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Overview

Goal: Efficient deterministic distributed algorithms for LOCAL problems
• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,…

For ≈30 years: [AGLP FOCS’89], [Panconesi, Srinivasan STOC’93]

• 2𝑂( log 𝑛)-round deterministic Network Decomposition

Breakthrough: [Rozhoň, Ghaffari STOC’20] 
• (polylog n)-round deterministic Network Decomposition

Current State of the Art: [Ghaffari, G FOCS ‘24] 
• ෩𝑂 log2 𝑛 rounds for Network Decomposition
• ෨𝑂(log5/3𝑛) rounds for  MIS
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This talk: Present some of the key techniques used in the SOTA algorithms



The  LOCAL Model of Distributed Computing [Linial’87]

• Undirected graph G = (V,E)
•  V = Processors with unique IDs from {1, … , 𝑝𝑜𝑙𝑦(𝑛)}

• E = Communication link

Generic approach: Break the graph into small-diameter subgraphs

• After r founds: each node needs to know its part of the output
r = O(diameter) is always possible

• Synchronous rounds
• Unbounded local computation
• Unbounded message sizes



Reminder: Network Decomposition & MIS



(C,D) Network Decomposition

• Graph is partitioned into clusters
• Each cluster is colored (C colors in total)

• Clusters with identical color are non-adjacent
• Cluster diameter at most D

(3,3) Network Decomposition



(C,D) Network Decomposition

Claim:
(C,D) Network Decomposition
MIS in O(CD) additional rounds

(3,3) Network Decomposition



Network Decomposition Results

Existential: can get C & D = O(log n).  Implicit in [Awerbuch, Peleg ’89]

       Simple sequential ball growing to generate each color, which includes ½ of remaining nodes.

Lower bound: For any (C, D) net decomposition, we need CD=Ω(
log2𝑛

log2log 𝑛
). [ Linial, Saks’93]

     

Randomized distributed algorithm: T=O(log2𝑛) rounds.   [ Linial, Saks’93]
    *originally weak-diameter, in 2016 made strong diameter by Elkin and Neiman using an algo of Miller, Peng, Xu

Our result: deterministic (O(log n), O(log n))-network decomposition in ෨𝑂 log2 𝑛  rounds.
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1.) Breaks a natural barrier, going below network decomposition-based methods.
2.) Comes close to ෩Ω 𝑙𝑜𝑔 𝑛  lower bound [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela’19]

[Ghaffari, G‘24] : Deterministic MIS in ෨𝑂(log5/3𝑛)  rounds. 

Corollary 1: Deterministic Maximal Matching and (Δ + 1)-coloring in ෨𝑂(log5/3𝑛)  rounds. 

Corollary 2: Randomized (Δ + 1)-coloring in ෨𝑂(log
5

3 𝑙𝑜𝑔 𝑛) rounds. 
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Technique #1: Local Rounding of Pairwise-Independent Sampling

Theorem (very informal) [Kuhn, Ghaffari ‘21, FGGKR ‘23]:
Any randomized algorithm using only pairwise independence can 
be turned into an almost as efficient deterministic algorithm. 



Technique #1: Local Rounding of Pairwise-Independent Sampling

Let’s start with a toy problem: Max Cut 

Theorem (very informal) [Kuhn, Ghaffari ‘21, FGGKR ‘23]:
Any randomized algorithm using only pairwise independence can 
be turned into an almost as efficient deterministic algorithm. 
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Simple (½)-approx. randomized Algorithm: 
Set each 𝑋𝑣 ∈ 0,1  randomly.

Deterministic Algorithm via Conditional Expectations:
Fix variables one by one, such that the conditional expected cut value never decreases.

Issue: Highly Sequential
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2
− 𝜀)-Approx.

Algorithm:
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2.) Remove all monochromatic edges.

3.) Iterate through the colors, fixing all nodes of the same color at once
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Determinstic Distributed (
1

2
− 𝜀)-Approx.

Algorithm:

1.) Compute a coloring such that at most an 𝜀-fraction of edges are monochromatic

2.) Remove all monochromatic edges.

