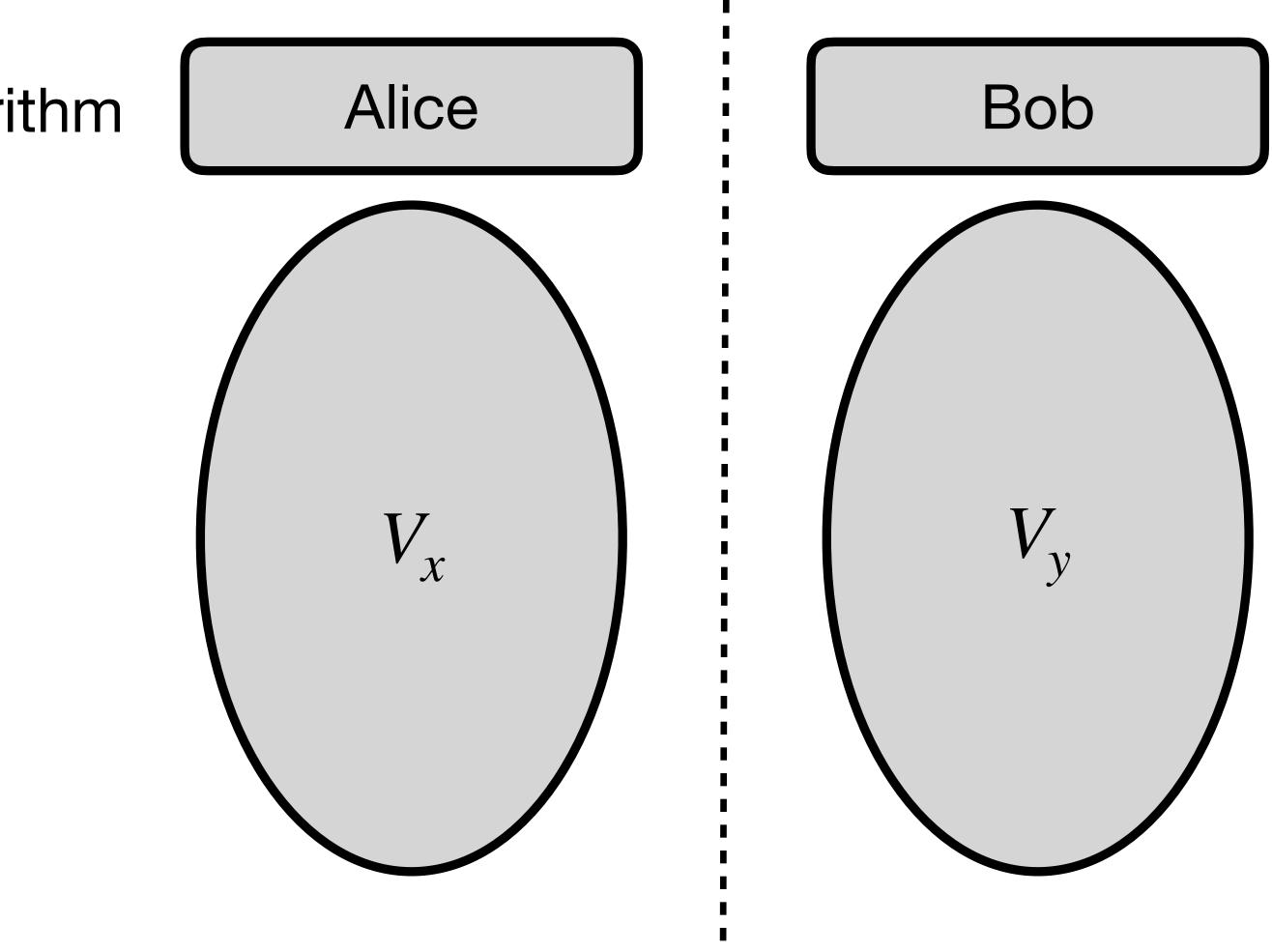
 So for poly(n) round algorithms we do not pay much.

[PPS20] Pandurangan, Peleg, Squizatto. TCS 2020

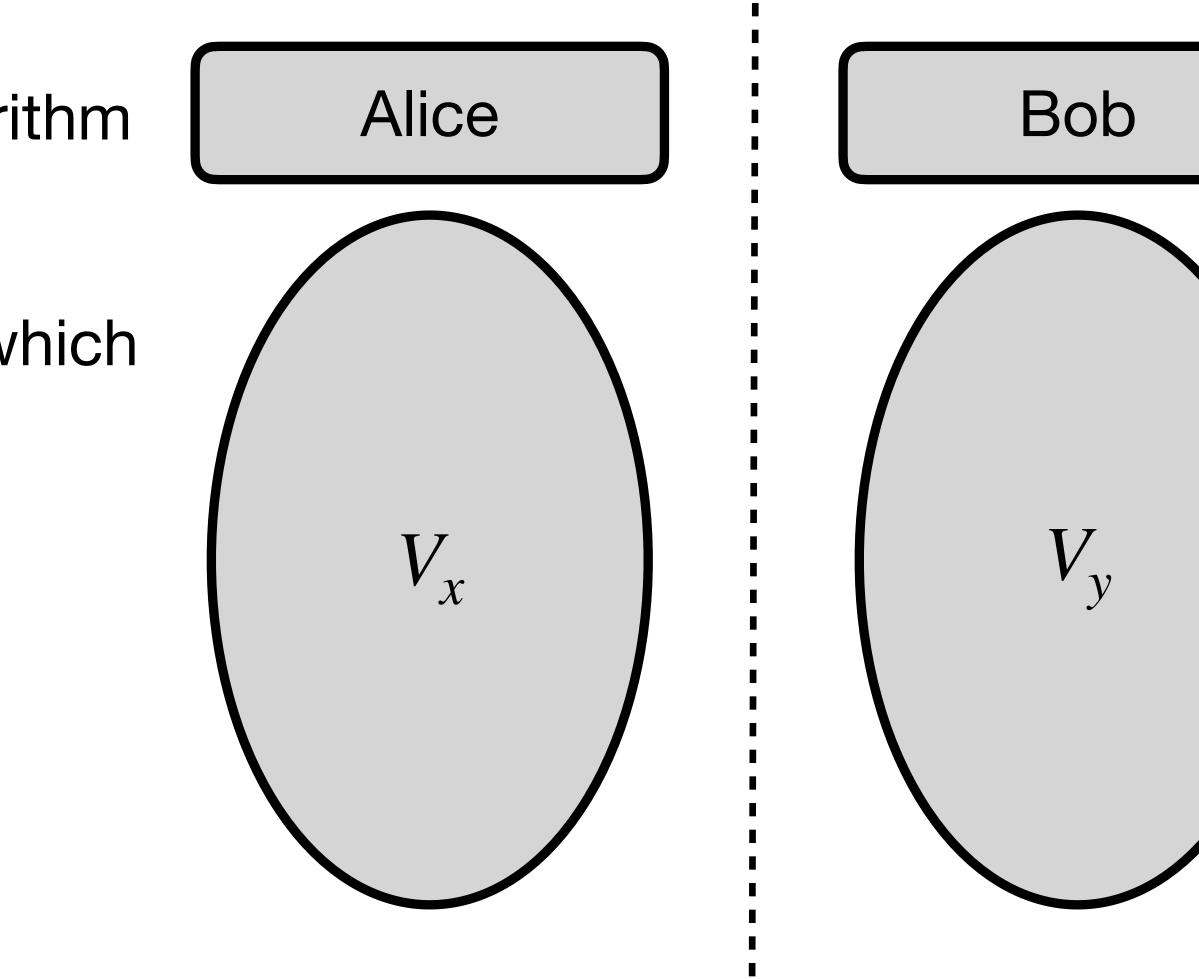


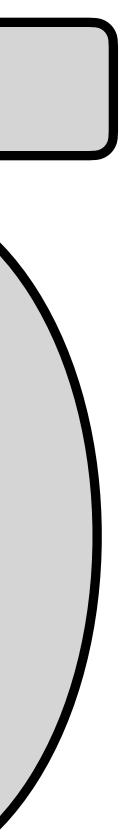


• Any poly(*n*) round CONGEST algorithm requires $\tilde{\Omega}(n^2)$ messages.

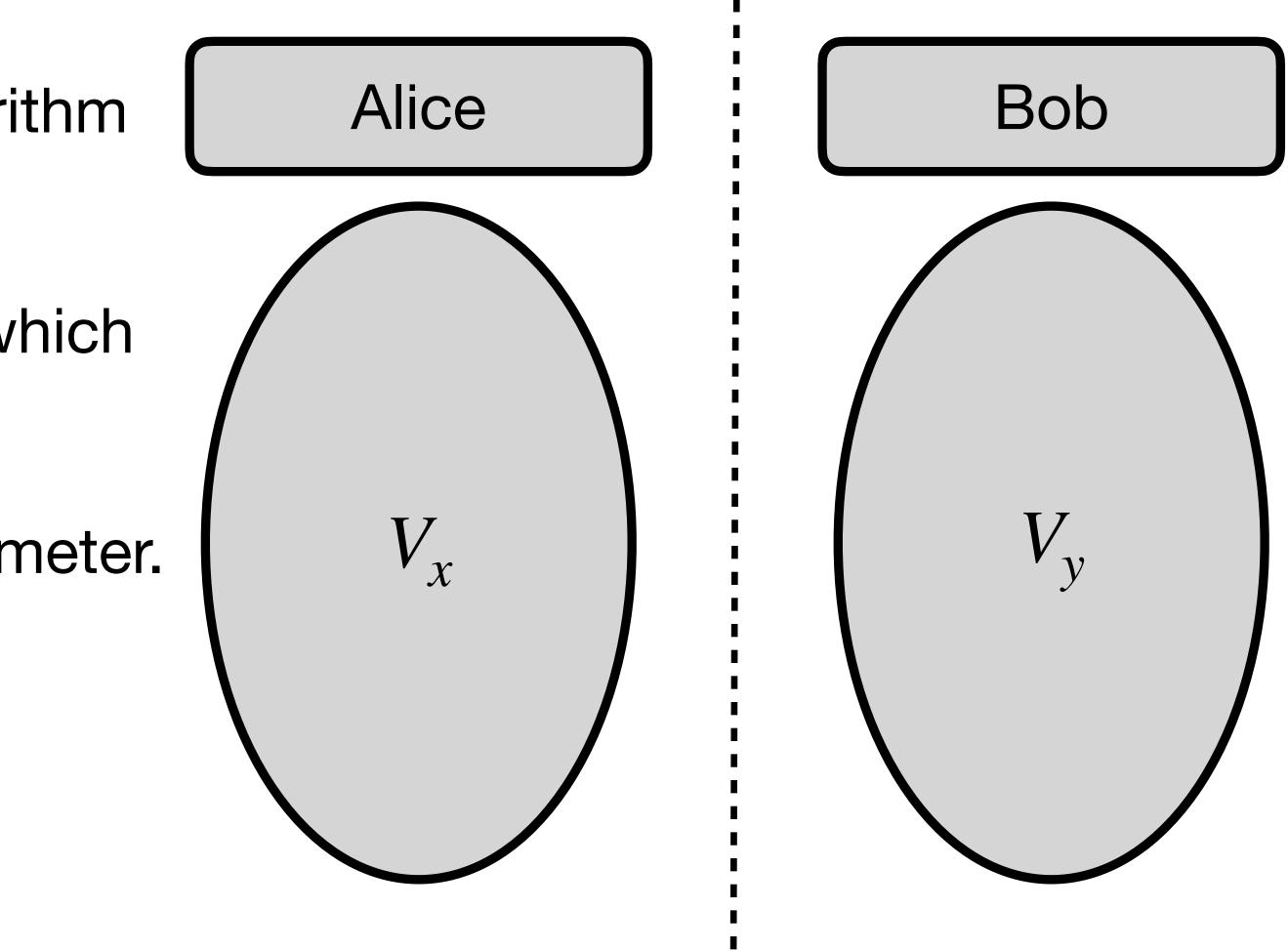


- Any poly(*n*) round CONGEST algorithm requires $\tilde{\Omega}(n^2)$ messages.
- But we were aiming for $\Omega(m \cdot D)$ which can be as large as n^3 .

