Recent Advances in Deterministic Distributed Algorithms

Christoph Grunau (ETH Zurich)

Goal: Efficient deterministic distributed algorithms for LOCAL problems

• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,...

Goal: Efficient deterministic distributed algorithms for LOCAL problems

• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,...

For ≈30 years: [AGLP FOCS'89], [Panconesi, Srinivasan STOC'93]

• $2^{O(\sqrt{\log n})}$ -round deterministic Network Decomposition

Goal: Efficient deterministic distributed algorithms for LOCAL problems

• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,...

For ≈30 years: [AGLP FOCS'89], [Panconesi, Srinivasan STOC'93]

• $2^{O(\sqrt{\log n})}$ -round deterministic Network Decomposition

Breakthrough: [Rozhoň, Ghaffari STOC'20]

• (polylog n)-round deterministic Network Decomposition

Goal: Efficient deterministic distributed algorithms for LOCAL problems

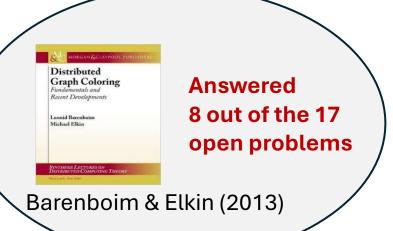
• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,...

For ≈30 years: [AGLP FOCS'89], [Panconesi, Srinivasan STOC'93]

• $2^{O(\sqrt{\log n})}$ -round deterministic Network Decomposition

Breakthrough: [Rozhoň, Ghaffari STOC'20]

• (polylog n)-round deterministic Network Decomposition



Goal: Efficient deterministic distributed algorithms for LOCAL problems

• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,...

For ≈30 years: [AGLP FOCS'89], [Panconesi, Srinivasan STOC'93]

• $2^{O(\sqrt{\log n})}$ -round deterministic Network Decomposition

Breakthrough: [Rozhoň, Ghaffari STOC'20]

(polylog n)-round deterministic Network Decomposition

Distributed
Graph Coloring
Fundamentals and
Recent Developments

Lookid Barenboim
Michael Elkin

Answered

8 out of the 17
open problems

Barenboim & Elkin (2013)

Current State of the Art: [Ghaffari, G FOCS '24]

- $\tilde{O}(\log^2 n)$ rounds for Network Decomposition
- $\tilde{O}(\log^{5/3} n)$ rounds for MIS

Goal: Efficient deterministic distributed algorithms for LOCAL problems

• Examples: Maximal Independent Set (MIS), Coloring, Network Decomposition,...

For ≈30 years: [AGLP FOCS'89], [Panconesi, Srinivasan STOC'93]

• $2^{O(\sqrt{\log n})}$ -round deterministic Network Decomposition

Breakthrough: [Rozhoň, Ghaffari STOC'20]

(polylog n)-round deterministic Network Decomposition

Distributed
Graph Coloring
Fundamentals and
Recent Developments

Leonid Barenboim
Michael Elkin

Answered

8 out of the 17
open problems

Barenboim & Elkin (2013)

Current State of the Art: [Ghaffari, G FOCS '24]

- $\tilde{O}(\log^2 n)$ rounds for Network Decomposition
- $\tilde{O}(\log^{5/3} n)$ rounds for MIS

This talk: Present some of the key techniques used in the SOTA algorithms

The LOCAL Model of Distributed Computing [Linial'87]

- Undirected graph G = (V,E)
 - V = Processors with unique IDs from $\{1, ..., poly(n)\}$
 - E = Communication link
- Synchronous rounds
 - Unbounded local computation
 - Unbounded message sizes
- After r founds: each node needs to know its part of the output
 r = O(diameter) is always possible

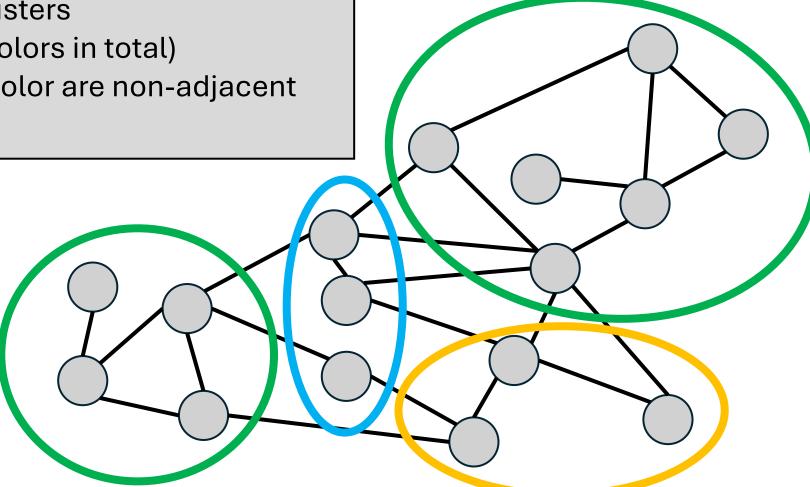
Generic approach: Break the graph into small-diameter subgraphs

Reminder: Network Decomposition & MIS

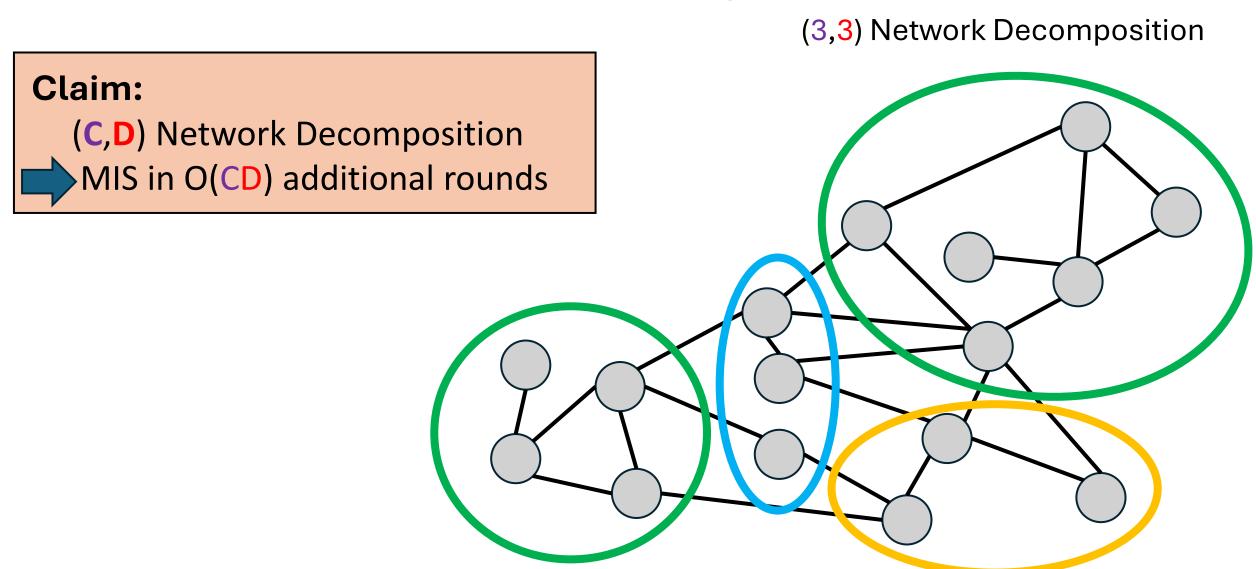
(C,D) Network Decomposition

(3,3) Network Decomposition

- Each cluster is colored (C colors in total)
 - Clusters with identical color are non-adjacent
- Cluster diameter at most D



(C,D) Network Decomposition



Existential: can get C & D = O(log n). Implicit in [Awerbuch, Peleg '89]

Simple sequential ball growing to generate each color, which includes ½ of remaining nodes.

