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Some basics
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LOCAL model [Lin92]

▶ Every node is a computer (with unbounded
computational resources)

▶ Every node has its own (unique) ID
▶ Communication graph = input graph
▶ Synchronous, unbounded communication
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Complexity measure

▶ Measure: number of communication rounds

▶ If algorithm runs in T rounds, then essentially
every node
▶ gathers radius T ball BT (v) around it
▶ and computes and outputs a function f (BT (v))

▶ In other words, local computation is “for free”

v

T = 2

BT (v)
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Direct extensions of LOCAL

▶ Nodes may have access to randomness
▶ Private randomness: each node uses its own source
▶ Shared randonmess: all nodes use the same source

▶ Nodes may be quantum computers and use quantum communication
▶ Nodes may share an initial entangled state or not

Deterministic LOCAL
Randomized LOCAL

(private)
Quantum LOCAL

(unentangled)

Randomized LOCAL
(shared)

Quantum LOCAL
(pre-entangled)
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What problems do we care about here?

▶ Locally checkable labeling (LCL) problems [NS95]

▶ Nodes output labels from some finite set Γ
▶ Must satisfy constraints (checkable in O(1) radius)

▶ Examples: coloring, maximal matching, maximal
independent set (MIS), sinkless orientation
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Separations
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Full separation between extensions of LOCAL
Both were proven this year:

1. Randomized and quantum

2. Private/no entanglement and shared/pre-shared entanglement

Deterministic LOCAL
Randomized LOCAL

(private)
Quantum LOCAL

(unentangled)

Randomized LOCAL
(shared)

Quantum LOCAL
(pre-entangled)

1

2

▶ Separation between deterministic and randomized was already known (e.g., sinkless
orientation)

▶ Separations all hold in general graphs (no extra assumptions!)
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Separation 1: Quantum vs. randomized

STOC 2025 [Bal+25a]
There is an LCL problem that has the following complexities:
▶ O(1) in quantum LOCAL (even without pre-shared entanglement)
▶ Ω(∆) in randomized LOCAL (even with shared randomness)

where ∆ is the maximum degree of the input graph

SODA 2026 [Bal+25b]
There is an LCL problem that has the following complexities:
▶ O(log n) in quantum LOCAL (even without pre-shared entanglement)
▶ ω(log n) in randomized LOCAL (even with shared randomness)

Before these a separation was known but not for an LCL problem [LNR19]
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Quantum games

Famous game in quantum literature: Clauser-Horne-Shimony-Holt (CHSH) game

A B

A B

x y

a b

▶

▶ Winning condition: a ⊕ b = x ∧ y
▶ It is a famous result that there is a quantum strategy that wins with ≈ 85% probability

whereas classically the best is 75% (assuming inputs are uniformly random)
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Quantum games

Famous game in quantum literature: Clauser-Horne-Shimony-Holt (CHSH) game

A B

A B

x y

a b

▶ x , y , a, b ∈ {0, 1}
▶ Winning condition: a ⊕ b = x ∧ y
▶ It is a famous result that there is a quantum strategy that wins with ≈ 85% probability

whereas classically the best is 75% (assuming inputs are uniformly random)
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Network of quantum games
▶ Hard game (CHSH) ; hard distributed problem
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· · ·
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1

1

▶ ∆-regular graph with ∆-edge-coloring given

▶ Every node X receives input 1
▶ Constraint at each edge:

▶ If edge connects X and Y and is labeled i ∈ [∆], then xi ⊕ yi = xi−1 ∧ yi−1
▶ We set x0 = 1 (input)
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Network of quantum games
▶ Hard game (CHSH) ; hard distributed problem
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▶ ∆-regular graph with ∆-edge-coloring given
▶ Every node X receives input 1 and produces ∆ outputs x1, . . . , x∆
▶ Constraint at each edge:

▶ If edge connects X and Y and is labeled i ∈ [∆], then xi ⊕ yi = xi−1 ∧ yi−1
▶ We set x0 = 1 (input)
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Network of quantum games: complexity
▶ This problem can be solved in O(1) rounds in quantum

A

B

C

D 1 1

2

3

▶ We can prove: randomized LOCAL (even with shared randomness) needs Ω(∆)
rounds
▶ Complex proof based on round elimination
▶ Open: Is there a simpler hardness argument?

However, there is a caveat...