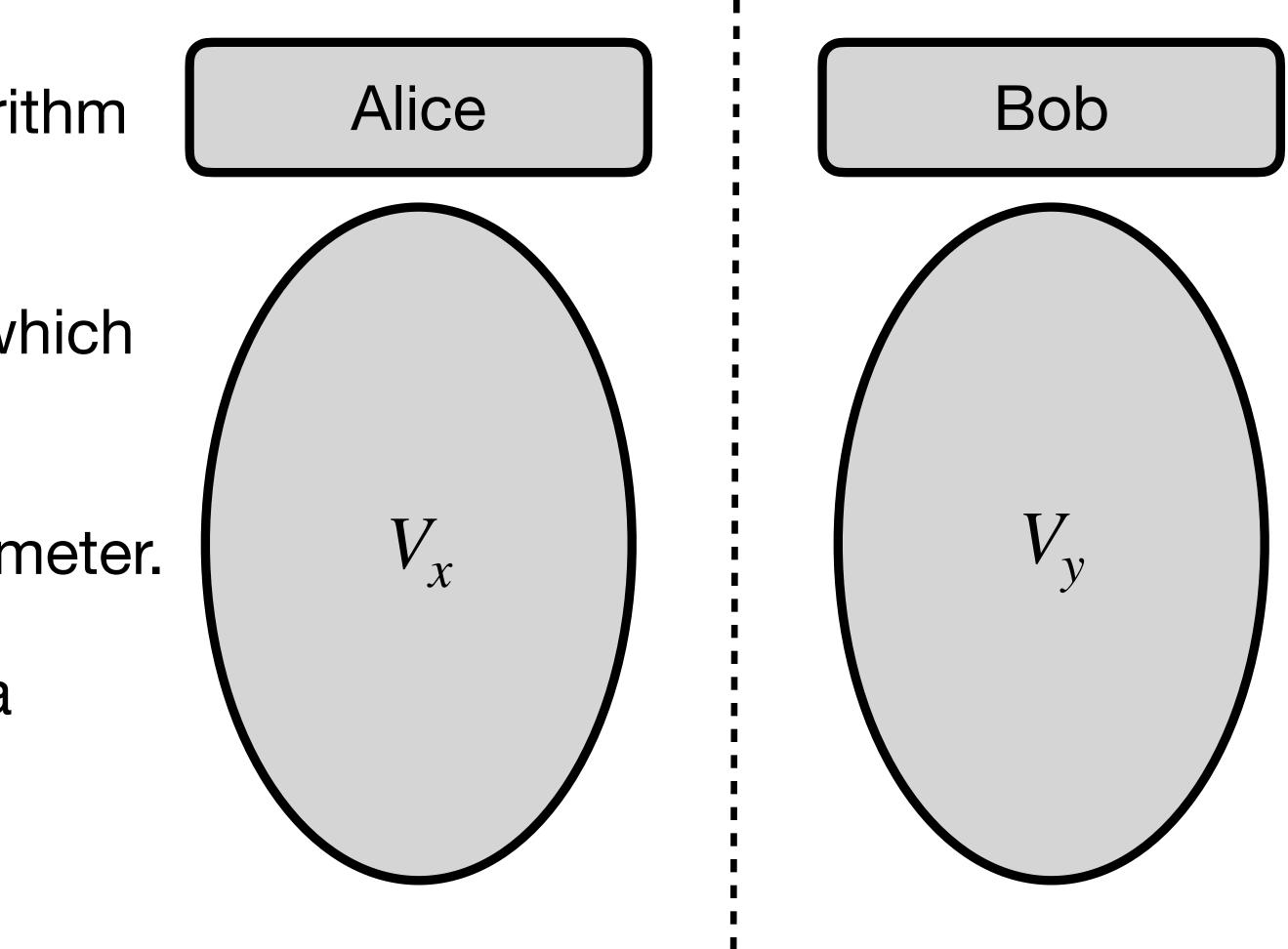


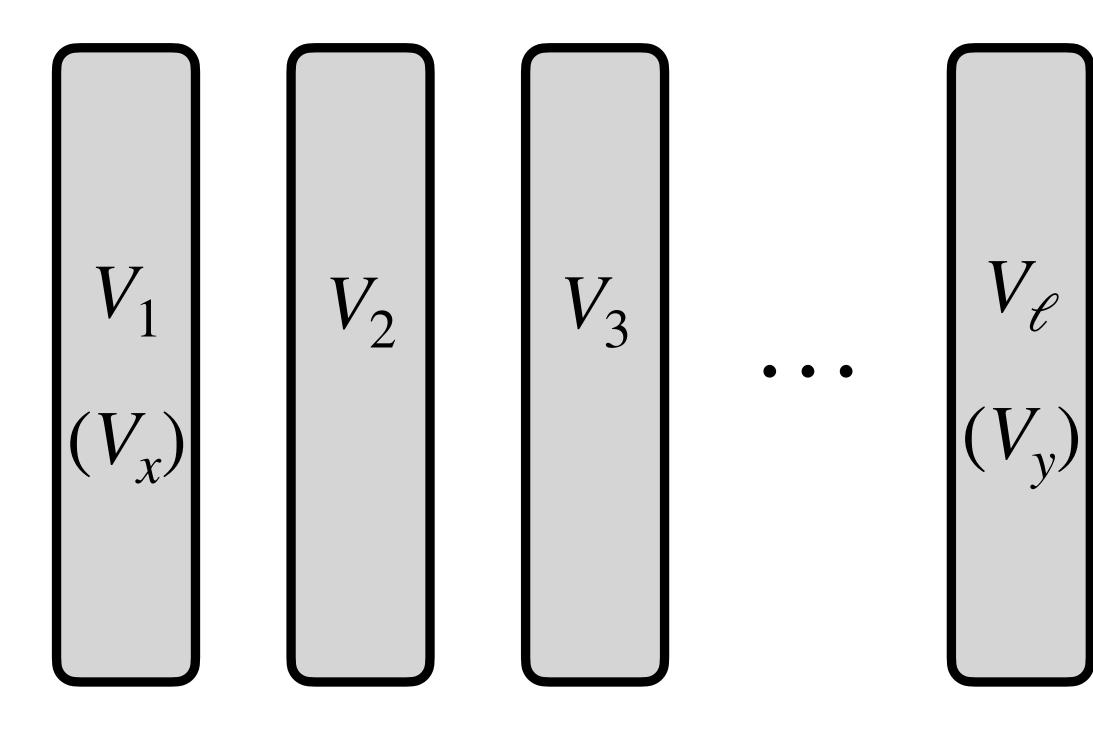


- Any poly(*n*) round CONGEST algorithm requires $\tilde{\Omega}(n^2)$ messages.
- But we were aiming for $\Omega(m \cdot D)$ which can be as large as n^3 .
- $G_{x,y}$ as described has constant diameter.



- Any poly(*n*) round CONGEST algorithm requires $\tilde{\Omega}(n^2)$ messages.
- But we were aiming for $\Omega(m \cdot D)$ which can be as large as n^3 .
- $G_{x,y}$ as described has constant diameter.
- Can we "stretch" the graph to get a higher lower bound?

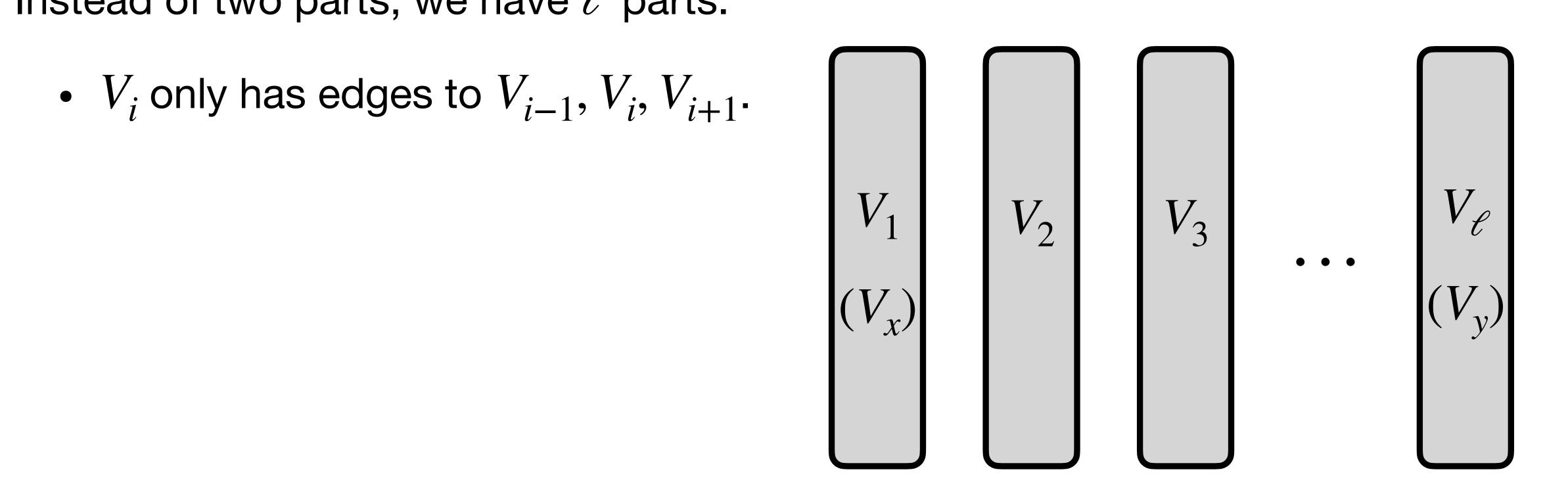




Instead of two parts, we have ℓ parts.

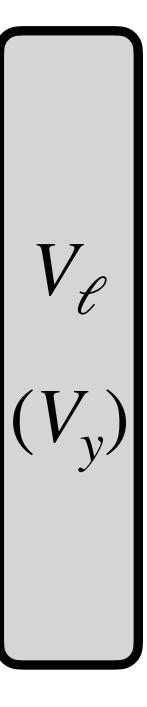


- Instead of two parts, we have ℓ parts.

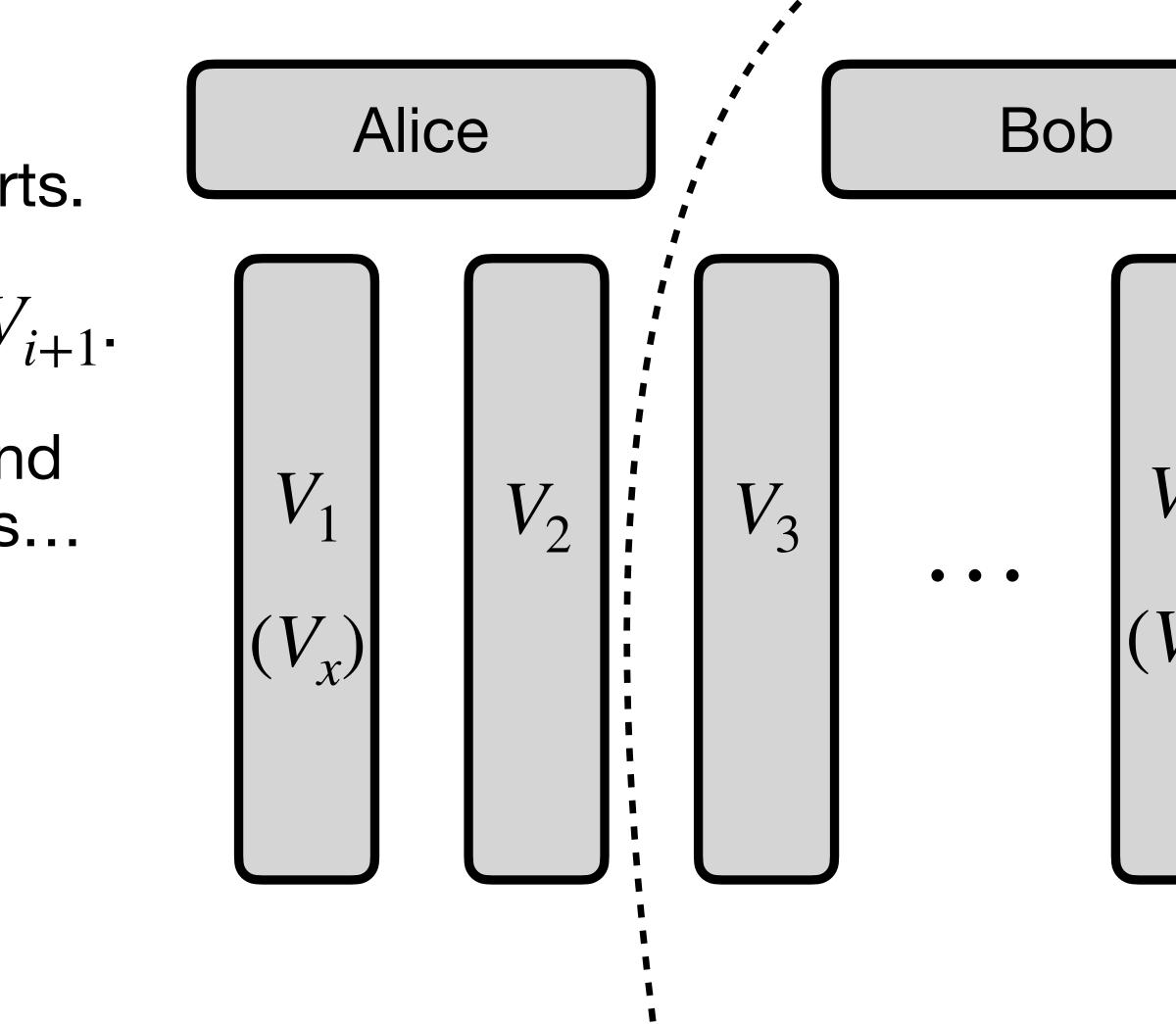


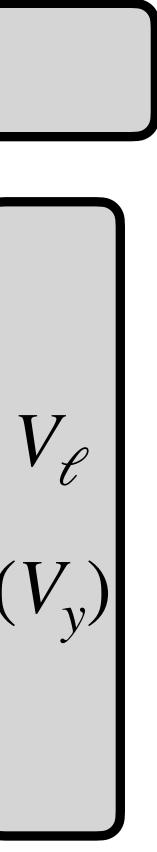
- Instead of two parts, we have ℓ parts.
 - V_i only has edges to V_{i-1} , V_i , V_{i+1} .
 - CONGEST algorithm better send many messages across all cuts...