Existential: can get C & D = $O(\log n)$. Implicit in [Awerbuch, Peleg '89]

Simple sequential ball growing to generate each color, which includes ½ of remaining nodes.

<u>Lower bound</u>: For any (C, D) net decomposition, we need CD= $\Omega(\frac{\log^2 n}{\log^2 \log n})$. [Linial, Saks'93]

Existential: can get C & D = O(log n). Implicit in [Awerbuch, Peleg '89]

Simple sequential ball growing to generate each color, which includes ½ of remaining nodes.

<u>Lower bound</u>: For any (C, D) net decomposition, we need CD= $\Omega(\frac{\log^2 n}{\log^2 \log n})$. [Linial, Saks'93]

Randomized distributed algorithm: $T=O(\log^2 n)$ rounds. [Linial, Saks'93]

*originally weak-diameter, in 2016 made strong diameter by Elkin and Neiman using an algo of Miller, Peng, Xu

Existential: can get C & D = O(log n). Implicit in [Awerbuch, Peleg '89]

Simple sequential ball growing to generate each color, which includes ½ of remaining nodes.

<u>Lower bound</u>: For any (C, D) net decomposition, we need CD= $\Omega(\frac{\log^2 n}{\log^2 \log n})$. [Linial, Saks'93]

Randomized distributed algorithm: $T=O(\log^2 n)$ rounds. [Linial, Saks'93]

*originally weak-diameter, in 2016 made strong diameter by Elkin and Neiman using an algo of Miller, Peng, Xu

[Ghaffari, G'24]: Deterministic (O(log n), O(log n))-ND in $\tilde{O}(\log^2 n)$ rounds.

Randomized state of the art: O(log n)

[Luby '86] and [Alon, Babai, and Itai '86]

Randomized state of the art: O(log n) [Luby '86] and [Alon, Babai, and Itai '86]

[Ghaffari, G'24]: Deterministic MIS in $\tilde{O}(\log^{5/3} n)$ rounds.

Randomized state of the art: O(log n) [Luby '86] and [Alon, Babai, and Itai '86]

[Ghaffari, **G**'24]: Deterministic MIS in $\tilde{O}(\log^{5/3} n)$ rounds.

Remarks:

- 1.) Breaks a natural barrier, going below network decomposition-based methods.
- 2.) Comes close to $\widetilde{\Omega}(\log n)$ lower bound [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela'19]

Randomized state of the art: O(log n) [Luby '86] and [Alon, Babai, and Itai '86]

[Ghaffari, **G**'24]: Deterministic MIS in $\tilde{O}(\log^{5/3} n)$ rounds.

Remarks:

- 1.) Breaks a natural barrier, going below network decomposition-based methods.
- 2.) Comes close to $\widetilde{\Omega}(\log n)$ lower bound [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela'19]

Corollary 1: Deterministic Maximal Matching and $(\Delta + 1)$ -coloring in $\tilde{O}(\log^{5/3} n)$ rounds.

Corollary 2: Randomized $(\Delta + 1)$ -coloring in $\tilde{O}(\log^{\frac{3}{3}} \log n)$ rounds.

Technique #1: Local Rounding of Pairwise-Independent Sampling

Technique #1: Local Rounding of Pairwise-Independent Sampling

Theorem (very informal) [Kuhn, Ghaffari '21, FGGKR '23]:

Any randomized algorithm using only **pairwise independence** can be turned into an almost as efficient deterministic algorithm.

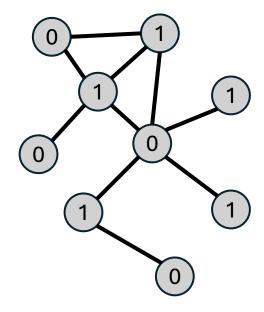
Technique #1: Local Rounding of Pairwise-Independent Sampling

Theorem (very informal) [Kuhn, Ghaffari '21, FGGKR '23]:

Any randomized algorithm using only **pairwise independence** can be turned into an almost as efficient deterministic algorithm.

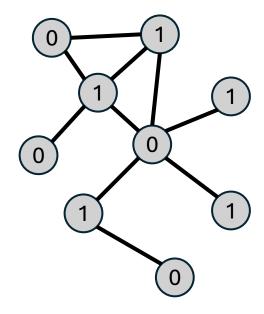
Let's start with a toy problem: Max Cut

• Let $X_v \in \{0, 1\}$ indicate the side of the cut for node v.



• Let $X_v \in \{0, 1\}$ indicate the side of the cut for node v.

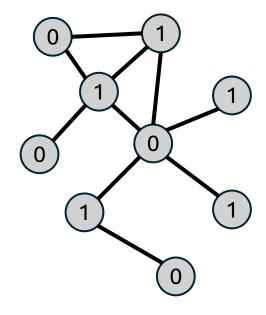
• Cut size =
$$\sum_{(u,v)\in E} X_u + X_v - 2X_u X_v$$



- Let $X_v \in \{0, 1\}$ indicate the side of the cut for node v.
- Cut size = $\sum_{(u,v)\in E} X_u + X_v 2X_u X_v$

Simple (½)-approx. randomized Algorithm:

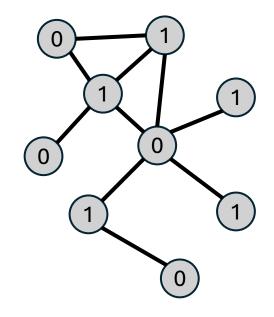
Set each $X_v \in \{0,1\}$ randomly.



- Let $X_v \in \{0, 1\}$ indicate the side of the cut for node v.
- Cut size = $\sum_{(u,v)\in E} X_u + X_v 2X_u X_v$

Simple ($\frac{1}{2}$)-approx. randomized Algorithm:

Set each $X_v \in \{0,1\}$ randomly.



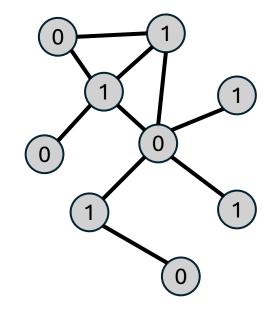
Deterministic Algorithm via Conditional Expectations:

Fix variables one by one, such that the conditional expected cut value never decreases.

- Let $X_v \in \{0, 1\}$ indicate the side of the cut for node v.
- Cut size = $\sum_{(u,v)\in E} X_u + X_v 2X_uX_v$

Simple ($\frac{1}{2}$)-approx. randomized Algorithm:

Set each $X_v \in \{0,1\}$ randomly.

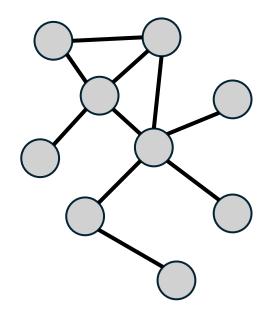


Deterministic Algorithm via Conditional Expectations:

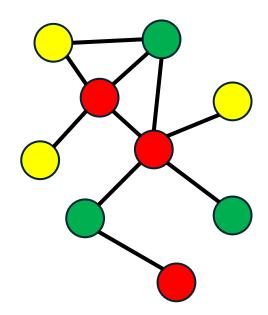
Fix variables **one by one**, such that the conditional expected cut value never decreases.