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

13/29

Network of quantum games: complexity
▶ This problem can be solved in O(1) rounds in quantum

A

B

C

D 1 1

2

3

▶ We can prove: randomized LOCAL (even with shared randomness) needs Ω(∆)
rounds
▶ Complex proof based on round elimination
▶ Open: Is there a simpler hardness argument?

However, there is a caveat...



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

13/29

Network of quantum games: complexity
▶ This problem can be solved in O(1) rounds in quantum

A

B

C

D 1 1
qB

2
qC

3
qD

▶ We can prove: randomized LOCAL (even with shared randomness) needs Ω(∆)
rounds
▶ Complex proof based on round elimination
▶ Open: Is there a simpler hardness argument?

However, there is a caveat...



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

13/29

Network of quantum games: complexity
▶ This problem can be solved in O(1) rounds in quantum

A

B

C

D 1 1
a1

2
qC

3
qD

▶ We can prove: randomized LOCAL (even with shared randomness) needs Ω(∆)
rounds
▶ Complex proof based on round elimination
▶ Open: Is there a simpler hardness argument?

However, there is a caveat...



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

13/29

Network of quantum games: complexity
▶ This problem can be solved in O(1) rounds in quantum

A

B

C

D 1 1
a1

2
a2

3
qD

▶ We can prove: randomized LOCAL (even with shared randomness) needs Ω(∆)
rounds
▶ Complex proof based on round elimination
▶ Open: Is there a simpler hardness argument?

However, there is a caveat...



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

13/29

Network of quantum games: complexity
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Getting an actual separation

▶ Big caveat: quantum only succeeds in solving CHSH with ≈ 85% probability
▶ Probability all edges around a single node are correct: ≈ 0.85∆

▶ Probability all edges are correct: ≈ 0.85Ω(∆n) n→∞→ 0

▶ Hence we actually don’t use CHSH, but another similar game:
Greenberger-Horne-Zeilinger (GHZ)

▶ There is a quantum strategy for GHZ with 100% success probability

▶ The catch is that GHZ is not a two-party but three-party game
▶ Hence we need to move to 3-hypergraphs
▶ Round elimination proof also gets much more complicated

Details: [Bal+25a]
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From a separation on ∆ to a separation on n [Bal+25b]

▶ Core of the problem remains the same, complexity is translated from ∆ to n
▶ Technique could be useful in other contexts (even unrelated to quantum)

▶ Two key ideas:
1. Every node is turned into a tree of height Θ(log n) (plus extra edges to help with

certification)
2. Every one of its ∆ edges is replaced by a gadget with diameter Θ(log n)

▶ Quantum works in parallel and needs only Θ(log n) + Θ(log n) = Θ(log n) rounds
▶ Classical must use sequential strategy and needs Ω(∆ log n) rounds, which is

ω(log n) for an appropriate choice of ∆
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Separation 2: Private vs. shared

ICALP 2025 [Bal+25d]
There is an LCL problem that has the following complexities:
▶ O(log n) in randomized LOCAL with shared randomness
▶ Ω(

√
n) in quantum LOCAL (without pre-shared entanglement)

(assuming nodes are given the total number n of nodes in the graph)

▶ Basic idea is to define a problem where global coordination is needed (nodes need to
globally agree on a solution)



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

17/29

The main idea
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How to get a separation
▶ If we have shared randomness (1 bit per row is enough): every node in the same row

outputs the same bit b ∈ {0, 1}
▶ If the grid is tall enough, say Ω(log n) height, then failure probability is

1 − 2−Ω(log n) = 1/nΩ(1)

▶ Use O(log n) rounds to check grid is large enough

▶ If we only have private randomness, then:
▶ Outputting a fixed bit b ∈ {0, 1} is definitely bad
▶ Coordinating independent choices along a row (even with quantum) is not possible
▶ Hence you must see the entire grid ; Ω(

√
n) rounds

▶ Hard part: We expect some structure for upper bound to work, but we want a
separation on general graphs
▶ E.g., we do not have the promise that we are on a grid
▶ Relies on LCL certification techniques from previous works

Details: [Bal+25d]
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Ruling out quantum advantage
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Ruling out quantum advantage
▶ Currently, lower bounds for quantum are actually lower bounds for a stronger model

Deterministic LOCAL
Randomized LOCAL

(private)
Quantum LOCAL

(unentangled)

Randomized LOCAL
(shared)

Quantum LOCAL
(pre-entangled)