3.) Iterate through the colors, fixing all nodes of the same color at once
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[Ghaffari, Kuhn’ 21]:
Such a coloring with O(1/ 𝜀) colors can 
be computed in O(1/ 𝜀+log∗ 𝑛) rounds



Local Rounding of Pairwise Independent Sampling

Goal: Turn a fractional solution 𝑝 into an almost-as-good integral solution 𝑦 locally.
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Goal: Turn a fractional solution 𝑝 into an almost-as-good integral solution 𝑦 locally.
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“Expected utility “ – “Expected cost”

Goal: Turn a fractional solution 𝑝 into an almost-as-good integral solution 𝑦 locally.

Max Cut:
• 𝑝 𝑣 = 0.5
• ut 𝑣 = deg(𝑣)
• cost(u,v) = 2
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Notation:
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Claim 1: 
𝑍𝑣 is a pessimistic estimator of 𝑌𝑣 (𝑍𝑣 ≤ 𝑌𝑣)  

Claim follows from:
1.) 𝑍𝑣 ≤ 1 
2.) 𝑌𝑣 = 0 implies 𝑍𝑣 ≤ 0
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Derandomizing One Round of Luby’s MIS algorithm on a regular graph



Claim 2: 𝐸 𝑍𝑣 ≥
1

20
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Note that 𝐸 𝑋𝑢 =
1

10Δ
, 𝐸 𝑋𝑢1

𝑋𝑢2
 =

1

100Δ2 
(𝑢1 ≠ 𝑢2) 

Claim 2: 𝐸 𝑍𝑣 ≥
1
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Note that 𝐸 𝑋𝑢 =
1

10Δ
, 𝐸 𝑋𝑢1

𝑋𝑢2
 =

1

100Δ2 
(𝑢1 ≠ 𝑢2) 

Therefore,

𝐸[𝑍𝑣] = ෍

𝑢∈𝑁 𝑣

𝐸[𝑋𝑢] − ෍

𝑢≠𝑢′∈𝑁 𝑣
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𝑢∈𝑁 𝑣

෍

𝑤∈𝑁 𝑢

𝐸[𝑋𝑢𝑋𝑤]

               = Δ ⋅  
1

10Δ
 −  Δ

2
 ⋅  

1

100Δ2 
− Δ2 ⋅  

1

100Δ2 

               ≥  
1

10
 −  

1
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 −  

1
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Goal: Ω 𝑛  nodes neighbor I (in expectation)

By definition, σ𝑣 𝑌𝑣 nodes are neighboring I
Claim 1 implies: σ𝑣 𝑌𝑣  ≥ σ𝑣 𝑍𝑣

Claim 2 implies: E[σ𝑣 𝑍𝑣] ≥ n/20
Therefore, the expected number of nodes neighboring I is at least n/20 ☺
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By the Local Rounding Theorem, this gives:

Corollary: 
In 𝑂(log2 Δ +  log∗ 𝑛 ) rounds, one can deterministically compute an independent set 
neighboring Ω 𝑛  nodes. 
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By definition, σ𝑣 𝑌𝑣 nodes are neighboring I
Claim 1 implies: σ𝑣 𝑌𝑣  ≥ σ𝑣 𝑍𝑣

Claim 2 implies: E[σ𝑣 𝑍𝑣] ≥ n/20
Therefore, the expected number of nodes neighboring I is at least n/20 ☺

By the Local Rounding Theorem, this gives:

Corollary: 
In 𝑂(log2 Δ +  log∗ 𝑛 ) rounds, one can deterministically compute an independent set 
neighboring Ω 𝑛  nodes. 

In fact, with slightly more work, one can show that each round of Luby’s MIS algorithm can be derandomized in 
𝑂(log2 Δ ) rounds

Pairwise Analysis #2: 
Derandomizing One Round of Luby’s MIS algorithm on a regular graph



MIS via Local Rounding

Theorem  [FGGKR ’23] : 
An MIS can be deterministically computed in 𝑂 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔2 Δ  rounds.
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3(𝑛), we get a round complexity of O(log5/3𝑛) !
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Theorem  [FGGKR ’23] : 
An MIS can be deterministically computed in 𝑂 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔2 Δ  rounds.