Issue: Highly Sequential

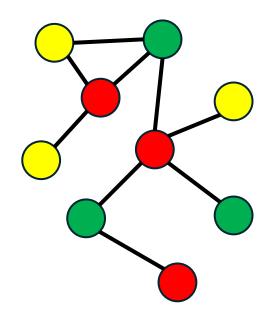
- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once



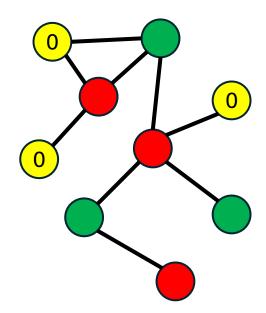
- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once



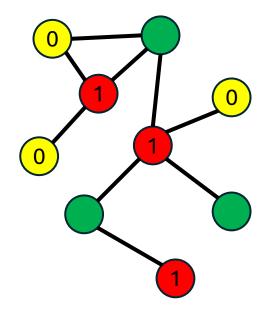
- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once



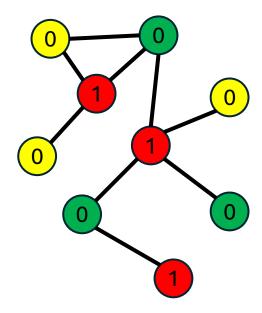
- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once



- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once



- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once

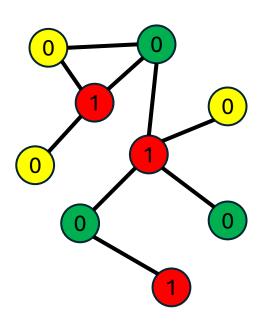


Algorithm:

- 1.) Compute a coloring such that at most an ε -fraction of edges are monochromatic
- 2.) Remove all monochromatic edges.
- 3.) Iterate through the colors, fixing all nodes of the same color at once

[Ghaffari, Kuhn' 21]:

Such a coloring with O(1/ ε) colors can be computed in O(1/ ε +log*n) rounds



Local Rounding of Pairwise Independent Sampling

Goal: Turn a fractional solution \overrightarrow{p} into an almost-as-good integral solution \overrightarrow{y} locally.

Goal: Turn a fractional solution \vec{p} into an almost-as-good integral solution \vec{y} locally.

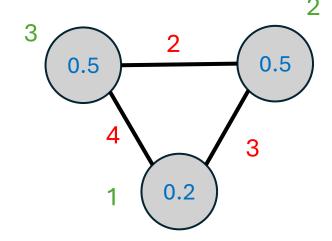
Input:

- $\overrightarrow{p} \in (0,1]^V$ ("sampling probabilities")
- $\overrightarrow{ut} \in \mathbb{R}^{V}_{\geq 0}$ ("utility of including a given node")
- $\overrightarrow{cost} \in \mathbb{R}^{E}_{\geq 0}$ ("cost of including both endpoints of a given edge")

Goal: Turn a fractional solution \overrightarrow{p} into an almost-as-good integral solution \overrightarrow{y} locally.

Input:

- $\overrightarrow{p} \in (0,1]^V$ ("sampling probabilities")
- $\overrightarrow{ut} \in \mathbb{R}^{V}_{\geq 0}$ ("utility of including a given node")
- $\overrightarrow{cost} \in \mathbb{R}^{E}_{\geq 0}$ ("cost of including both endpoints of a given edge")



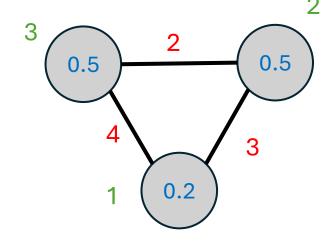
Goal: Turn a fractional solution \overrightarrow{p} into an almost-as-good integral solution \overrightarrow{y} locally.

Input:

- $\overrightarrow{p} \in (0,1]^V$ ("sampling probabilities")
- $\overrightarrow{ut} \in \mathbb{R}^{V}_{\geq 0}$ ("utility of including a given node")
- $\overrightarrow{cost} \in \mathbb{R}^{E}_{\geq 0}$ ("cost of including both endpoints of a given edge")

Notation:

$$\begin{split} \Phi(\vec{x}) \coloneqq \sum_{v \in V} ut(v) x(v) - \sum_{\{u,v\} \in E} cost(uv) x(u) x(v) \, (\overrightarrow{x} \in [0,1]^V) \\ \text{"Expected utility"-"Expected cost"} \end{split}$$



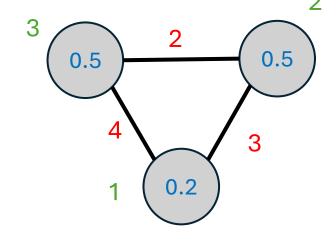
Goal: Turn a fractional solution \vec{p} into an almost-as-good integral solution \vec{y} locally.

Input:

- $\overrightarrow{p} \in (0,1]^V$ ("sampling probabilities")
- $\overrightarrow{ut} \in \mathbb{R}^{V}_{\geq 0}$ ("utility of including a given node")
- $\overrightarrow{cost} \in \mathbb{R}^{E}_{\geq 0}$ ("cost of including both endpoints of a given edge")

Notation:

$$\begin{split} \Phi(\vec{x}) \coloneqq \sum_{v \in V} ut(v) x(v) - \sum_{\{u,v\} \in E} cost(uv) x(u) x(v) \, (\vec{x} \in [0,1]^V) \\ \text{"Expected utility"-"Expected cost"} \end{split}$$



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

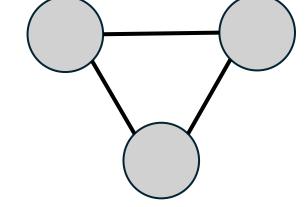
Goal: Turn a fractional solution \overrightarrow{p} into an almost-as-good integral solution \overrightarrow{y} locally.

Input:

- $\overrightarrow{p} \in (0,1]^V$ ("sampling probabilities")
- $\overrightarrow{ut} \in \mathbb{R}^{V}_{\geq 0}$ ("utility of including a given node")
- $\overrightarrow{cost} \in \mathbb{R}^{E}_{\geq 0}$ ("cost of including both endpoints of a given edge")

Notation:

$$\Phi(\vec{x}) \coloneqq \sum_{v \in V} ut(v) x(v) - \sum_{\{u,v\} \in E} cost(uv) x(u) x(v) \ (\vec{x} \in [0,1]^V)$$
 "Expected utility" – "Expected cost"



Max Cut:

- $p(v) \equiv$
- ut(v)<u>=</u>
- <u>cost(u,v) =</u>

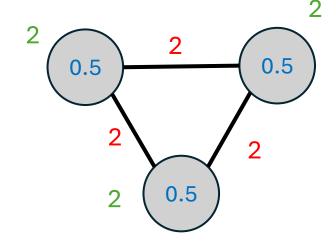
Goal: Turn a fractional solution \vec{p} into an almost-as-good integral solution \vec{y} locally.