 V_3 V_1 V_2

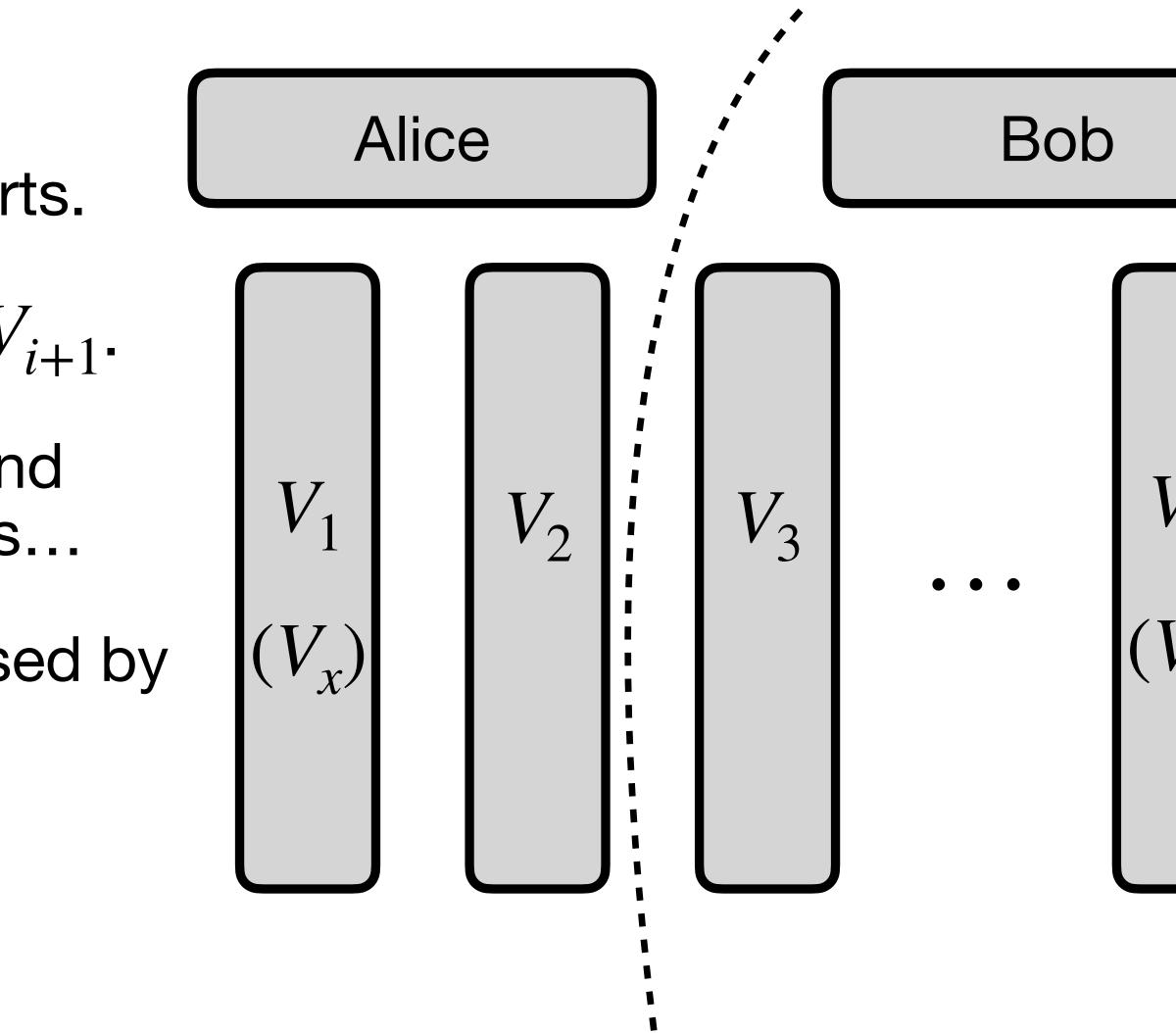


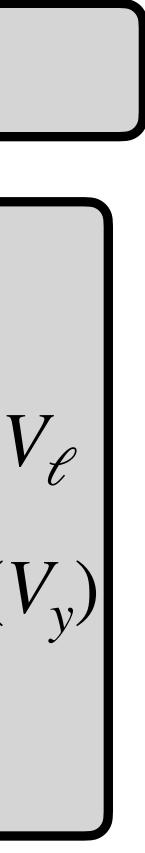
- Instead of two parts, we have ℓ parts.
 - V_i only has edges to V_{i-1} , V_i , V_{i+1} .
 - CONGEST algorithm better send many messages across all cuts...

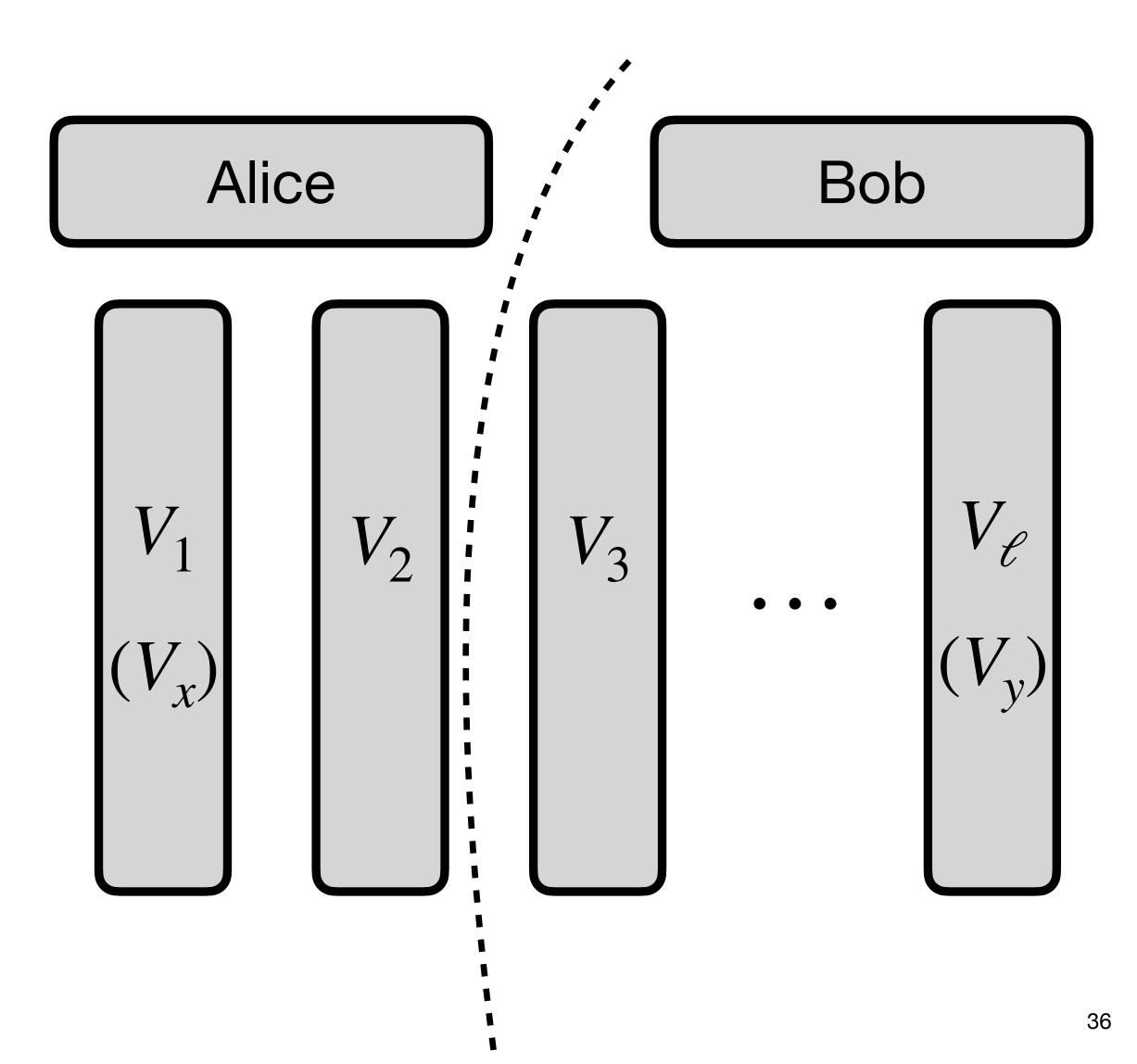




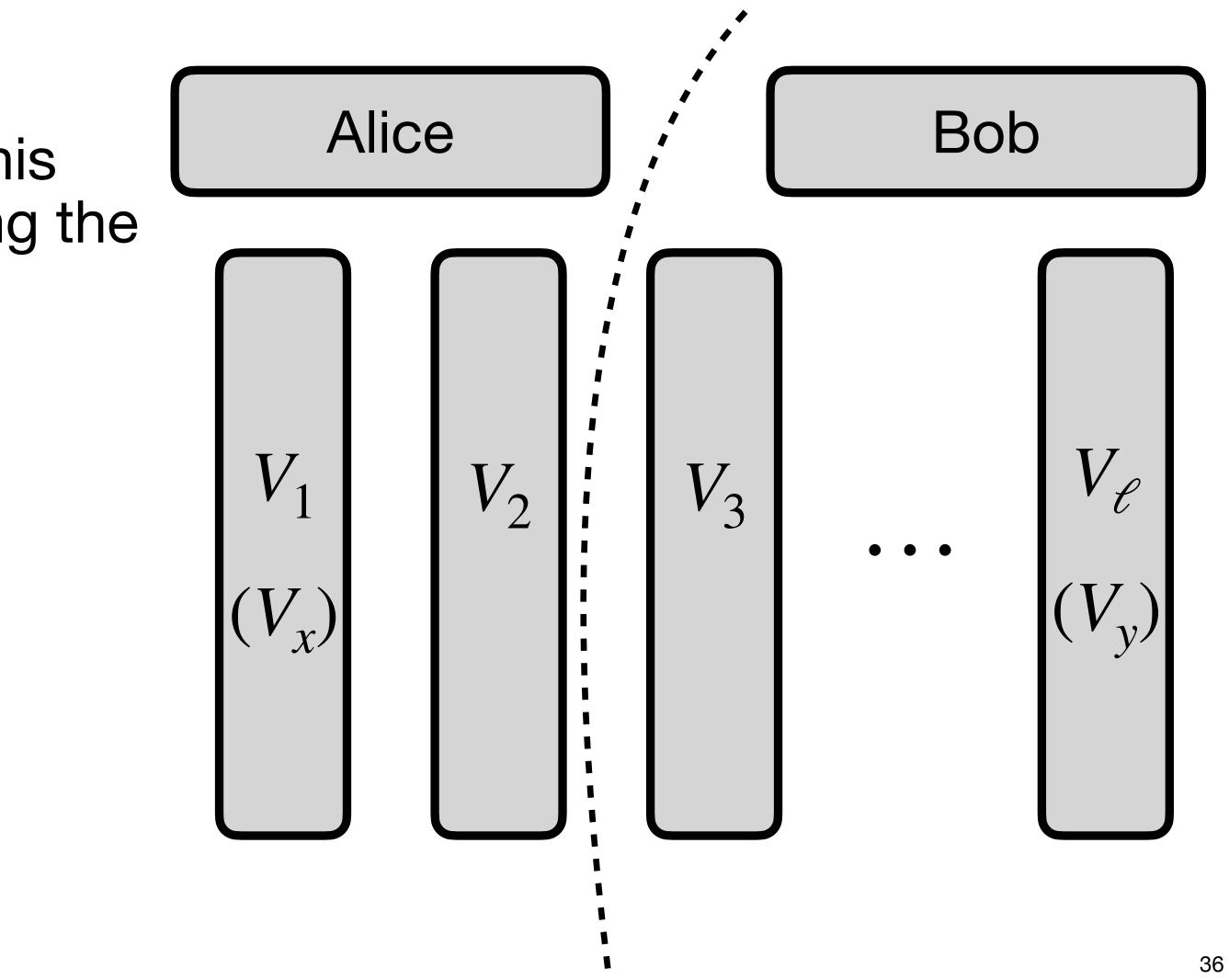
- Instead of two parts, we have ℓ parts.
 - V_i only has edges to V_{i-1} , V_i , V_{i+1} .
 - CONGEST algorithm better send many messages across all cuts...
- Message complexity will be increased by an ℓ factor!