What if Δ is larger? 

If Δ ≤  2𝑙𝑜𝑔
1
3(𝑛), we get a round complexity of O(log5/3𝑛) !



Technique #2: Intra-Cluster Rounding



Key Definition: Cluster Degree

Let 𝐶 be a partition of the nodes into clusters.

The cluster degree of a node v  is defined as
                     deg𝐶(𝑣) = number of clusters containing a neighbor of 𝑣.

The maximum  cluster degree is
                     Δ𝐶 ≔ max

𝑣∈𝑉
deg𝐶 𝑣 .
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𝑣

deg𝐶(𝑣) = 2
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Intra-Cluster Rounding

Partial Intra-Cluster Rounding Theorem  [Ghaffari, G ’23] : 
Let  𝐶 be a partition of diameter 𝐷. In O(D) rounds, we can compute a 1

109Δ𝐶 log(𝑛)
- integral 

vector such that if we treat the entries as sampling probabilities, we remove a constant 
fraction of the edges, in expectation.
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Intra-Cluster Rounding

Partial Intra-Cluster Rounding Theorem  [Ghaffari, G ’23] : 
Let  𝐶 be a partition of diameter 𝐷. In O(D) rounds, we can compute a 1

109Δ𝐶 log(𝑛)
- integral 

vector such that if we treat the entries as sampling probabilities, we remove a constant 
fraction of the edges, in expectation.

• Each cluster rounds independently – hence O(D) rounds.
• A “good” local solution is guaranteed by a probabilistic method argument.



Intra-Cluster + Local Rounding

Intra-Cluster + Local Rounding Theorem: 
Given a partition  𝐶 into clusters of diameter 𝐷, one can compute an MIS in 
෩𝑶(log( 𝑛) (𝐷 + log2(Δ𝐶))) rounds.
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Proof Sketch: Derandomize each round of Luby’s algorithm by combining 
partial intra-cluster rounding with local rounding. 



Intra-Cluster + Local Rounding

Intra-Cluster + Local Rounding Theorem: 
Given a partition  𝐶 into clusters of diameter 𝐷, one can compute an MIS in 
෩𝑶(log( 𝑛) (𝐷 + log2(Δ𝐶))) rounds.

Proof Sketch: Derandomize each round of Luby’s algorithm by combining 
partial intra-cluster rounding with local rounding. 

What’s the right trade-off between the diameter 𝐷 and the max cluster degree Δ𝐶? 

Key Question:



Clustering with Small Cluster Degree

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA’13] : 
In O(𝐷) rounds,  the MPX algorithm computes a partition with diameter 𝐷 and 
cluster degree 𝑛𝑂(1/𝐷) (for 𝐷 ≤ log0.99(𝑛))).
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2.) Cluster each node u into the cluster of the node v minimizing dist(v,u)-ℎ𝑣  (ties to higher ID).
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MPX Algorithm:

1.) Each node v gets a random head start ℎ𝑣  ~𝐺𝑒𝑜 1 −
1

𝑛
𝑂
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𝐷

 

2.) Cluster each node u into the cluster of the node v minimizing dist(v,u)-ℎ𝑣  (ties to higher ID).

Observation: Each cluster has diameter 𝑂(𝐷), w.h.p.

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA’13] : 
In O(𝐷) rounds,  the MPX algorithm computes a partition with diameter 𝐷 and 
cluster degree 𝑛𝑂(1/𝐷) (for 𝐷 ≤ log0.99(𝑛))).

Pr ℎ𝑣 ≥ 𝑖 =
1

𝑛𝑂(𝑖−1)/𝐷)



Technique #3: Derandomizing the randomized MPX algorithm



LDD with Small Cluster Degree

Derandomized MPX Decomposition Ghaffari, G [STOC’23] : 
In ෩𝑶(log( 𝑛) 𝐷2) rounds, one can compute a partition with diameter 𝐷 and maximum 
cluster degree 𝑛𝑂(1/𝐷) (assuming 𝐷 ≤ log0.99(𝑛))).