Input:

- $\overrightarrow{p} \in (0,1]^V$ ("sampling probabilities")
- $\overrightarrow{ut} \in \mathbb{R}^{V}_{\geq 0}$ ("utility of including a given node")
- $\overrightarrow{cost} \in \mathbb{R}^{E}_{\geq 0}$ ("cost of including both endpoints of a given edge")

Notation:

$$\Phi(\vec{x}) \coloneqq \sum_{v \in V} ut(v) x(v) - \sum_{\{u,v\} \in E} cost(uv) x(u) x(v) \ (\vec{x} \in [0,1]^V)$$
 "Expected utility" – "Expected cost"



Max Cut:

- p(v) = 0.5
- ut(v) = deg(v)
- cost(u,v) = 2

Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23] In $O(\log^2\left(\frac{1}{n_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

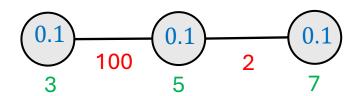
Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23] In $O(\log^2\left(\frac{1}{n_{\text{total}}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:

Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

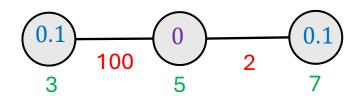
Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

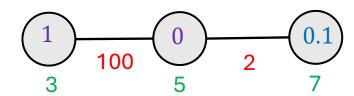
Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

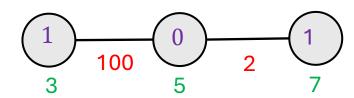
Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:



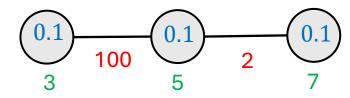
Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23] $\ln O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n)) \text{ rounds, one can compute an integral } y \in \{0,1\}^V \text{ such that } \Phi(\overrightarrow{y}) \geq 0.9\Phi(\overrightarrow{p}).$

Sequential algorithm:

Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

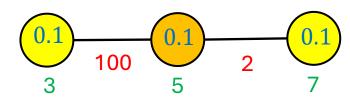
In $O(\log^2(\frac{1}{p_{min}}) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23] In $O(\log^2\left(\frac{1}{n_{mode}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

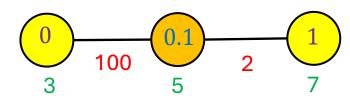
Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

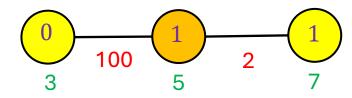
Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$.

Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors.

Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$.

Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors.

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.

Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

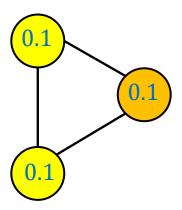
Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$. Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors.

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

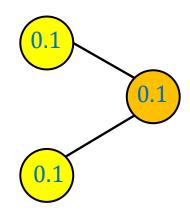
Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$. Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors.

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

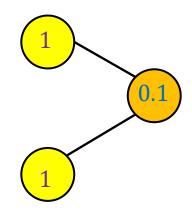
Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$. Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors.

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

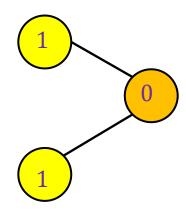
Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$. Can be parallelized, given a coloring with few colors.

Problem:

Valid coloring might need too many colors.

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$. Can be parallelized, given a coloring with few colors.

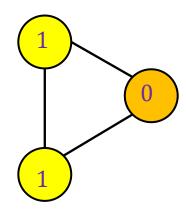
Problem:

Valid coloring might need too many colors.

Approach:

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.

Issue: "Contribution" of an edge can increase a lot



Theorem [Faour, Ghaffari, G, Kuhn, Rozhoň'23]

In $O(\log^2\left(\frac{1}{p_{min}}\right) + \log^*(n))$ rounds, one can compute an integral $y \in \{0,1\}^V$ such that $\Phi(\overrightarrow{y}) \ge 0.9\Phi(\overrightarrow{p})$.

Sequential algorithm:

Sequentially computes $\vec{y} \in \{0,1\}^V$ with $\Phi(\vec{y}) \ge \Phi(\vec{p})$. Can be parallelized, given a coloring with few colors.

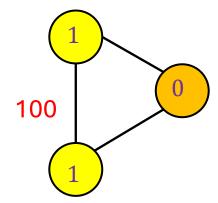
Problem:

Valid coloring might need too many colors.

Approach:

- 1. Use coloring with few monochromatic edges
- 2. Ignore those edges and round the rest.

Issue: "Contribution" of an edge can increase a lot



Before: $100 \cdot 0.1 \cdot 0.1$

After:100 ⋅ 1 ⋅ 1

• Assume the input vector \overrightarrow{p} is $\frac{1}{2^I}$ -integral

q-integral: each entry is either 0 or at least q

- Assume the input vector \overrightarrow{p} is $\frac{1}{2^{l}}$ -integral
- The algorithm has *I* iterations, in each iteration we increase the integrality by a 2-factor

q-integral: each entry is

either 0 or at least q

- Assume the input vector \overrightarrow{p} is $\frac{1}{2^{l}}$ -integral
- The algorithm has *I* iterations, in each iteration we increase the integrality by a 2-factor
- In each iteration, the potential decreases by at most a $\left(1 \frac{1}{10I}\right)$ -factor

q-integral: each entry is either 0 or at least q

- Assume the input vector \overrightarrow{p} is $\frac{1}{2^{I}}$ -integral
- The algorithm has I iterations, in each iteration we increase the integrality by a 2-factor
- In each iteration, the potential decreases by at most a $\left(1 \frac{1}{10I}\right)$ -factor
- As $\left(1 \frac{1}{10I}\right)^I \ge 0.9$, we therefore get $\Phi(\vec{y}) \ge 0.9 \Phi(\vec{p})$, as needed

q-integral: each entry is either 0 or at least q

- Assume the input vector \overrightarrow{p} is $\frac{1}{2^I}$ -integral
- The algorithm has I iterations, in each iteration we increase the integrality by a 2-factor

q-integral: each entry is

either 0 or at least q

- In each iteration, the potential decreases by at most a $\left(1 \frac{1}{10I}\right)$ -factor
- As $\left(1 \frac{1}{10I}\right)^I \ge 0.9$, we therefore get $\Phi(\vec{y}) \ge 0.9 \Phi(\vec{p})$, as needed

Main Technical Lemma:

Given a $\frac{1}{2^i}$ -integral $\overrightarrow{p_i}$, one can compute a $\frac{1}{2^{i-1}}$ -integral $\overrightarrow{p_{i-1}}$ with $\Phi(\overrightarrow{p_{i-1}}) \geq \left(1 - \frac{1}{10I}\right)\Phi(\overrightarrow{p_i})$ in O(I) rounds

- Assume the input vector \overrightarrow{p} is $\frac{1}{2^I}$ -integral
- The algorithm has I iterations, in each iteration we increase the integrality by a 2-factor
- In each iteration, the potential decreases by at most a $\left(1 \frac{1}{10I}\right)$ -factor
- As $\left(1 \frac{1}{10I}\right)^I \ge 0.9$, we therefore get $\Phi(\vec{y}) \ge 0.9 \Phi(\vec{p})$, as needed

Main Technical Lemma:

Given a $\frac{1}{2^i}$ -integral $\overrightarrow{p_i}$, one can compute a $\frac{1}{2^{i-1}}$ -integral $\overrightarrow{p_{i-1}}$ with $\Phi(\overrightarrow{p_{i-1}}) \geq \left(1 - \frac{1}{10I}\right)\Phi(\overrightarrow{p_i})$ in O(I) rounds

q-integral: each entry is

either 0 or at least q

• Overall round complexity: $O(I^2)$

Algorithm: One Rounding Step

Main Technical Lemma:

Given a $\frac{1}{2^i}$ -integral $\overrightarrow{p_i}$, one can compute a $\frac{1}{2^{i-1}}$ -integral $\overrightarrow{p_{i-1}}$ with $\Phi(\overrightarrow{p_{i-1}}) \geq \left(1 - \frac{1}{10I}\right)\Phi(\overrightarrow{p_i})$ in O(I) rounds

Algorithm: One Rounding Step

Main Technical Lemma:

Given a $\frac{1}{2^i}$ -integral $\overrightarrow{p_i}$, one can compute a $\frac{1}{2^{i-1}}$ -integral $\overrightarrow{p_{i-1}}$ with $\Phi(\overrightarrow{p_{i-1}}) \geq \left(1 - \frac{1}{10I}\right)\Phi(\overrightarrow{p_i})$ in O(I) rounds

Algorithm:

- 1.) Compute a coloring with O(I) colors so that monochromatic edges contribute $\leq \frac{1}{40I} \Phi(\overrightarrow{p_i})$.
 - Formally: $\sum_{\{u,v\}\in E^{mono}} \underbrace{cost}(uv)(\overrightarrow{p_i})_u(\overrightarrow{p_i})_v \leq \frac{1}{40I} \Phi(\overrightarrow{p_i})$
- 2.) Drop all edges in E^{mono}
- 3.) double integrality: $\frac{1}{2^i} \rightarrow \frac{1}{2^{i-1}}$, increasing each value by at most a 2-factor.