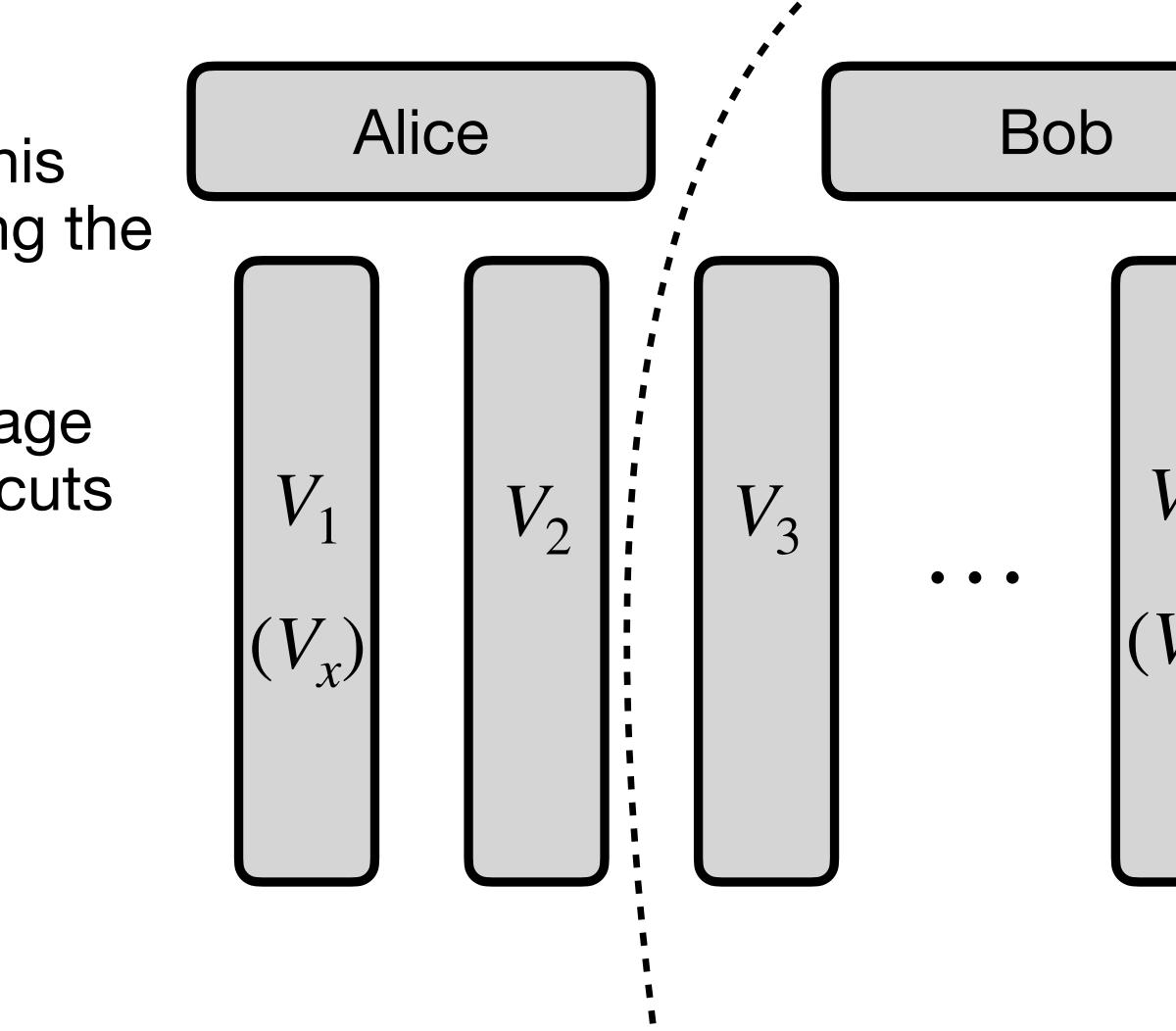


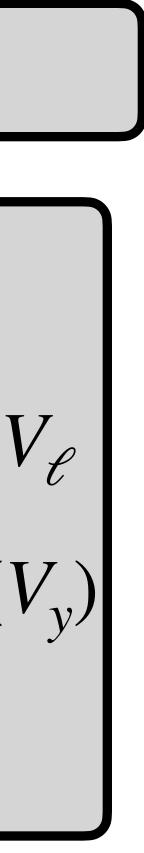


How do Alice and Bob determine this "low message" cut before simulating the **CONGEST** algorithm?

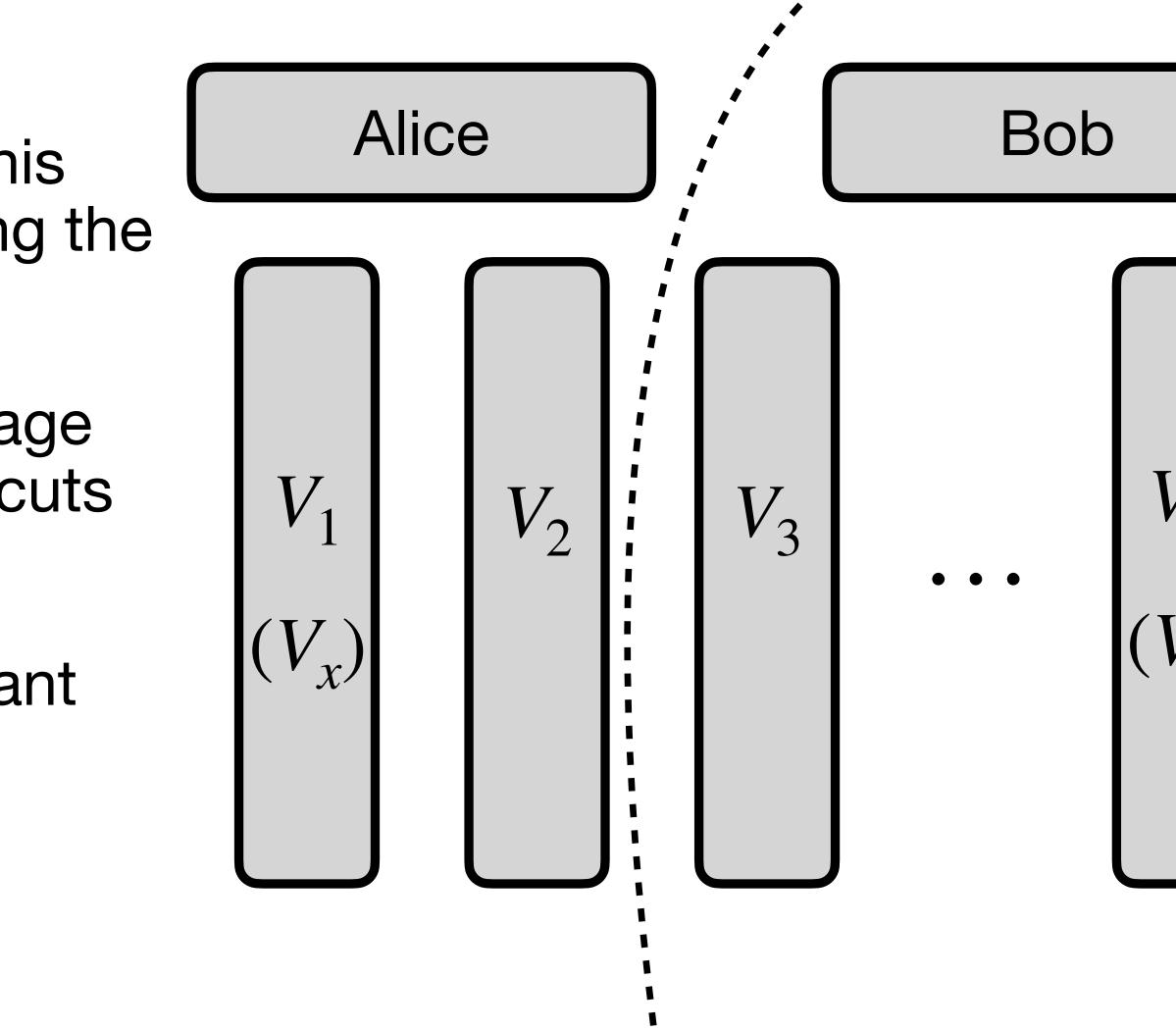


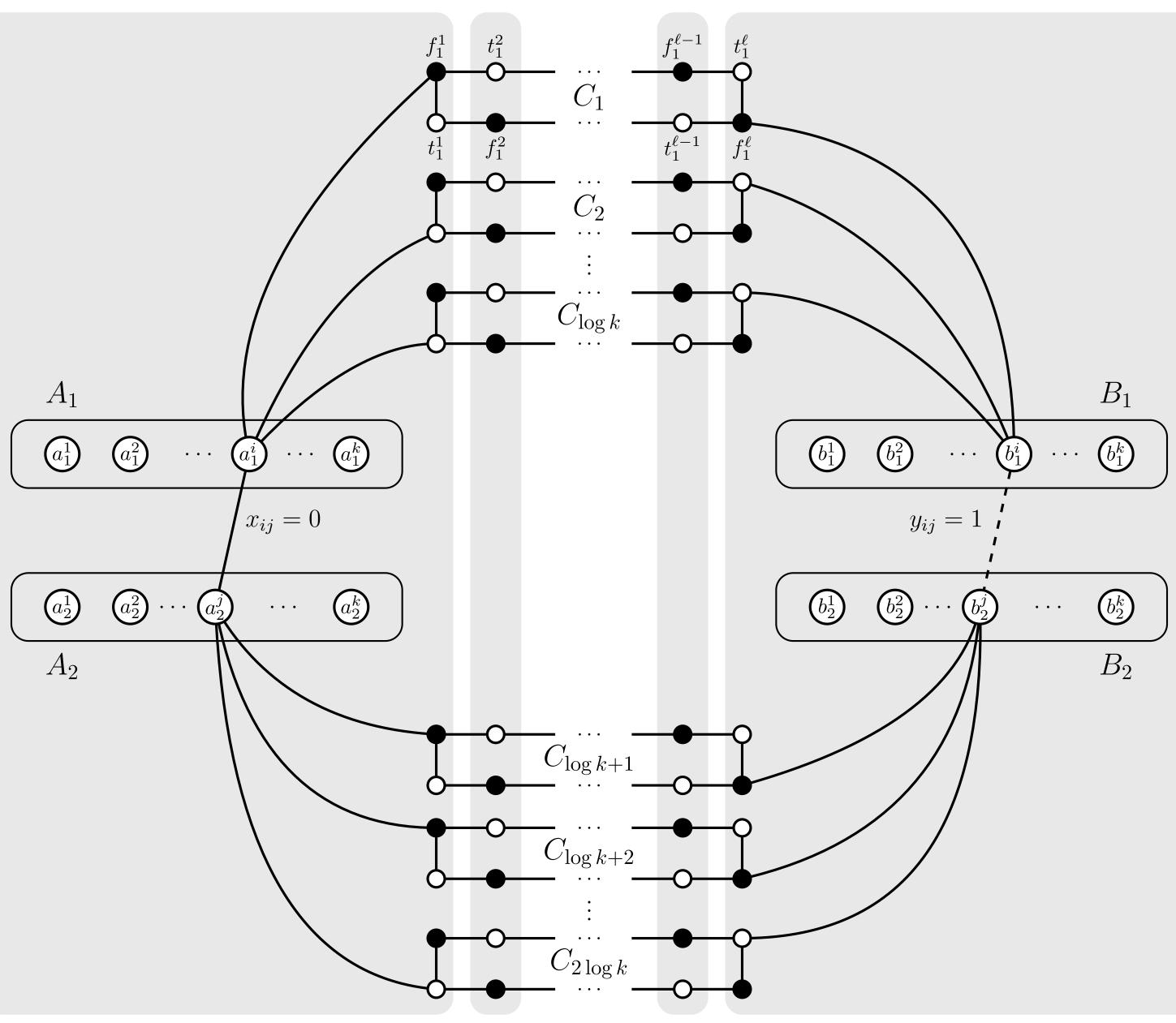
- How do Alice and Bob determine this "low message" cut before simulating the CONGEST algorithm?
- If the CONGEST algorithm is message efficient, a constant fraction of the cuts will be "low message".



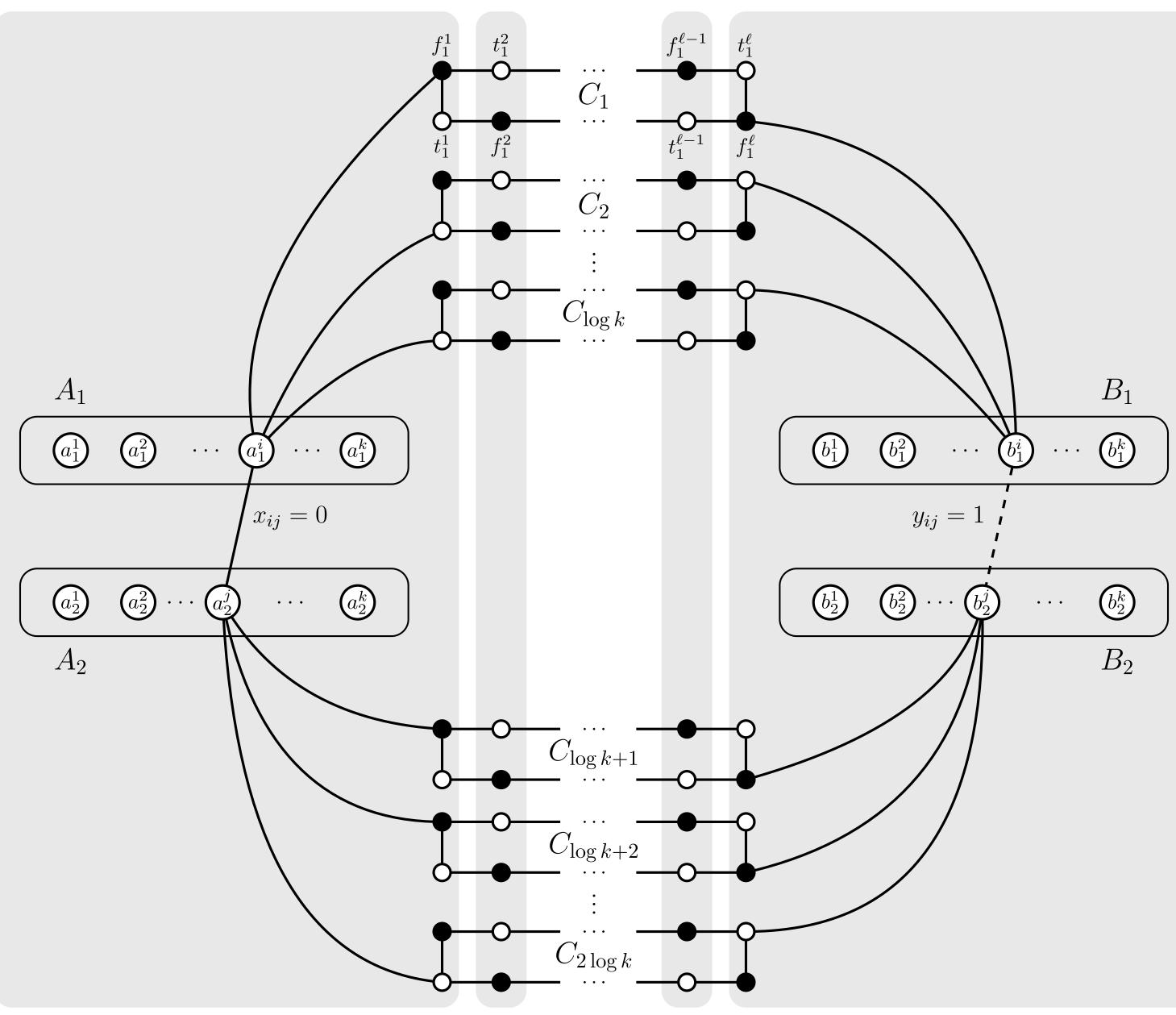


- How do Alice and Bob determine this "low message" cut before simulating the CONGEST algorithm?
- If the CONGEST algorithm is message efficient, a constant fraction of the cuts will be "low message".
- Picking one at random gives constant error probability!