Non-signaling LOCAL

▶ Advantages:
▶ Lower bounds for non-signaling can be based on graph theory (e.g., propagation

arguments)
▶ Non-signaling is a stronger model, so we also get stronger lower bounds

▶ Disadvantages:
▶ Lower bounds for non-signaling may not directly tell us much about quantum
▶ There are (very prominent!) problems where there is a trivial upper bound in

non-signaling (coming up later)
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Non-signaling LOCAL [AF14; GKM09]
▶ Non-signaling defined not on terms of explicit model but of property of a distribution:

▶ A problem can be solved in non-signaling LOCAL with locality T if there is a (global)
random process A that is non-signaling with locality T that solves it (whp)

▶ Random process A is non-signaling with locality T if the following holds:

G H

...then marginals A(G)|VG and A(H)|VH are identically distributed
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Some prominent results
For the following problems, the locality of deterministic and non-signaling LOCAL are the
same (up to polylog factors):

STOC 2024 [Coi+24]: approx coloring, i.e., c-coloring a χ-chromatic graph (where c ≥ χ)

DISC 2025 [Bal+25c]: linear programming

▶ Hence also approx vertex cover or approx maximum matching

Deterministic LOCAL
Randomized LOCAL

(private)
Quantum LOCAL

(unentangled)

Randomized LOCAL
(shared)

Quantum LOCAL
(pre-entangled)

Non-signaling LOCAL
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Lower bounds beyond non-signaling
There are also recent results that hold not only in non-signaling (and hence also in
quantum) LOCAL but in even stronger, centralized models, e.g.:

STOC 2025 [Akb+25]
The following holds in rooted trees: If Π is solvable with o(log log log n) locality in
randomized online-LOCAL, then it is solvable with O(log∗ n) locality in deterministic
LOCAL.
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The frontier: 3-coloring cycles
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Symmetry-breaking problems
▶ Θ(log∗ n) is class of symmetry-breaking problems in deterministic / randomized

LOCAL
▶ Classical representatives: 3-coloring a cycle, maximal independent set (MIS)

▶ “Meta-solution” to problems in this class [Bra+17]:
1. Break symmetry — find distance-k coloring (i.e., coloring of Gk ) for a certain k = O(1)
2. Solve problem — use coloring as “anchor” to place labels

▶ E.g., we can solve MIS by choosing all nodes with color 1, then augment by greedily
adding nodes colored 2, etc.
▶ If we have MIS, we can 3-color a cycle: Place 3’s on MIS nodes and complete

in-between with a 2-coloring

▶ Only the first item takes Θ(log∗ n), the second one is constant-time!

▶ Question: Is complexity still Θ(log∗ n) in quantum or stronger models?
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Symmetry-breaking for free

STOC 2025 [Akb+25]
If Π is solvable with O(log∗ n) locality in deterministic LOCAL, then it is solvable with O(1)
locality in the bounded-dependence model.

▶ Bounded-dependence is a weaker version of non-signaling
▶ Also not an explicit model but defined in terms of random processes
▶ Bounded-dependence for O(1) locality is also known as finitely dependent

Corollary
If Π is solvable with O(log∗ n) locality in deterministic LOCAL, then it is solvable with O(1)
locality in non-signaling LOCAL.

▶ Hence 3-coloring cycles in non-signaling is “trivial”



Recent Breakthroughs in Distributed Quantum Computing
A. Modanese, ADGA 2025

27/29

The frontier: 3-coloring on cycles

▶ Summarizing what we know about symmetry-breaking problems:

Deterministic LOCAL
Randomized LOCAL

(private)
Quantum LOCAL

(unentangled)
Bounded-dependency

Randomized LOCAL
(shared)

Quantum LOCAL
(pre-entangled)

Non-signaling LOCAL

Ω(log∗ n) O(1)???

▶ To settle the middle we need truly quantum techniques (!!)
▶ Just showing a lower bound in bounded dependence or non-signaling is not possible
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Summary
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Summary
1. Full separations between all “direct” extensions of LOCAL

▶ Separations are on general graphs
▶ Possibly room for improvement, e.g.:

▶ Gap between quantum and randomized is very small
▶ Can we simplify the lower bound proofs?
▶ Do these separations hold for natural problems?

2. Strong results showing no quantum advantage for interesting problems
▶ Approximate coloring and linear programming
▶ Results apply to non-signaling, so very strong lower bounds

3. Wide open: 3-coloring cycles
▶ No lower bound based on non-signaling possible
▶ Techniques?
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