Algorithm: One Rounding Step

Main Technical Lemma:

Given a $\frac{1}{2^i}$ -integral $\overrightarrow{p_i}$, one can compute a $\frac{1}{2^{i-1}}$ -integral $\overrightarrow{p_{i-1}}$ with $\Phi(\overrightarrow{p_{i-1}}) \geq \left(1 - \frac{1}{10I}\right)\Phi(\overrightarrow{p_i})$ in O(I) rounds

Algorithm:

1.) Compute a coloring with O(I) colors so that monochromatic edges contribute $\leq \frac{1}{40I} \Phi(\overrightarrow{p_i})$.

Formally:
$$\sum_{\{u,v\}\in E^{mono}} cost(uv)(\overrightarrow{p_i})_u(\overrightarrow{p_i})_v \leq \frac{1}{40I} \Phi(\overrightarrow{p_i})$$

- 2.) Drop all edges in E^{mono}
- 3.) double integrality: $\frac{1}{2^i} \rightarrow \frac{1}{2^{i-1}}$, increasing each value by at most a 2-factor.

Potential Analysis:

$$\Phi(\overrightarrow{p_{i-1}}) = \Phi_{E \setminus E} mono(\overrightarrow{p_{i-1}}) - \sum_{\{u,v\} \in E} mono \operatorname{cost}(uv)(\overrightarrow{p_{i-1}})_u(\overrightarrow{p_{i-1}})_v \\
\geq \Phi_{E \setminus E} mono(\overrightarrow{p_i}) - 4 \sum_{\{u,v\} \in E} mono \operatorname{cost}(uv)(\overrightarrow{p_i})_u(\overrightarrow{p_i})_v \\
\geq \Phi(\overrightarrow{p_i}) - 4 \frac{1}{40I} \Phi(\overrightarrow{p_i}) = \left(1 - \frac{1}{10I}\right) \Phi(\overrightarrow{p_i})$$

Pairwise Analysis #2:

Derandomizing One Round of Luby's MIS algorithm on a regular graph

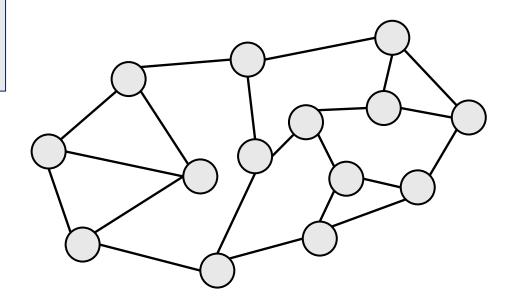
Input: Δ-regular graph

Input: ∆-regular graph

Output: Independent Set /

Input: Δ -regular graph

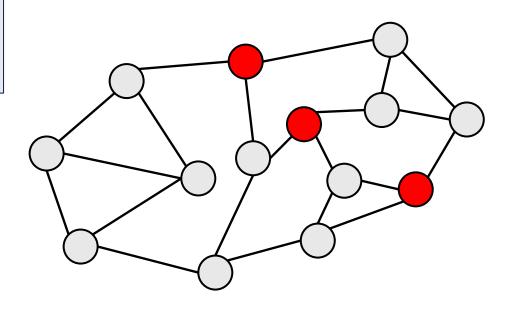
Output: Independent Set /



$$\Delta = 3$$

Input: Δ -regular graph

Output: Independent Set /

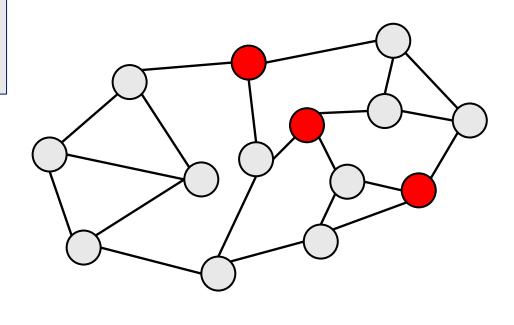


$$\Delta = 3$$

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

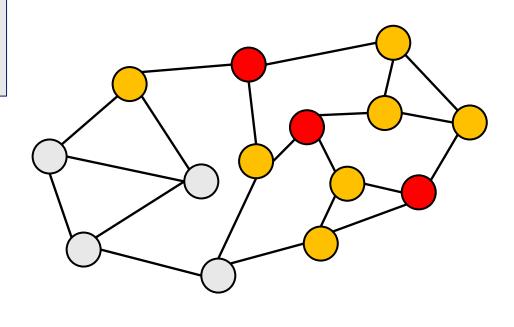


$$\Delta = 3$$

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

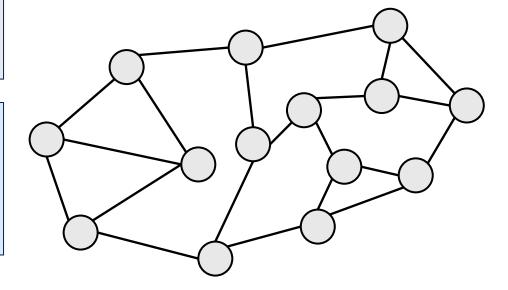


$$\Delta = 3$$

Input: Δ -regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)



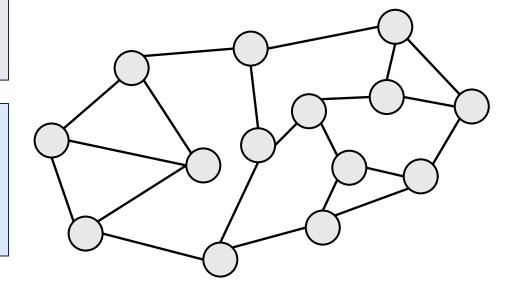
Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)



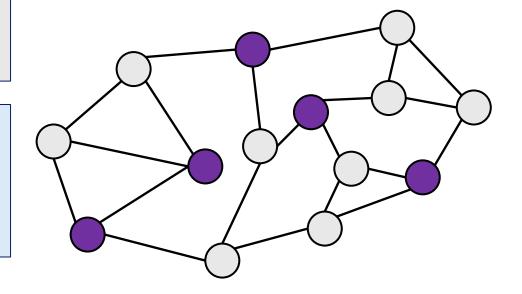
Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)