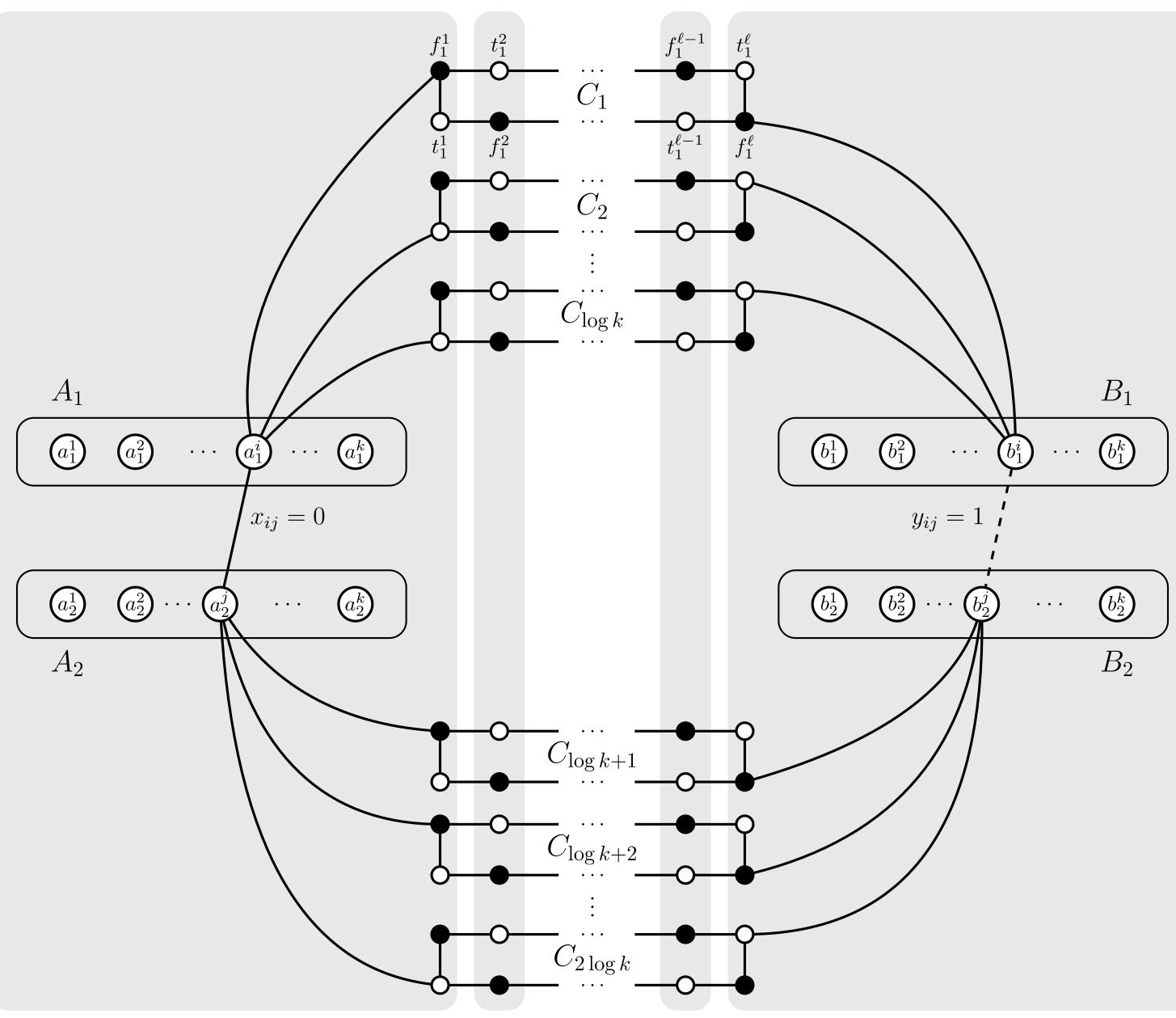


[DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024



[DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

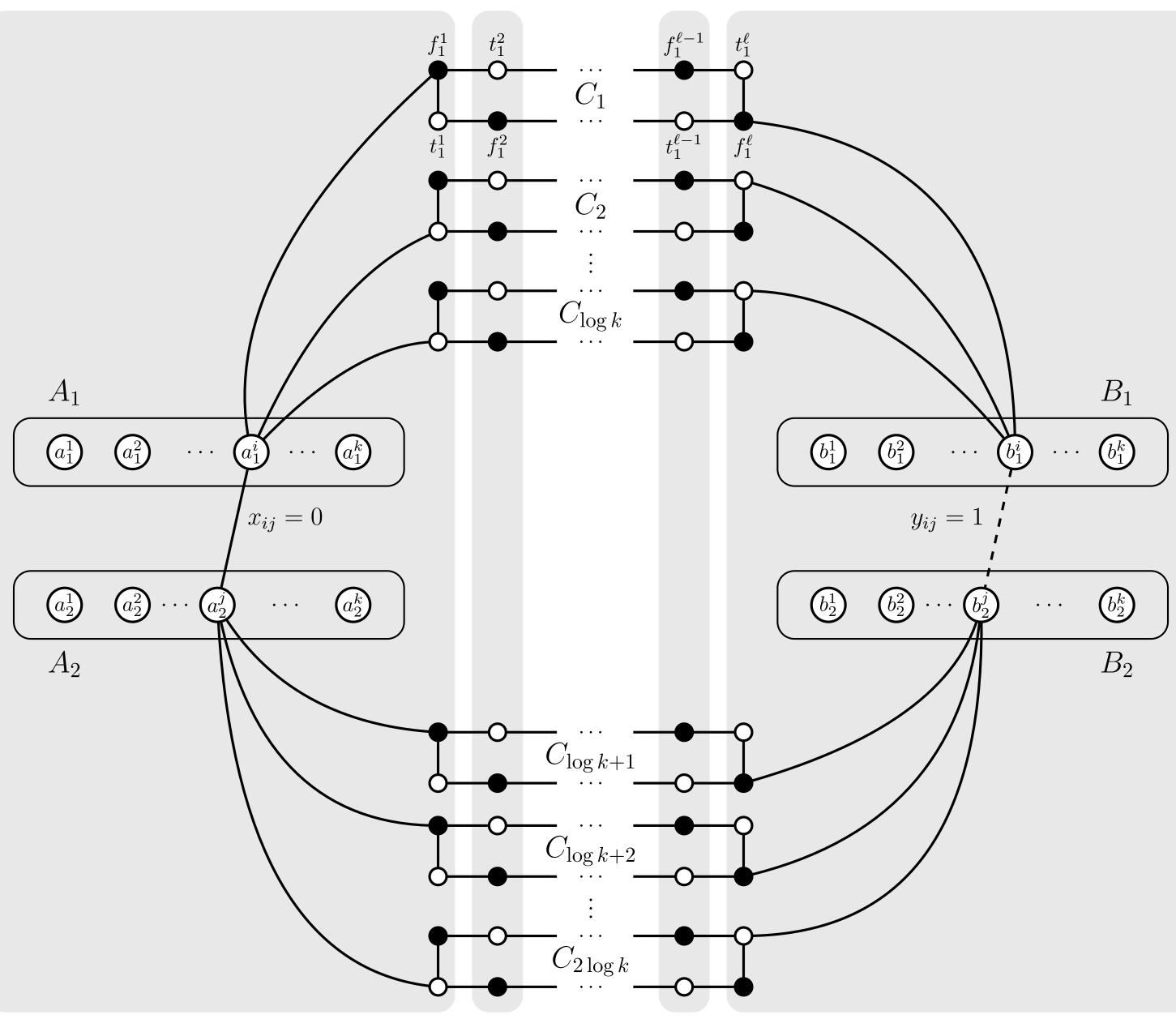
Computing MVC of $G_{x,y}$ in *r* rounds requires



[DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

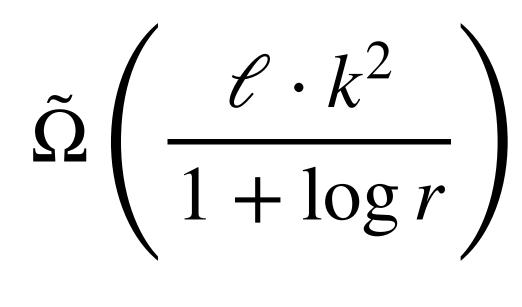
Computing MVC of $G_{x,y}$ in *r* rounds requires

$$\tilde{\Omega}\left(\frac{\ell \cdot k^2}{1 + \log r}\right)$$



[DPP+24] Dufoulon, Pai, Pandurangan, Pemmaraju, Robinson. ITCS 2024

Computing MVC of $G_{x,y}$ in *r* rounds requires



messages.