LDD with Small Cluster Degree

Derandomized MPX Decomposition Ghaffari, G [STOC’23] : 
In ෩𝑶(log( 𝑛) 𝐷2) rounds, one can compute a partition with diameter 𝐷 and maximum 
cluster degree 𝑛𝑂(1/𝐷) (assuming 𝐷 ≤ log0.99(𝑛))).

High-Level Idea:

• Each node has 𝐷 random coin tosses that define its head start.
• Derandomize coin #1 of all nodes, then coin #2, and so on -- for 𝐷 rounds.
• Each derandomization step reduces to computing a hitting set.
• Each round takes  ෩𝑶(log( 𝑛)𝐷) rounds. 



LDD with Small Cluster Degree

Derandomized MPX Decomposition Ghaffari, G [STOC’23] : 
In ෩𝑶(log( 𝑛) 𝐷2) rounds, one can compute a partition with diameter 𝐷 and maximum 
cluster degree 𝑛𝑂(1/𝐷) (assuming 𝐷 ≤ log0.99(𝑛))).

High-Level Idea:

• Each node has 𝐷 random coin tosses that define its head start.
• Derandomize coin #1 of all nodes, then coin #2, and so on -- for 𝐷 rounds.
• Each derandomization step reduces to computing a hitting set.
• Each round takes  ෩𝑶(log( 𝑛)𝐷) rounds. 

Corollary Ghaffari, G [STOC’23] : 
An MIS can be computed in  ෨𝑂 log2 𝑛  rounds.



Technique #4: Deterministic Hitting Set



Deterministic Hitting Set
Deterministic Hitting Set Ghaffari, G [STOC’23] : 
Consider a bipartite graph with bipartition U ⊔ 𝑉, where each 𝑢 ∈ 𝑈 has degree deg 𝑢 ≥ 𝑛100/𝐷.
In ෩𝑶(log( 𝑛)) rounds, one can compute  a subset 𝑉ℎ𝑖𝑡 ⊆ 𝑉 such that:
1. | 𝑉ℎ𝑖𝑡| ≤

|𝑉|

𝑛1/𝐷

2. 𝑁 𝑢 ∩ 𝑉ℎ𝑖𝑡 ≠ ∅ for every 𝑢 ∈ 𝑈.

U V

deg 𝑢 ≥ 𝑛100/𝐷

| 𝑉ℎ𝑖𝑡| ≤
|𝑉|

𝑛1/𝐷



Deterministic Hitting Set
Deterministic Hitting Set Ghaffari, G [STOC’23] : 
Consider a bipartite graph with bipartition U ⊔ 𝑉, where each 𝑢 ∈ 𝑈 has degree deg 𝑢 ≥ 𝑛100/𝐷.
In ෩𝑶(log( 𝑛)) rounds, one can compute  a subset 𝑉ℎ𝑖𝑡 ⊆ 𝑉 such that:
1. | 𝑉ℎ𝑖𝑡| ≤

|𝑉|

𝑛1/𝐷

2. 𝑁 𝑢 ∩ 𝑉ℎ𝑖𝑡 ≠ ∅ for every 𝑢 ∈ 𝑈.

U V

deg 𝑢 ≥ 𝑛100/𝐷

| 𝑉ℎ𝑖𝑡| ≤
|𝑉|

𝑛1/𝐷

Simple 0-round randomized algorithm!



Open Problems  

• Deterministic MIS (or Maximal Matching, Δ + 1 -coloring) in o(log5/3𝑛) or o 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔2 Δ   rounds

• Derandomization Gap in Distributed Graph Algorithms (for locally checkable problems)
• Det/Rand = ෨𝑂(log2 𝑛) G., Grunau FOCS’24
• Det/Rand = ෩Ω(log 𝑛) Brandt et al. STOC’16; Chang, Pettie, Kopelowitz FOCS’17; G., Su SODA’17 
? Close the gap?

• Use Local Rounding in other models
• Parallel derandomization, towards work-efficiency   G., Grunau ’25
? Dynamic, …?

Thanks!
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