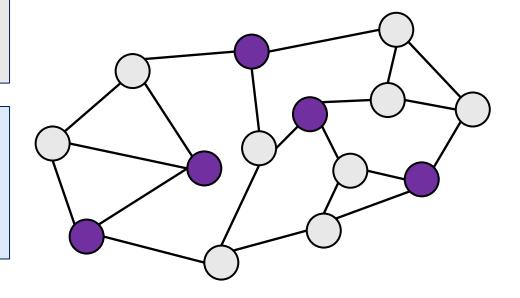


Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

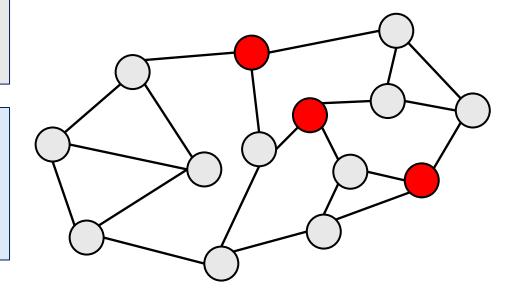


Input: Δ -regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

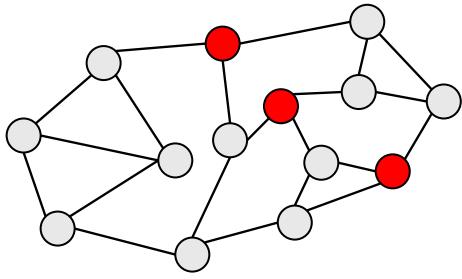


Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled



Input: Δ -regular graph

Output: Independent Set /

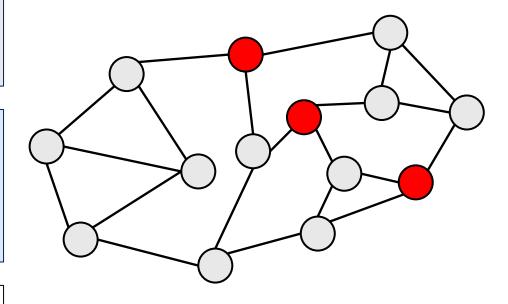
Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *l* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_{\nu} :=$ Indicator that ν is neighboring a node in I



Input: ∆-regular graph

Output: Independent Set /

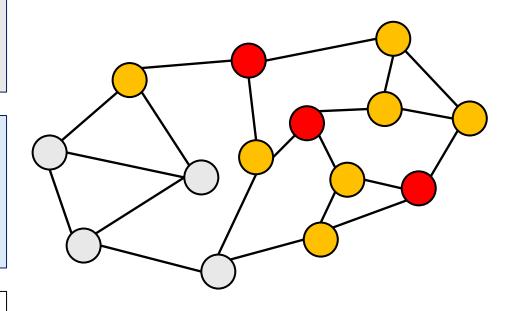
Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *l* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I



Input: ∆-regular graph

Output: Independent Set /

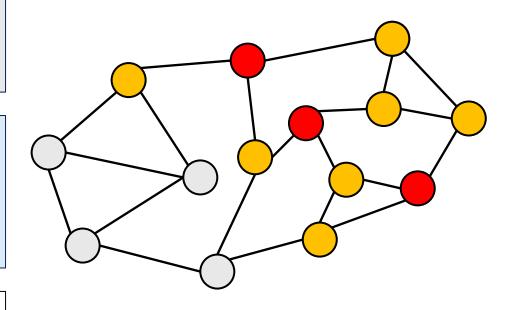
Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I



Input: ∆-regular graph

Output: Independent Set /

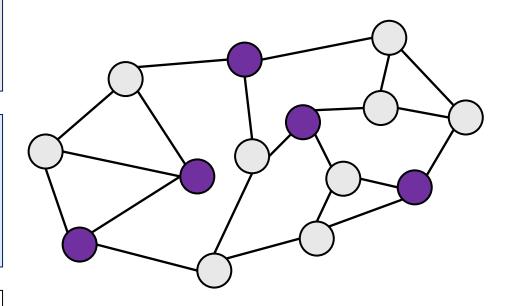
Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *l* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I



Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

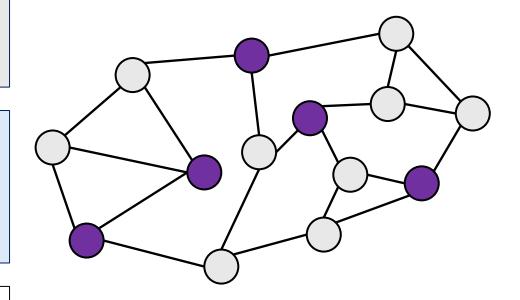
Randomized Algorithm:

- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

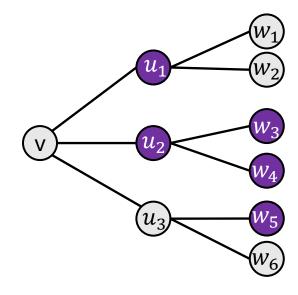
Randomized Algorithm:

- 1.) Sample each node *u* with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_{v} :=$ Indicator that v is neighboring a node in I

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

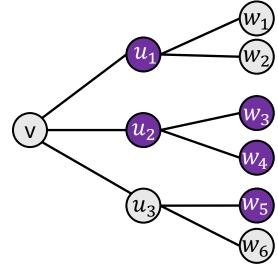
- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



What is $\frac{Y_{\nu}}{2}$?

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

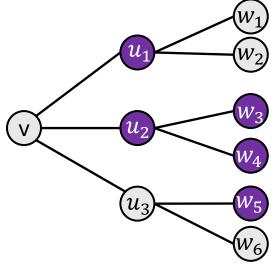
- 1.) Sample each node *u* with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



What is $\frac{Y_{12}}{1}$? 1

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

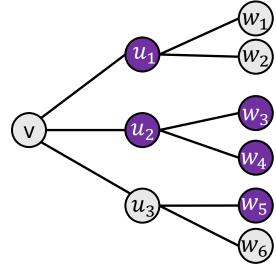
- 1.) Sample each node *u* with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



What is $\frac{Y_{v}}{2}$? 1

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

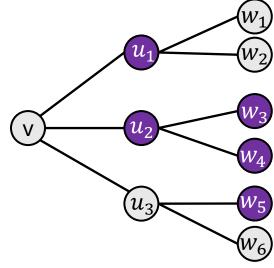
- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



What is $\frac{Y_{v}}{2}$? 1

$$\sum_{u \in N(v)} X_u = 2$$

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

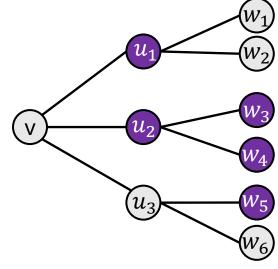
- 1.) Sample each node u with prob. $p = \frac{1}{100}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



What is $\frac{Y_{12}}{2}$? 1

$$\sum_{u \in N(v)} X_u = 2$$

$$\sum_{u \neq u' \in N(v)} X_u X_{u'} = 1$$

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

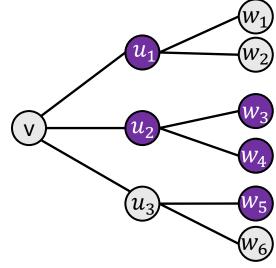
- 1.) Sample each node u with prob. $p = \frac{1}{10\Delta}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_{v} :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



What is $\frac{Y_{v}}{2}$? 1

$$\sum_{u \in N(v)} X_u = 2$$

$$\sum_{u \neq u' \in N(v)} X_u X_{u'} = 1$$

$$\sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w = 2$$

Input: ∆-regular graph

Output: Independent Set /

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Randomized Algorithm:

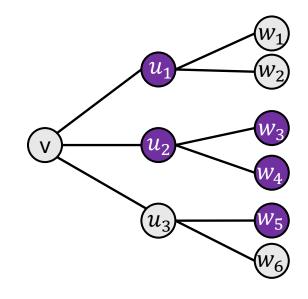
- 1.) Sample each node u with prob. $p = \frac{1}{10A}$ (pw. ind.)
- 2.) Include *u* in *I* if a) *u* is sampled
 - b) no neighbor of *u* is sampled

Notation:

 $Y_v :=$ Indicator that v is neighboring a node in I

 X_u := Indicator that u is sampled

$$Z_v \coloneqq \sum_{u \in N(v)} X_u - \sum_{u \neq u' \in N(v)} X_u X_{u'} - \sum_{u \in N(v)} \sum_{w \in N(u)} X_u X_w$$



Claim 1:

 Z_v is a pessimistic estimator of Y_v ($Z_v \leq Y_v$)