 A_1

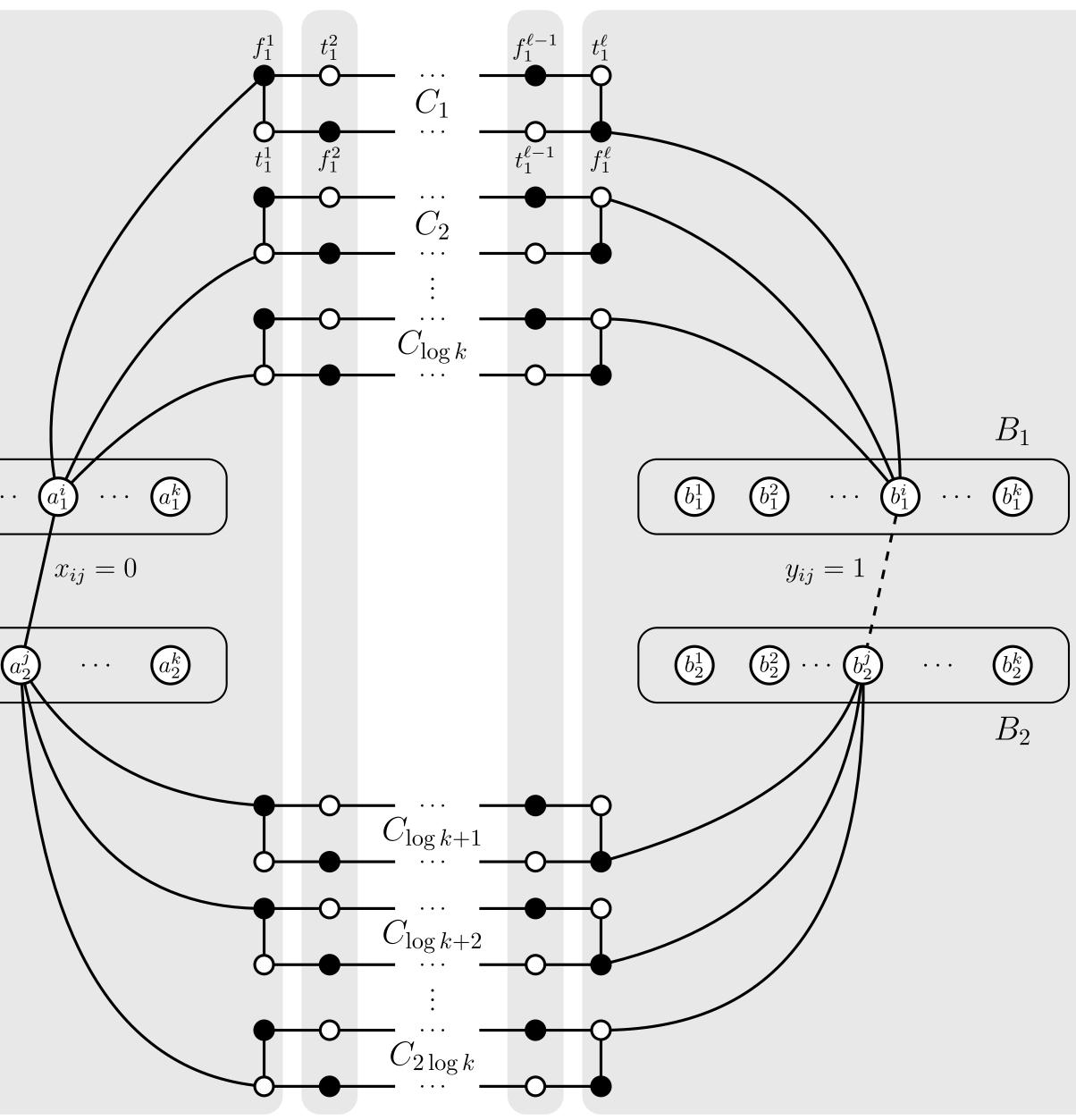
 a_1^1

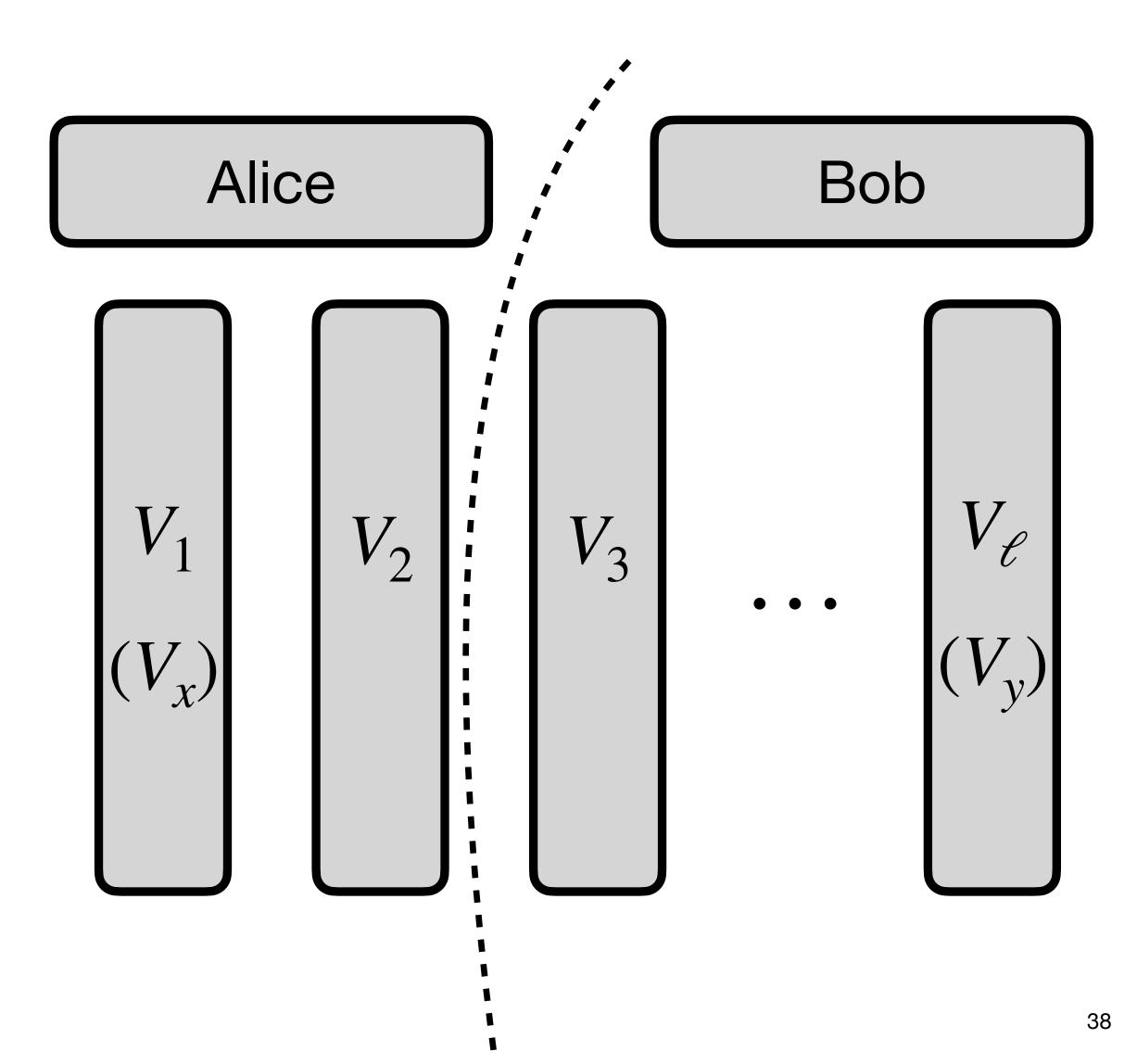
 a_2^1

 A_2

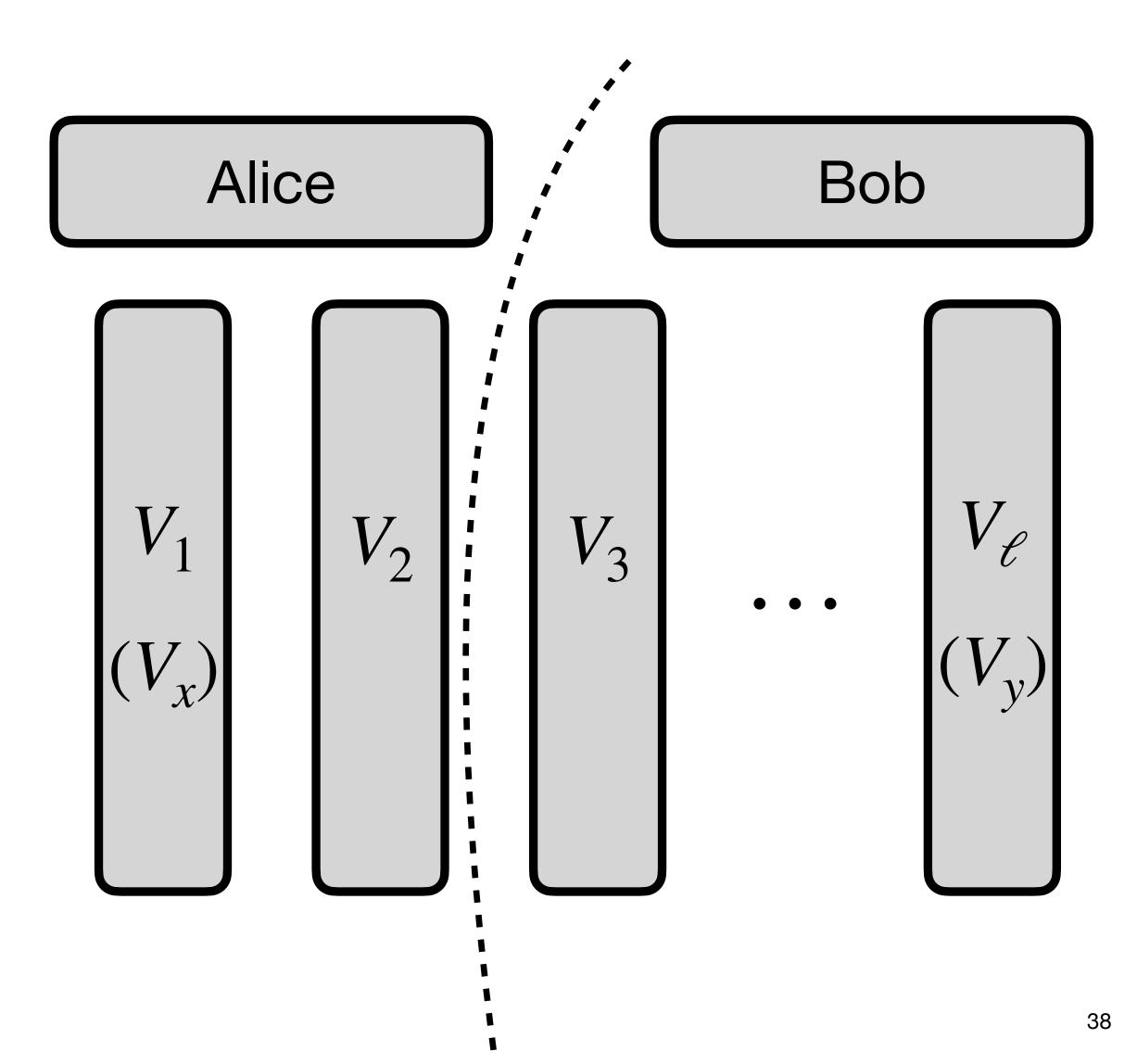
 a_1^2

 a_2^2

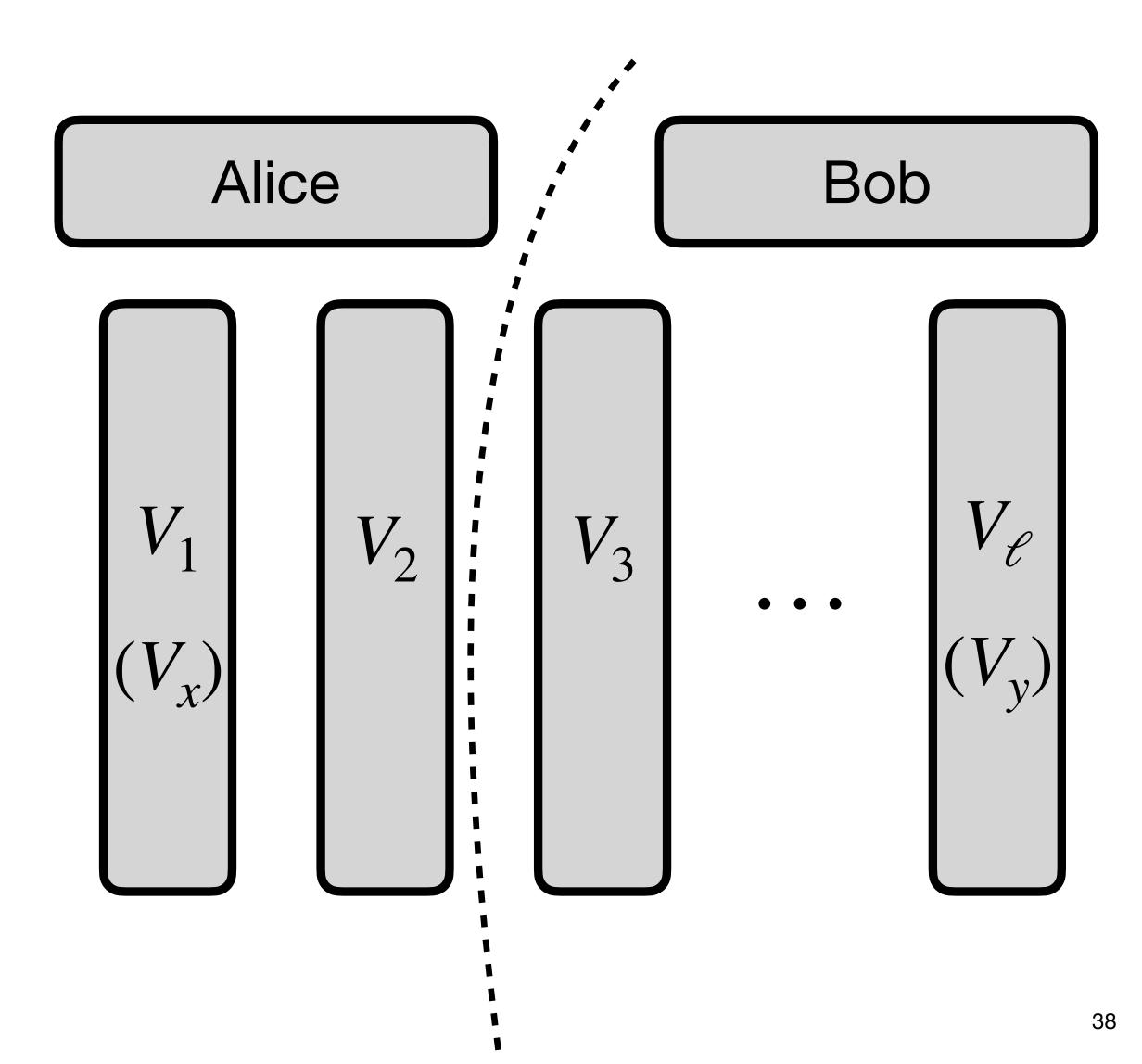




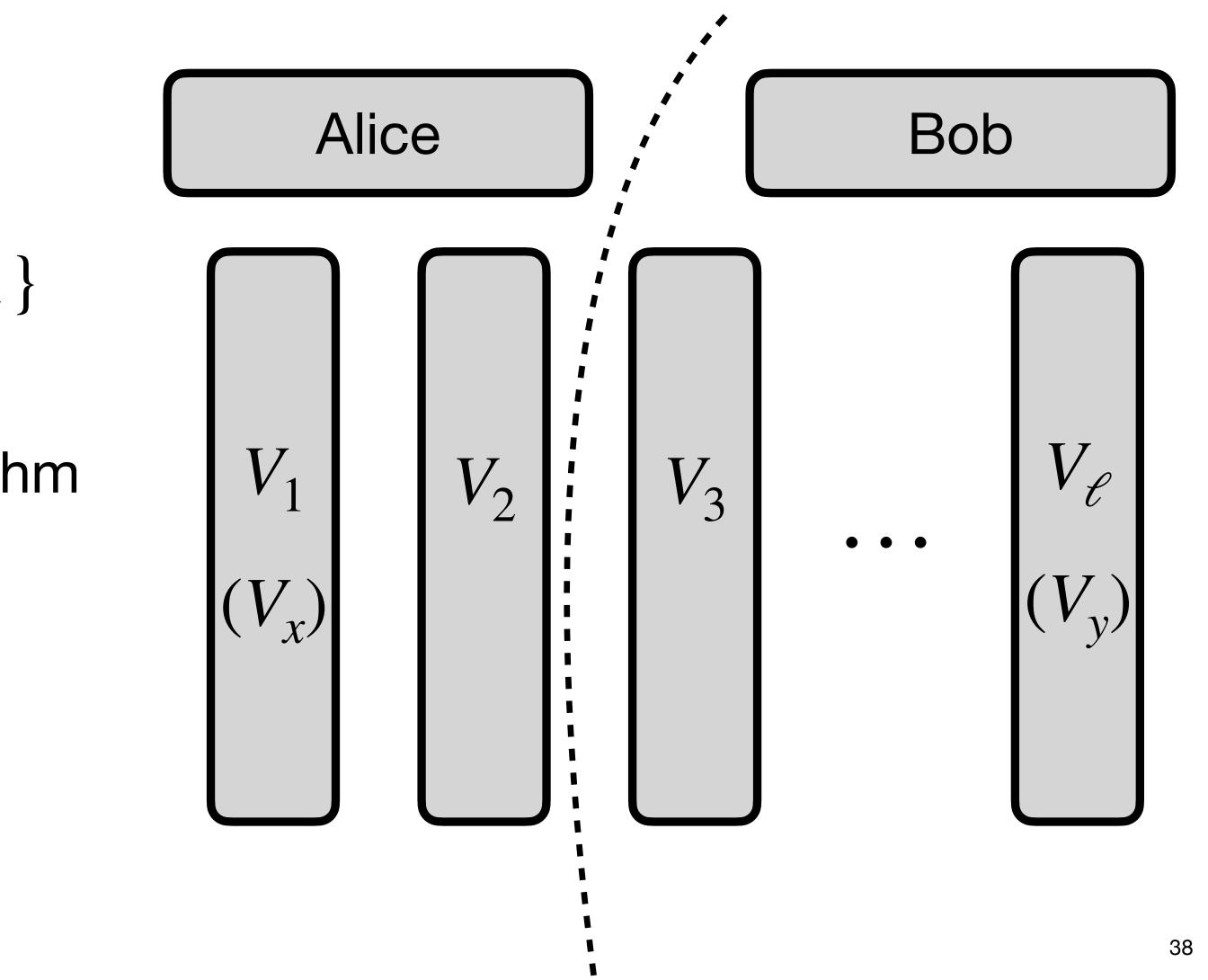
• Alice and Bob first construct $G_{x,y}$



