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Current State of the Art:

 0(log? n) rounds for Network Decomposition
* 0(log®/*n) rounds for MIS

This talk: Present some of the key techniques used in the SOTA algorithms



The LOCAL Model of Distributed Computing [Linial’87]

* Undirected graph G = (V,E)
* VV =Processors with unique IDs from {1, ..., poly(n)}
 E=Communication link

e Synchronous rounds
* Unbounded local computation
* Unbounded message sizes j j
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 Afterrfounds: each node needs to know its part of the output j
r = O(diameter) is always possible

- add

Generic approach: Break the graph into small-diameter subgraphs j




Reminder: Network Decomposition & MIS



(C,D) Network Decomposition

(3,3) Network Decomposition

 Graph is partitioned into clusters
* Each clusteris colored (C colors in total)

* Clusters with identical color are non-adjacent
* Cluster diameter at most D




(C,D) Network Decomposition

(3,3) Network Decomposition

Claim:

(C,D) Network Decomposition
»MIS in O(CD) additional rounds
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Simple sequential ball growing to generate each color, which includes 2 of remaining nodes.

log?n

Lower bound: For any (C, D) net decomposition, we need CD=()( ). [ Linial, Saks’93]

log2logn

Randomized distributed algorithm: T=O(log2n) rounds. [ Linial, Saks’93]

*originally weak-diameter, in 2016 made strong diameter by Elkin and Neiman using an algo of Miller, Peng, Xu

[Ghaffari, G'24] : Deterministic (O(log n), O(log n))-ND in O (log? n) rounds.
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MIS Results

Randomized state of the art: O(log n) [ Luby ’86] and [Alon, Babai, and Itai ’86]

[Ghaffari, G‘24] : Deterministic MIS in 0 (log®/3n) rounds.

Remarks:
1.) Breaks a natural barrier, going below network decomposition-based methods.

2.) Comes close to Q(log n) lower bound

5/3

Corollary 1: Deterministic Maximal Matching and (A + 1)-coloring in O (log®/3n) rounds.

- 2
Corollary 2: Randomized (A + 1)-coloring in O(logs log n) rounds.




Technique #1: Local Rounding of Pairwise-Independent Sampling



Technique #1: Local Rounding of Pairwise-Independent Sampling

Theorem (very informal) [Kuhn, Ghaffari ‘21, FGGKR ‘23]:
Any randomized algorithm using only pairwise independence can
be turned into an almost as efficient deterministic algorithm.




Technique #1: Local Rounding of Pairwise-Independent Sampling

Theorem (very informal) [Kuhn, Ghaffari ‘21, FGGKR ‘23]:
Any randomized algorithm using only pairwise independence can
be turned into an almost as efficient deterministic algorithm.

Let’s start with a toy problem: Max Cut
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Simple (2)-approx. randomized Algorithm:
Set each X,, € {0,1} randomly.

Deterministic Algorithm via Conditional Expectations:
Fix variables one by one, such that the conditional expected cut value never decreases.
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Determinstic Distributed (% — &)-Approx.

Algorithm:

1.) Compute a coloring such that at most an e-fraction of edges are monochromatic
2.) Remove all monochromatic edges.
3.) lterate through the colors, fixing all nodes of the same color at once

[Ghaffari, Kuhn’ 21]: Q'
Such a coloring with O(1/ €) colors can
be computed in O(1/ e+log™ n) rounds
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Local Rounding of Pairwise Independent Sampling

Goal: Turn a fractional solution P into an almost-as-good integral solution y locally.

Input:
« 1 € (0,1]V (“sampling probabilities”)

« ut € RY, (“utility of including a given node”)

* cost € RE, (“cost of including both endpoints of a given edge”)

Notation:
D(X) == Yy ut()x(w) — Y uvyer cost(ur)x(w)x(v) (¥ €1[0,1]")

“Expected utility “ — “Expected cost”

Max Cut:
 p(v)=0.5
* ut(v)=deg(v)

e cost(uyv)=2




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7

Can be parallelized, given a coloring with few colors.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7

Can be parallelized, given a coloring with few colors.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7

Can be parallelized, given a coloring with few colors.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0(log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(5) = ®(7p).
3 5 7

Can be parallelized, given a coloring with few colors.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem:
Valid coloring might need too many colors.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem:
Valid coloring might need too many colors.