Claim follows from:

1.)
$$Z_v \leq 1$$

2.)
$$Y_v = 0$$
 implies $Z_v \le 0$

Claim 2: $E[Z_v] \ge \frac{1}{20}$

Claim 2:
$$E[Z_v] \ge \frac{1}{20}$$

Note that
$$E[X_u] = \frac{1}{10\Delta}$$
, $E[X_{u_1}X_{u_2}] = \frac{1}{100\Delta^2}$ $(u_1 \neq u_2)$

Claim 2: $E[Z_v] \ge \frac{1}{20}$

Note that
$$E[X_u] = \frac{1}{10\Delta}$$
, $E[X_{u_1}X_{u_2}] = \frac{1}{100\Delta^2}$ $(u_1 \neq u_2)$

Therefore,

$$\begin{split} E[Z_{v}] &= \sum_{u \in N(v)} E[X_{u}] - \sum_{u \neq u' \in N(v)} E[X_{u}X_{u'}] - \sum_{u \in N(v)} \sum_{w \in N(u)} E[X_{u}X_{w}] \\ &= \Delta \cdot \frac{1}{10\Delta} - \binom{\Delta}{2} \cdot \frac{1}{100\Delta^{2}} - \Delta^{2} \cdot \frac{1}{100\Delta^{2}} \\ &\geq \frac{1}{10} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \end{split}$$

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

By definition, $\sum_{v} Y_{v}$ nodes are neighboring I

Claim 1 implies: $\sum_{v} \frac{Y_{v}}{V_{v}} \ge \sum_{v} Z_{v}$

Claim 2 implies: $E[\sum_{v} Z_{v}] \ge n/20$

Therefore, the expected number of nodes neighboring I is at least n/20 ©

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

By definition, $\sum_{v} Y_{v}$ nodes are neighboring I

Claim 1 implies: $\sum_{v} Y_{v} \ge \sum_{v} Z_{v}$

Claim 2 implies: $E[\sum_{v} Z_{v}] \ge n/20$

Therefore, the expected number of nodes neighboring I is at least n/20 ©

By the Local Rounding Theorem, this gives:

Corollary:

In $O(\log^2(\Delta) + \log^*(n))$ rounds, one can deterministically compute an independent set neighboring $\Omega(n)$ nodes.

Goal: $\Omega(n)$ nodes neighbor I (in expectation)

By definition, $\sum_{v} Y_{v}$ nodes are neighboring I

Claim 1 implies: $\sum_{v} Y_{v} \ge \sum_{v} Z_{v}$

Claim 2 implies: $E[\sum_{v} Z_{v}] \ge n/20$

Therefore, the expected number of nodes neighboring I is at least n/20 ©

By the Local Rounding Theorem, this gives:

Corollary:

In $O(\log^2(\Delta) + \log^*(n))$ rounds, one can deterministically compute an independent set neighboring $\Omega(n)$ nodes.

In fact, with slightly more work, one can show that each round of Luby's MIS algorithm can be derandomized in $O(\log^2(\Delta))$ rounds

MIS via Local Rounding

Theorem [FGGKR '23]:

An MIS can be deterministically computed in $O(\log n \log^2 \Delta)$ rounds.

MIS via Local Rounding

Theorem [FGGKR '23]:

An MIS can be deterministically computed in $O(\log n \log^2 \Delta)$ rounds.

If $\Delta \leq 2^{\log^{\frac{1}{3}}(n)}$, we get a round complexity of $O(\log^{5/3} n)$!

MIS via Local Rounding

Theorem [FGGKR '23]:

An MIS can be deterministically computed in $O(\log n \log^2 \Delta)$ rounds.

If $\Delta \leq 2^{\log^{\frac{1}{3}}(n)}$, we get a round complexity of $O(\log^{5/3} n)$!

What if Δ is larger?

Technique #2: Intra-Cluster Rounding

Key Definition: Cluster Degree

Let C be a partition of the nodes into clusters.

The **cluster degree** of a node v is defined as $\deg_{\mathcal{C}}(v)$ = number of clusters containing a neighbor of v.

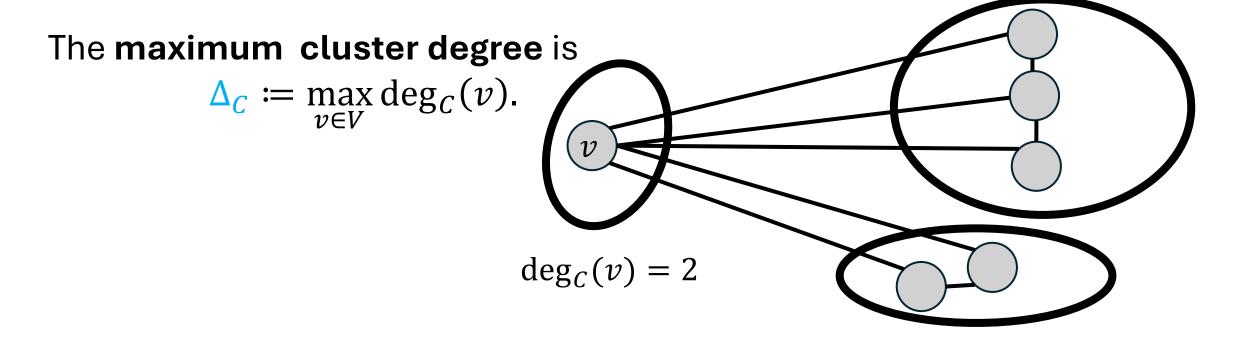
The maximum cluster degree is

$$\Delta_C \coloneqq \max_{v \in V} \deg_C(v).$$

Key Definition: Cluster Degree

Let C be a partition of the nodes into clusters.

The **cluster degree** of a node v is defined as $\deg_{\mathcal{C}}(v)$ = number of clusters containing a neighbor of v.



Intra-Cluster Rounding

High-Level Idea: Round within clusters to increase integrality from $\approx \frac{1}{\Delta}$ to $\approx \frac{1}{\Delta_C}$

Intra-Cluster Rounding

High-Level Idea: Round within clusters to increase integrality from $\approx \frac{1}{\Delta}$ to $\approx \frac{1}{\Delta_C}$

Partial Intra-Cluster Rounding Theorem [Ghaffari, G'23]:

Let C be a partition of diameter D. In O(D) rounds, we can compute a $\frac{1}{10^9 \Delta_C \log(n)}$ - integral vector such that if we treat the entries as sampling probabilities, we remove a constant fraction of the edges, in expectation.

Intra-Cluster Rounding

High-Level Idea: Round within clusters to increase integrality from $\approx \frac{1}{\Delta}$ to $\approx \frac{1}{\Delta_C}$

Partial Intra-Cluster Rounding Theorem [Ghaffari, G'23]:

Let C be a partition of diameter D. In O(D) rounds, we can compute a $\frac{1}{10^9 \Delta_C \log(n)}$ - integral vector such that if we treat the entries as sampling probabilities, we remove a constant fraction of the edges, in expectation.

- Each cluster rounds independently hence O(D) rounds.
- A "good" local solution is guaranteed by a probabilistic method argument.

Intra-Cluster + Local Rounding

Intra-Cluster + Local Rounding Theorem:

Given a partition C into clusters of diameter D, one can compute an MIS in $\widetilde{O}(\log(n)(D + \log^2(\Delta_C)))$ rounds.

Intra-Cluster + Local Rounding

Intra-Cluster + Local Rounding Theorem:

Given a partition C into clusters of diameter D, one can compute an MIS in $\widetilde{O}(\log(n)(D + \log^2(\Delta_C)))$ rounds.