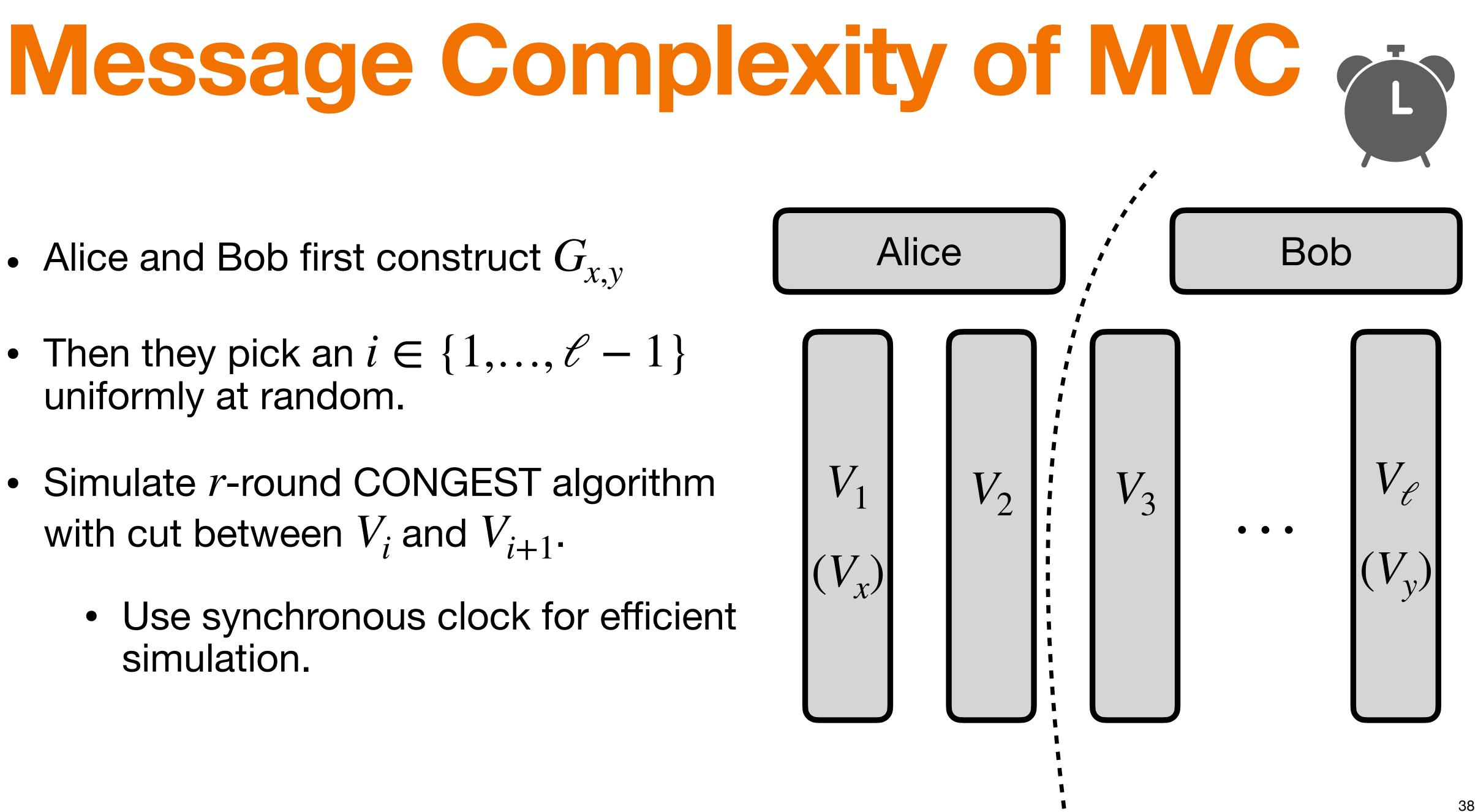
- Alice and Bob first construct $G_{x,y}$
- Then they pick an $i \in \{1, ..., \ell 1\}$ uniformly at random.

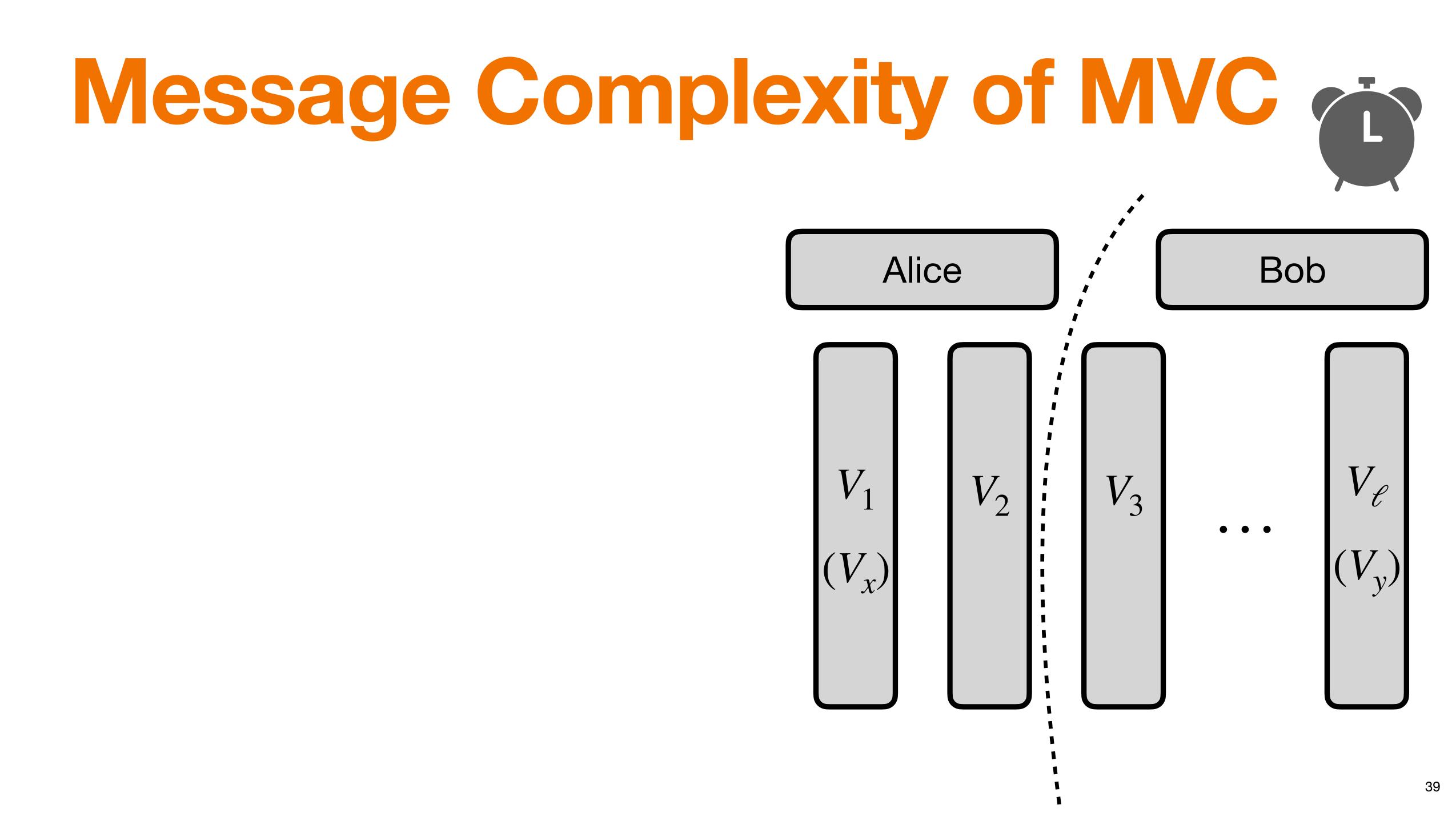


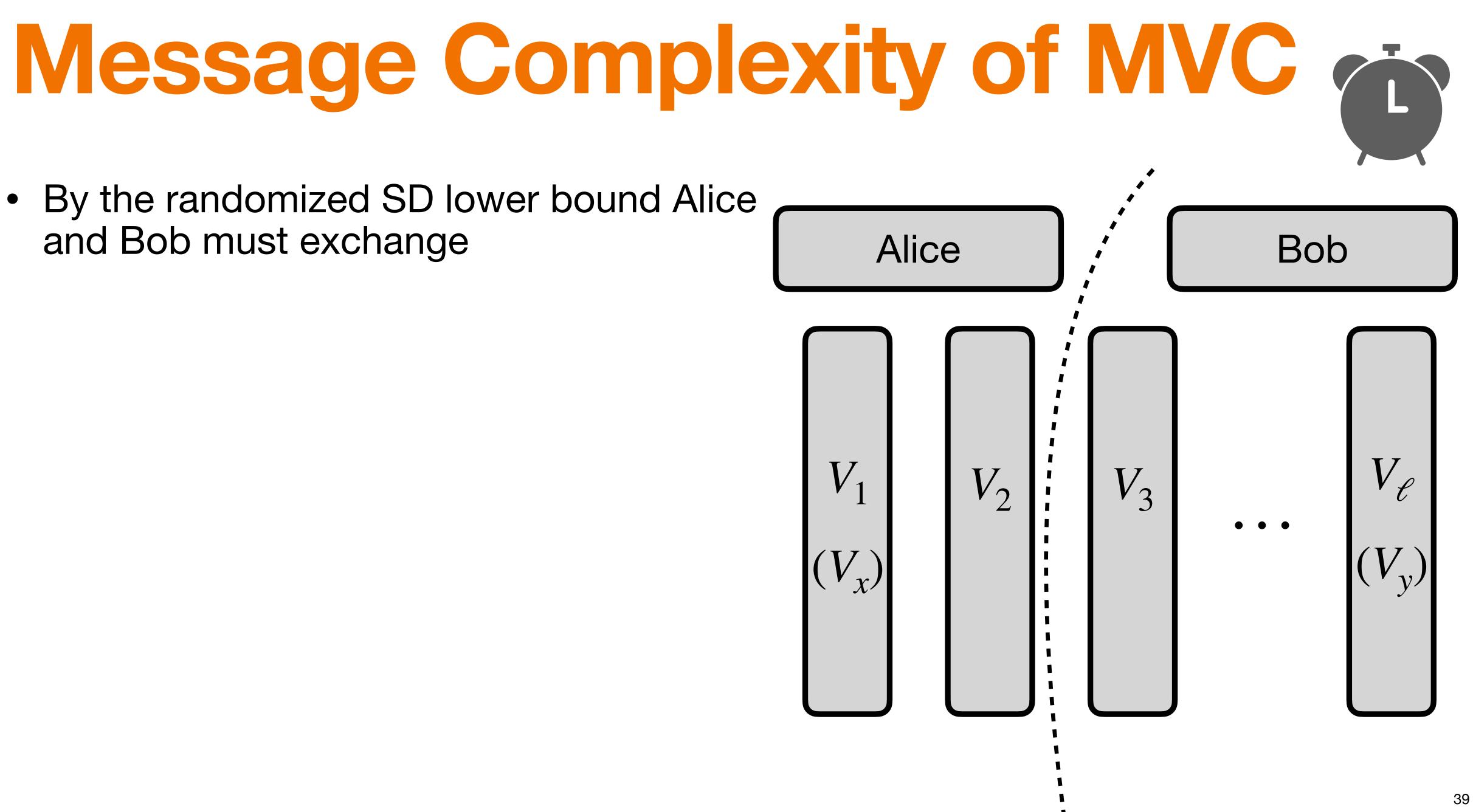
- Alice and Bob first construct $G_{x,y}$
- Then they pick an $i \in \{1, ..., \ell 1\}$ uniformly at random.
- Simulate *r*-round CONGEST algorithm with cut between V_i and V_{i+1} .

