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The CONGEST Model
• Given a graph  which is the communication 

network.
G

•  nodes and  edges.n m

• Goal: solve a problem on , like broadcast 
or coloring.

G

• Synchronous message-passing model.

• Nodes send -bit messages per neighbor 
per round.

O(log n)

2



A Synchronous Round

3



A Synchronous Round

3



A Synchronous Round

3



A Synchronous Round

3



A Synchronous Round

3



A Synchronous Round

3

Local 
Computation



A Synchronous Round

3

Local 
Computation



A Synchronous Round

3

Local 
Computation



A Synchronous Round

3

Local 
Computation



The CONGEST Model

• Other model assumptions: 


• The machines have unique ID’s


• Perfect Synchrony


• No Faults


• Lossless Message Passing


• Infinite Local Computation Power
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The CONGEST Model

• Output: each node will compute a part of the 
output, eg, pass/fail, its own color.

• Round Complexity: total number of rounds 
used by an algorithm.

• Message Complexity: total number of 
messages sent/received in the network.
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Why CONGEST?

• Node centric computing simplifies algorithm 
design.

• Captures two important aspects of distributed 
computing:

• Locality: the information required is far 
away in the network.

• Congestion: bandwidth constraints cause 
bottlenecks in the network.
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Why not LOCAL?

• Notion of message complexity also makes sense 
in the LOCAL model.

• Generic message reduction schemes are known. 
For example [BEI+19].

• Need to send very large sized messages. 

• Will not be the primary focus in this talk.
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Any -round LOCAL 
algorithm

t

 round and  
messages whp.

O(t) O(t ⋅ n1+ε)

[BEI+19] Bitton, Emek, Izumi, Kutten. DISC 2019
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Broadcast

• One node  has a special message  of  bits.u M O(log n)

• All nodes connected to  must receive  at least once.u M

9

• Flooding Algorithm:


• Node  sends  to all its neighbors.


• If  receives  for the first time, it sends  to all neighbors.

u M

v M M
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Analysis of Flooding Algorithm

• Takes  rounds and  messages.D 2m

• Is this the best we can do for broadcast?

• Broadcast must take  rounds.Ω(D)

• Otherwise there are not enough rounds for  to reach all nodes.M

• How do you formally prove that broadcast requires  messages?Ω(m)
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Initial Knowledge

• Going from KT-0 to KT-1 requires only one round, but  messages.O(m)
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KT-0 Indistinguishability
• Assume no message passes 

through  and .e e′ 

• For every pair of edges, at least 
one must be used to send a 
message.

• Therefore, message complexity 
of broadcast is .Ω(m)

• Even works with infinite 
bandwidth!
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What about KT-1?

• Initial knowledge itself is 
different!

• Node  sees  in one graph and 
 in the other.

i j
j′ 

• Is there any hope for an  
lower bound?

Ω(m)
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Message Efficient Broadcast

• We can compute a spanning tree with 
 rounds and  messages.Õ(n) Õ(n)

• [KKT15] key ingredient: 
randomized linear sketches.

• Broadcast by flooding on just the 
spanning tree edges.

• Message efficient but not round efficient.
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[KKT15] King, Kutten, Thorup. PODC 2015
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Messages

Rounds

O(n2)

O(D)

Õ(n)

Õ(n)

 rounds


 messages


for  [GP18] 

Õ(D + n1−δ)

Õ(n1+δ)

0 < δ < 1

[GP18] Gmyr, Pandurangan. DISC 2018

Can we get  rounds 
and  messages?

O(D)
O(n)
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Silence Conveys Information

• We can compute a spanning tree using 
 messages.Õ(n)

• This allows us to solve any graph problem 
using  messages!Õ(n)

• Trick: nodes use clock values to send 
topology information up the spanning 
tree.
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• This can also be made deterministic!

18



Silence Conveys Information

• If allowed  rounds, I can solve any graph problem in  messages.exp(n2) Õ(n)
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Silence Conveys Information

• If allowed  rounds, I can solve any graph problem in  messages.exp(n2) Õ(n)

• This can also be made deterministic!

• Cannot get good message lower bounds unconditionally in KT-1 CONGEST!

• Under what conditions can we hope for message lower bounds?

18
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KT-1 Lower Bounds
• Restrict computation on KT-1 information.

• Nodes can only do comparison operations on the ID’s. 

• This is the comparison-based KT-1 model [AGPV90].

• Here, we can still do indistinguishability type arguments.

• Restrict to algorithms that use few rounds (maybe  or  rounds)poly(n) log n

• Can be achieved by communication complexity reductions.

19

[AGPV90] Awerbuch, Peleg, Goldreich, Varnish. JACM 
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• Initial knowledge is different!

• Node  sees ID  in one graph 
and ID  in the other.

i 2j
2j + 1

• Order of IDs is the same!

• So we can get an  
message lower bound.