Proof Sketch: Derandomize each round of Luby's algorithm by combining partial intra-cluster rounding with local rounding.

Intra-Cluster + Local Rounding

Intra-Cluster + Local Rounding Theorem:

Given a partition C into clusters of diameter D, one can compute an MIS in $\widetilde{O}(\log(n)(D + \log^2(\Delta_C)))$ rounds.

Proof Sketch: Derandomize each round of Luby's algorithm by combining partial intra-cluster rounding with local rounding.

Key Question:

What's the right trade-off between the diameter D and the max cluster degree Δ_C ?

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/D)}$ (for $D \leq \log^{0.99}(n)$).

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/D)}$ (for $D \leq \log^{0.99}(n)$).

Given such a partition, we can compute an MIS in $\tilde{\boldsymbol{O}}(\log(n)(D + \frac{\log^2(n))}{D^2}))$.

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/D)}$ (for $D \leq \log^{0.99}(n)$).

Given such a partition, we can compute an MIS in $\widetilde{\boldsymbol{O}}(\log(n)) \left(\frac{D}{D} + \frac{\log^2(n)}{D^2}\right)$).

Setting $D = \log^{2/3}(n)$), we get the desired round complexity of $\widetilde{\mathbf{O}}(\log^{5/3}(n))$.

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/D)}$ (for $D \leq \log^{0.99}(n)$).

MPX Algorithm:

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/D)}$ (for $D \leq \log^{0.99}(n)$).

MPX Algorithm:

1.) Each node v gets a random head start $h_v \sim Geo\left(1 - \frac{1}{n^{O\left(\frac{1}{D}\right)}}\right)$

$$\Pr[h_v \ge i] = \frac{1}{n^{O(i-1)/D}}$$

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/\mathbb{D})}$ (for $\mathbb{D} \leq \log^{0.99}(n)$).

MPX Algorithm:

1.) Each node v gets a random head start $h_v \sim Geo\left(1 - \frac{1}{n^{O\left(\frac{1}{D}\right)}}\right)$ $\Pr[h_v \ge i] = \frac{1}{n^{O(i-1)/D}}$

$$\Pr[h_v \ge i] = \frac{1}{n^{O(i-1)/D}}$$

2.) Cluster each node u into the cluster of the node v minimizing dist(v,u)- h_v (ties to higher ID).

Randomized Low-Diameter Decomposition Miller, Peng, Xu [SPAA'13]:

In O(D) rounds, the MPX algorithm computes a partition with diameter D and cluster degree $n^{O(1/D)}$ (for $D \leq \log^{0.99}(n)$).

MPX Algorithm:

1.) Each node v gets a random head start $h_v \sim Geo\left(1 - \frac{1}{n^{O\left(\frac{1}{D}\right)}}\right)$ $\Pr[h_v \geq i] = \frac{1}{n^{O(i-1)/D}}$

$$\Pr[h_v \ge i] = \frac{1}{n^{O(i-1)/D}}$$

2.) Cluster each node u into the cluster of the node v minimizing dist(v,u)- h_v (ties to higher ID).

Observation: Each cluster has diameter O(D), w.h.p.

Technique #3: Derandomizing the randomized MPX algorithm

LDD with Small Cluster Degree

Derandomized MPX Decomposition Ghaffari, G [STOC'23]:

In $\widetilde{O}(\log(n)D^2)$ rounds, one can compute a partition with diameter D and maximum cluster degree $n^{O(1/D)}$ (assuming $D \leq \log^{0.99}(n)$).

LDD with Small Cluster Degree

Derandomized MPX Decomposition Ghaffari, G [STOC'23]:

In $\widetilde{O}(\log(n)D^2)$ rounds, one can compute a partition with diameter D and maximum cluster degree $n^{O(1/D)}$ (assuming $D \leq \log^{0.99}(n)$).

High-Level Idea:

- Each node has D random coin tosses that define its head start.
- Derandomize coin #1 of all nodes, then coin #2, and so on -- for D rounds.
- Each derandomization step reduces to computing a hitting set.
- Each round takes $\widetilde{\boldsymbol{O}}(\log(n)D)$ rounds.

LDD with Small Cluster Degree

Derandomized MPX Decomposition Ghaffari, G [STOC'23]:

In $\widetilde{O}(\log(n)D^2)$ rounds, one can compute a partition with diameter D and maximum cluster degree $n^{O(1/D)}$ (assuming $D \leq \log^{0.99}(n)$).

High-Level Idea:

- Each node has D random coin tosses that define its head start.
- Derandomize coin #1 of all nodes, then coin #2, and so on -- for D rounds.
- Each derandomization step reduces to computing a hitting set.
- Each round takes $\tilde{\boldsymbol{o}}(\log(n)D)$ rounds.

Corollary Ghaffari, G [STOC'23]:

An MIS can be computed in $\tilde{O}(\log^2 n)$ rounds.

Technique #4: Deterministic Hitting Set

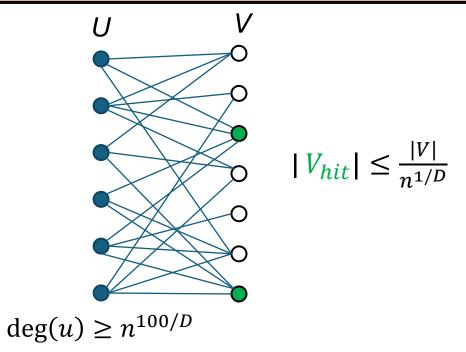
Deterministic Hitting Set

Deterministic Hitting Set Ghaffari, G [STOC'23]:

Consider a bipartite graph with bipartition $U \sqcup V$, where each $u \in U$ has degree $\deg(u) \geq n^{100/D}$. In $\widetilde{O}(\log(n))$ rounds, one can compute a subset $V_{hit} \subseteq V$ such that:

$$1. |V_{hit}| \le \frac{|V|}{n^{1/D}}$$

2. $N(u) \cap V_{hit} \neq \emptyset$ for every $u \in U$.



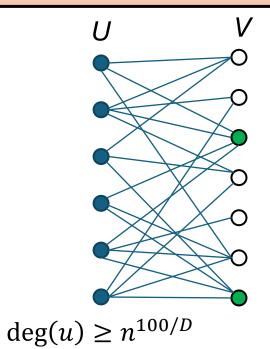
Deterministic Hitting Set

Deterministic Hitting Set Ghaffari, G [STOC'23]:

Consider a bipartite graph with bipartition $U \sqcup V$, where each $u \in U$ has degree $\deg(u) \geq n^{100/D}$. In $\widetilde{O}(\log(n))$ rounds, one can compute a subset $V_{hit} \subseteq V$ such that:

$$1. |V_{hit}| \le \frac{|V|}{n^{1/D}}$$

2. $N(u) \cap V_{hit} \neq \emptyset$ for every $u \in U$.



$$|V_{hit}| \le \frac{|V|}{n^{1/D}}$$

Simple 0-round randomized algorithm!

Open Problems

- Deterministic MIS (or Maximal Matching, $(\Delta + 1)$ -coloring) in $o(\log^{5/3} n)$ or $o(\log n \log^2 \Delta)$ rounds
- Derandomization Gap in Distributed Graph Algorithms (for locally checkable problems)
 - Det/Rand = $\tilde{O}(\log^2 n)$ G., Grunau FOCS'24
 - Det/Rand = $\widetilde{\Omega}(\log n)$ Brandt et al. STOC'16; Chang, Pettie, Kopelowitz FOCS'17; G., Su SODA'17
 - ? Close the gap?

- Use Local Rounding in other models
 - Parallel derandomization, towards work-efficiency
 - ? Dynamic, ...?

G., Grunau '25