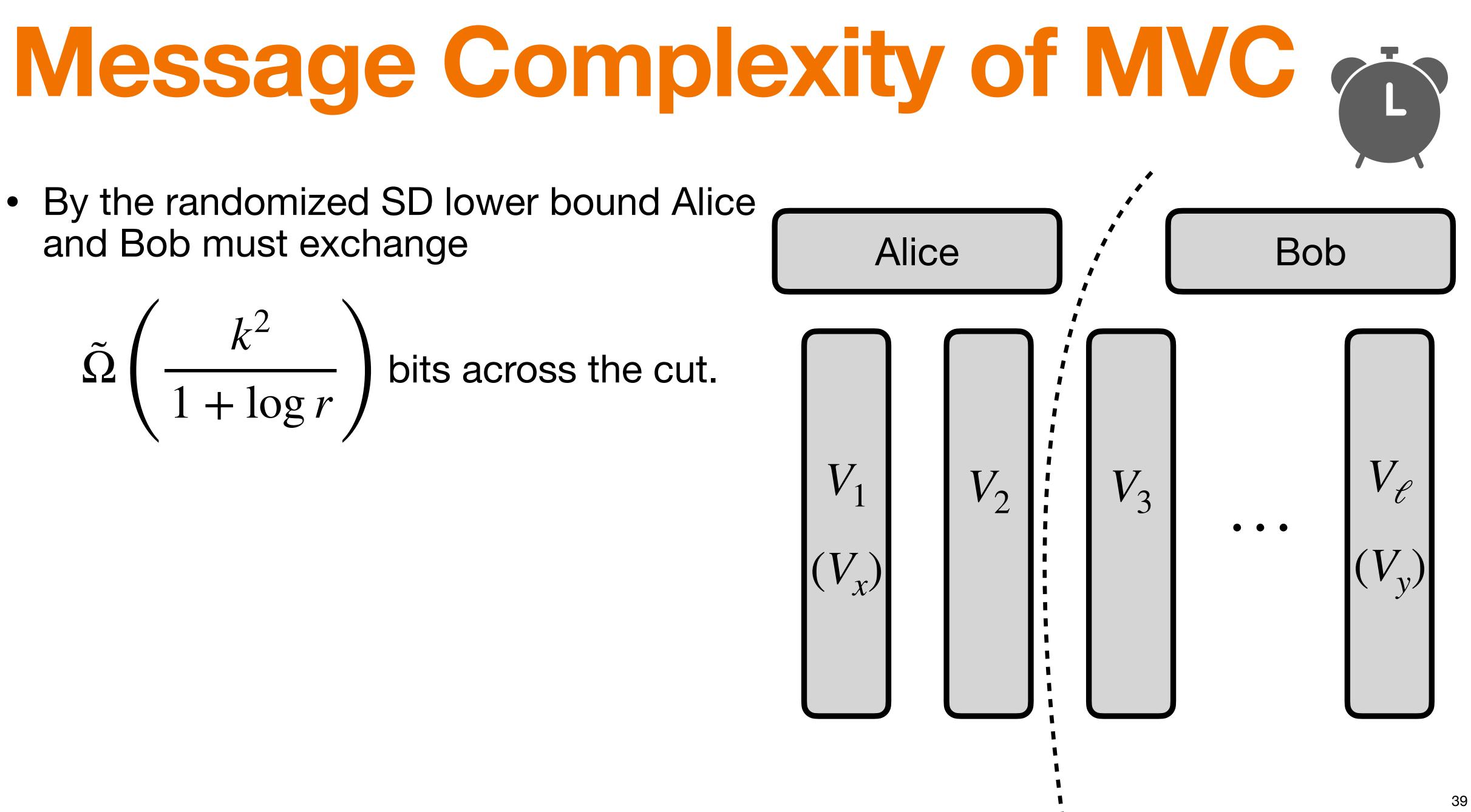


- Alice and Bob first construct $G_{x,y}$
- Then they pick an $i \in \{1, \ldots, \ell 1\}$ uniformly at random.
- Simulate *r*-round CONGEST algorithm with cut between V_i and V_{i+1} .
 - Use synchronous clock for efficient simulation.

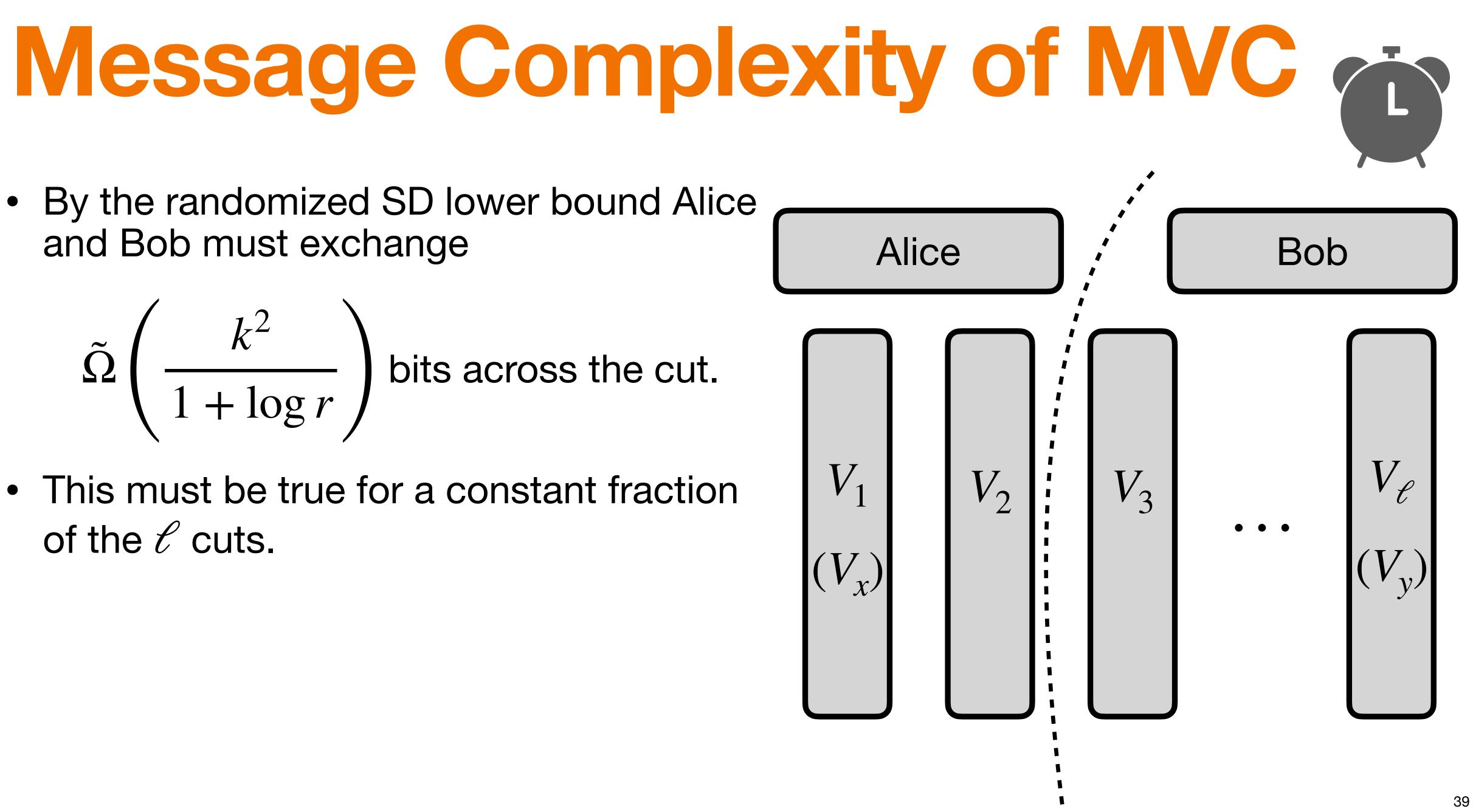




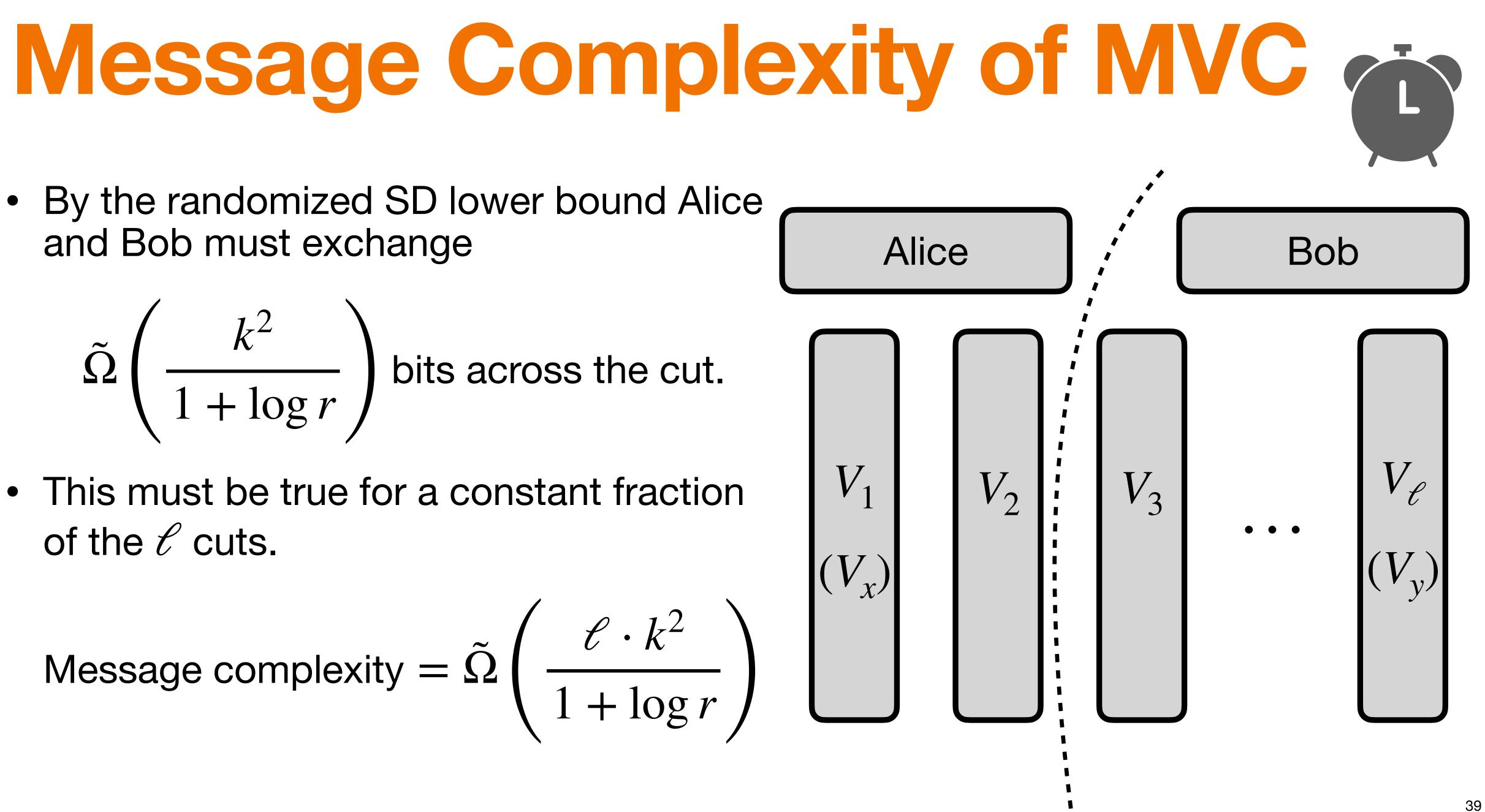




$$\tilde{\Omega}\left(rac{k^2}{1+\log r}
ight)$$
 bits across the d



$$\tilde{\Omega}\left(rac{k^2}{1+\log r}
ight)$$
 bits across the d



$$\tilde{\Omega}\left(rac{k^2}{1+\log r}
ight)$$
 bits across the d

The argument goes through even if the nodes have more initial information.

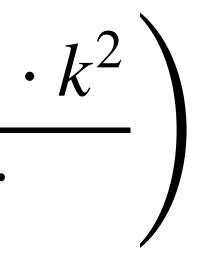
- The argument goes through even if the nodes have more initial information.
- KT-ho model where nodes have topology information up to ho hops.

- The argument goes through even if the nodes have more initial information.
- KT-ho model where nodes have topology information up to ho hops.
- Don't sample first and last ρ cuts.

- The argument goes through even if the nodes have more initial information.
- KT-ho model where nodes have topology information up to ho hops.
- Don't sample first and last ρ cuts.
- Lower bound holds for KT- ρ with message complexity

- The argument goes through even if the nodes have more initial information.
- KT-ho model where nodes have topology information up to ho hops.
- Don't sample first and last ρ cuts.
- Lower bound holds for KT-ho with message complexity

$$\tilde{\Omega}\left(\frac{(\ell-2\rho+1)}{1+\log r}\right)$$



- The argument goes through even if the nodes have more initial information.
- KT-ho model where nodes have topology information up to ho hops.
- Don't sample first and last ρ cuts.
- Lower bound holds for KT-ho with message complexity

$$\tilde{\Omega}\left(\frac{(\ell-2\rho+1)}{1+\log r}\right)$$

- This will give a cubic lower bound for ρ as large as $O(n/\log n)$.
- $\cdot k^2$

 Can we prove such time budgeted lower bounds for symmetry breaking problems? MIS, $(\Delta + 1)$ -coloring, Maximal Matching...

- Can we prove such time budgeted lower bounds for symmetry breaking problems? MIS, $(\Delta + 1)$ -coloring, Maximal Matching...
- What other problems require $\Omega(n^3)$ messages?

- Can we prove such time budgeted lower bounds for symmetry breaking problems? MIS, $(\Delta + 1)$ -coloring, Maximal Matching...
- What other problems require $\Omega(n^3)$ messages?
- What about Maximum Matching?

- Can we prove such time budgeted lower bounds for symmetry breaking problems? MIS, $(\Delta + 1)$ -coloring, Maximal Matching...
- What other problems require $\Omega(n^3)$ messages?
- What about Maximum Matching?
 - Can we get an $O(n^2)$ message algorithm with reasonable round complexity?