Ω(m)

[AGPV90] Awerbuch, Peleg, Goldreich, Varnish. JACM 
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G G′ 

i′ 

j′ 

2i

2j

2i + 1

2j + 1

• Don’t get any contradiction :(

• Want to add the “parallel” edges 
to get contradiction.

• But  can be way out of 
order compared to …

2i + 1
2j

i
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G G′ 

i i′ 

j j′ 
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2j + 1

2i + 1

• “Shift” the IDs in  such that G′ 

•  gets ID  andi′ 2j + 1

•  gets ID .j′ 2i + 1

• Is it always possible?
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Õ( n)

Based on  round MPC 
algorithm of [Cha+19].


(not comparison based)

O(1)

[Cha+19] Chang, Fischer, Ghaffari, Uitto, and Zheng. PODC 2019
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Open Questions

• Can we get singularly optimal algorithms for local symmetry breaking 
problems like MIS, -coloring, Maximal Matching?


• Such algorithms are known for problems like leader election.


• Can we rule out singularly optimal algorithms in KT-1 CONGEST?


• Can we design an algorithm for MIS in KT-1 CONGEST that uses  
rounds and  messages?

(Δ + 1)

poly(n)
o(m)
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To  and BeyondΩ(m)
• For comparison based KT-1 algorithms,  message lower bound for:
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• For  round KT-1 algorithms,  message lower bound for:


• Minimum Vertex Cover.
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Lower Bound for MVC
• Based on the 2-party communication 

complexity reduction framework of 
[CKP17].

• Typically reduce from Set Disjointness.

• SD False if .(x, y) = xi = yi = 1

• SD True otherwise(x, y) =

• Alice and Bob need to exchange  
bits to compute SD .

Ω(k)
(x, y)

28

Alice Bob

x ∈ {0,1}k y ∈ {0,1}k

[CKP17] Censor-Hillel, Khoury, Paz. DISC 2017
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Round Lower Bound

• Alice and Bob first construct  Gx,y

• Then simulate an -round CONGEST 
algorithm that computes size of MVC.

r

• Each round requires Alice and Bob 
to exchange  bits.O(log2 n)

• By the SD lower bound we must have
.r ⋅ log2 n ≥ n2
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• The 2-party communication complexity 
model is asynchronous.

• Naive simulation requires Alice and Bob 
to send at least one bit for each round.

• Even though the CONGEST 
algorithm sends no messages across 
the cut!

• Need  round budget.o(n2)

• Can we do better?
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can simulate any  round CONGEST 
algorithm.

R

• Alice and Bob don’t need to 
communicate at all if the CONGEST 
algorithm does not send any 
messages from  to .Vx Vy

• How strong are the lower bounds for 
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Synchronous CC

33

• [PPS20] give a message efficient 
synchronizer for clique networks which 
implies:

SCCr( f ) ≥ Ω ( CC( f )
1 + log r )

• So for  round algorithms we do 
not pay much.

poly(n)

Alice Bob

Vx Vy

[PPS20] Pandurangan, Peleg, Squizatto. TCS 2020
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• Any  round CONGEST algorithm 
requires  messages.

poly(n)
Ω̃(n2)

• But we were aiming for  which 
can be as large as .

Ω(m ⋅ D)
n3

•  as described has constant diameter.Gx,y

• Can we “stretch” the graph to get a 
higher lower bound?
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• How do Alice and Bob determine this 
“low message” cut before simulating the 
CONGEST algorithm?

• If the CONGEST algorithm is message 
efficient, a constant fraction of the cuts 
will be “low message”.

• Picking one at random gives constant 
error probability!
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• Then they pick an  
uniformly at random.

i ∈ {1,…, ℓ − 1}

• Simulate -round CONGEST algorithm 
with cut between  and .

r
Vi Vi+1

• Use synchronous clock for efficient 
simulation.
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• By the randomized SD lower bound Alice 
and Bob must exchange

 bits across the cut.Ω̃ ( k2

1 + log r )
• This must be true for a constant fraction 

of the  cuts.ℓ

Message complexity = Ω̃ ( ℓ ⋅ k2

1 + log r )


V1

(Vx)


V2 
Vℓ

(Vy)


V3 …

Alice Bob
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Larger Initial Information
• The argument goes through even if the nodes have more initial information.

• KT-  model where nodes have topology information up to  hops.ρ ρ

• Don't sample first and last  cuts.ρ

• Lower bound holds for KT-  with message complexityρ

Ω̃ ( (ℓ − 2ρ + 1) ⋅ k2

1 + log r )
• This will give a cubic lower bound for  as large as .ρ O(n/log n)
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Open Questions

• Can we prove such time budgeted lower bounds for symmetry breaking 
problems? MIS, -coloring, Maximal Matching…(Δ + 1)

• What other problems require  messages?Ω(n3)

• What about Maximum Matching? 

• Can we get an  message algorithm with reasonable round 
complexity?

O(n2)
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Thank you!
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Thank you!
Time for Questions
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