Approach:
1. Use coloring with few monochromatic edges
2. Ignore those edges and round the rest.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem: i

Valid coloring might need too many colors. @

Approach: @
1. Use coloring with few monochromatic edges
2. Ignore those edges and round the rest.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem: i

Valid coloring might need too many colors. @

Approach: @
1. Use coloring with few monochromatic edges
2. Ignore those edges and round the rest.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem: !

Valid coloring might need too many colors. @

Approach: e
1. Use coloring with few monochromatic edges
2. Ignore those edges and round the rest.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem: !

Valid coloring might need too many colors. G

Approach: e
1. Use coloring with few monochromatic edges
2. Ignore those edges and round the rest.




Local Rounding of Pairwise Independent Sampling

Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem:
Valid coloring might need too many colors. G

Approach: e
1. Use coloring with few monochromatic edges
2. Ignore those edges and round the rest.

Issue: “Contribution” of an edge can increase a lot
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Theorem [Faour, Ghaffari, G, Kuhn, Rozhon’23]
In 0 (log? ( -

) + log*(n)) rounds, one can compute an integral y € {0,1}" such that ®() > 0.90(p).

Pmin

Sequential algorithm:
Sequentially computes y € {0,1}" with ®(3) = ®(p).
Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors. 100 G
Approach: e

1. Use coloring with few monochromatic edges

2. Ignore those edges and round the rest.

Before: 100- 0.1 - 0.1

Issue: “Contribution” of an edge can increase a lot
After:100-1 -1
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The algorithm has / iterations, in each iteration we increase the integrality by a 2-factor

. — . 1 .
Assume the input vector p is ;—mtegral

In each iteration, the potential decreases by at most a (1 — ﬁ)—factor

I
As (1 — 1%)1) > 0.9, we therefore get ®(y) = 0.9®(p), as needed

Main Technical Lemma:
1

2i—1

: 1. .
Given a ;—mtegral pi, One can compute a

-integral p;—1 with ®(p;_;) = (1 — 1%1) ®(p;) in O(I) rounds

* Overall round complexity: O(1?)
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Main Technical Lemma:
. 1. .
Given a ;-mtegral pi, one can compute a

. -integral p;—1 with ®(p;_;) = (1 — 1%1) ®(p;) in O(I) rounds

2i—1

Algorithm:
1.) Compute a coloring with O(I) colors so that monochromatic edges contribute S$ d(p;) .

— — 1 —
Formally: Y., 3egmono cost(uv) (D) (Pi)v < 75 P(p:)

2.) Drop all edges in E™0™0
3.) double integrality: % -

2i—1’

increasing each value by at most a 2-factor.

Potential Analysis:
P(pi—1) = Pp\gmono(Di—1) - Lgupyepmono COSEUV)(Pi—1)u(Pi-1)v
= P\ pmono () -4 Z{u,v}EEmO”O cost(uv) (D) (P1)v

> o(5) 4o = (1-1) @@
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Input: A-regular graph
Output: Independent Set /
Goal: 0(n) nodes | (in expectation)

Randomized Algorithm:
1.) Sample each node u with prob. p = 10% (pw. ind.)

2.) Include uin /if a) u is sampled
b) no neighbor of u is sampled

Notation: Claim 1:
) Z, is a pessimistic estimatorof ' (Z, <
= Indicator that v is neighboring a node in / el maror v
= Indicator that u is sampled Claim follows from:
zX— 2 X, X, — S‘XX 102, =1
4 2.) 7, =0impliesZ, <0

ueN (v) uzu' eN() uEN(v) WEN (u)
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1

Claim2:E[Z,] = -

Note that E[X,] = E[XulXuz | = — AZ (uy # uy)
Therefore,
E[Zv] = z E[Xu] — 2 E[XuXu’] - z 2 E[XuXW]
UueN (v) uzu’eN(v) ueN(v) weN(u)
- L (A _ 2 1
= 4 10A ( ) 100A2 a 100A2
> = _ _ 1
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Goal: Q.(n) nodes | (in expectation)

By definition, )., ., nodes are /

Claim 1 implies: Y., /', = X, Z,,

Claim 2 implies: E[},, Z,] = n/20

Therefore, the expected number of nodes | is at least n/20 ©

By the Local Rounding Theorem, this gives:

Corollary:

In 0(log?(A) + log*(n)) rounds, one can deterministically compute an independent set
neighboring Q.(n) nodes.

In fact, with slightly more work, one can show that each round of Luby’s MIS algorithm can be derandomized in
0(log?(A)) rounds
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Theorem :
An MIS can be deterministically computed in O(log n log? A) rounds.

1
If A < 2!99°(M) e get a round complexity of O(log>/3n) !

What if A is larger?
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vector such that if we treat the entries as sampling probabilities, we remove a constant
fraction of the edges, in expectation.
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. L : : : 1 1
High-Level Idea: Round within clusters to increase integrality from = 2 to~ —

Partial Intra-Cluster Rounding Theorem [Ghaffari, G 23] :
Let C be a partition of diameter D. In O(D) rounds, we can compute a

T09A, log(n) integral

vector such that if we treat the entries as sampling probabilities, we remove a constant
fraction of the edges, in expectation.

 Each cluster rounds independently — hence O(D) rounds.
« A“good” local solution is guaranteed by a probabilistic method argument.
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Intra-Cluster + Local Rounding Theorem:
Given a partition C into clusters of diameter D, one can compute an MIS in

0(log(n) (D + log?(/.))) rounds.

Proof Sketch: Derandomize each round of Luby’s algorithm by combining
partial intra-cluster rounding with local rounding.

Key Question:
What’s the right trade-off between the diameter D and the max cluster degree A7
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cluster degree n°/P) (for D < log®°°(n))).

log®(n))
=),

Given such a partition, we can compute an MIS in O(log(n) (D +

Setting D = log?/3(n))), we get the desired round complexity of 0(log>/3(n)).
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Clustering with Small Cluster Degree

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA13] :
In O(D) rounds, the MPX algorithm computes a partition with diameter D and
cluster degree n°/P) (for D < log®°°(n))).

MPX Algorithm:

1.) Each node v gets a random head start h,, ~Geo (1 _2 )

| 1
) Prin, > ] = )

2.) Cluster each node u into the cluster of the node v minimizing dist(v,u)-h,, (ties to higher ID).

Observation: Each cluster has diameter O (D), w.h.p.
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* Each derandomization step reduces to computing a hitting set.

* Each round takes O(log(n)D) rounds.
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Derandomized MPX Decomposition :
In 0(log(n) D?) rounds, one can compute a partition with diameter D and maximum
cluster degree n®(/P) (assuming D < log®°(n))).

High-Level Idea:

* Each node has D random coin tosses that define its head start.

e Derandomize coin #1 of all nodes, then coin #2, and so on -- for D rounds.
* Each derandomization step reduces to computing a hitting set.
 Each round takes O(log(n)D) rounds.

Corollary
An MIS can be computed in 0(log n) rounds.




Technique #4: Deterministic Hitting Set



Deterministic Hitting Set

Deterministic Hitting Set Ghaffari, G [STOC 23] :

Consider a bipartite graph with bipartition U LU V, where each u € U has degree deg(u) = n
In 0(log(n)) rounds, one can compute a subset V,,;; € V such that:
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2.N(w) NnV,;; # Oforeveryu € U.
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Deterministic Hitting Set

Deterministic Hitting Set Ghaffari, G [STOC 23] :

Consider a bipartite graph with bipartition U LU V, where each u € U has degree deg(u) = n

100/D

In 0(log(n)) rounds, one can compute a subset /,,;; € V such that:

\4
1. | Vhitl < nl/D

2.N(w) NnV,;; # Oforeveryu € U.

| Viie| <

deg(u) = n100/D

14

n1/D

Simple 0-round randomized algorithm!




Open Problems 1haﬂ\<‘5"

« Deterministic MIS (or Maximal Matching, (A + 1)-coloring) in o(log®/3n) or o(log n log? A) rounds

* Derandomization Gap in Distributed Graph Algorithms (for locally checkable problems)
 Det/Rand =0(log? n) G., Grunau FOCS’24
e Det/Rand = ﬁ(log n) Brandt et al. STOC’16; Chang, Pettie, Kopelowitz FOCS’17; G., Su SODA’17

? Close the gap?

* Use Local Rounding in other models
* Parallel derandomization, towards work-efficiency G., Grunau’25

? Dynamic, ...?
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