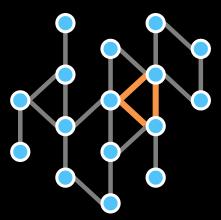
Distributed Subgraph Finding

Keren Censor-Hillel, Technion ADGA 2025

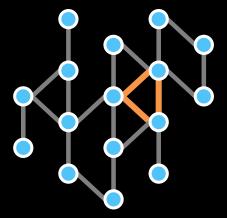
Distributed subgraph finding

- Structures in social networks
- Processing large graphs



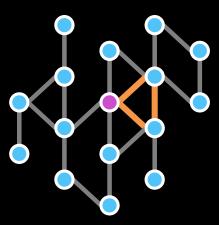
Distributed subgraph finding

- Structures in social networks
- Processing large graphs
 - Coloring triangle-free graphs [Pettie, Su '13]
 - Large cuts in triangle-free graphs [Hirvonen, Rybicki, Schmid, Suomela '17]



Locality

- Each **node** knows only its neighbors
- Synchronous communication rounds

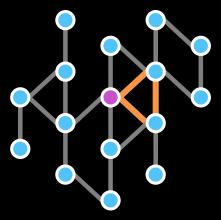


Locality

- Each node knows only its neighbors
- Synchronous communication rounds

O(p) rounds for finding any subgraph H of diameter p

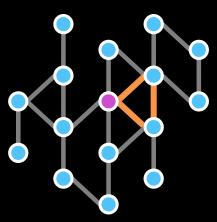
The big question: limited bandwidth?



Bandwidth

Message size:

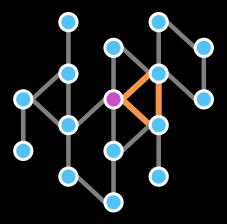
- Local: Unbounded [Linial '92]
- Congest: $O(\log n)$ bits [Peleg '00]



Bandwidth

Message size:

- Local: Unbounded [Linial '92]
- Congest: $O(\log n)$ bits [Peleg '00]
- Congested Clique: O(log n) bits +
 complete communication graph
 [Lotker, Patt-Shamir, Pavlov, Peleg 2005]

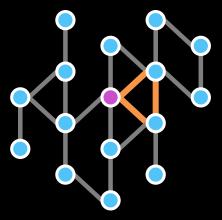


Bandwidth

Message size:

- Local: Unbounded [Linial '92]
- Congest: $O(\log n)$ bits [Peleg '00]
- Congested Clique: O(log n) bits +
 complete communication graph
 [Lotker, Patt-Shamir, Pavlov, Peleg 2005]

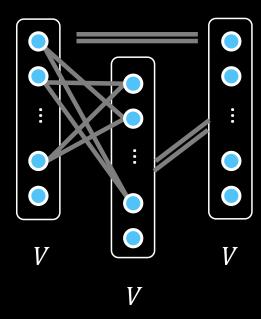
This talk: Triangles in congested models + Glimpse into the broader context



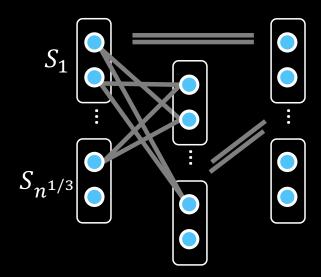
• $O(\Delta)$ rounds (Δ = max degree) [naïve]

- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node

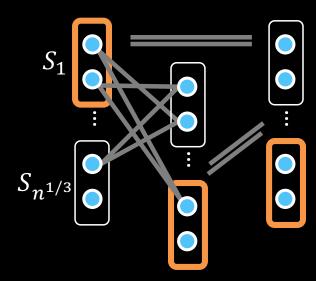
- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node



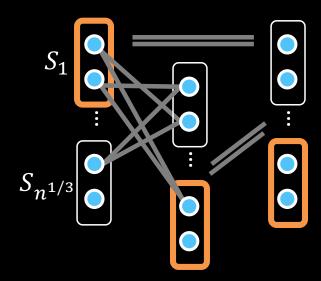
- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node



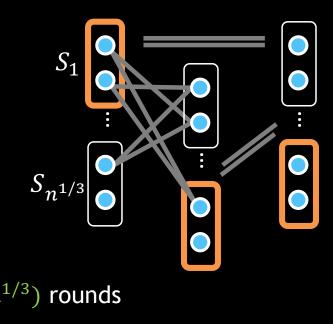
- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node
 - Number of 3-tuples: *n*



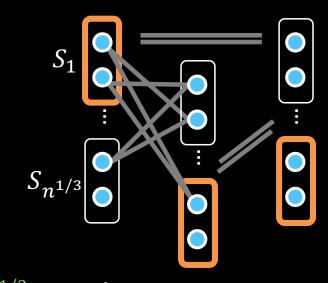
- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node
 - Number of 3-tuples: *n*
 - Number of nodes: $n^{2/3}$



- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node
 - Number of 3-tuples: *n*
 - Number of nodes: $n^{2/3}$
 - Number of edges to receive per node: O(n^{4/3})
 Number of edges to send per node: O(n^{4/3})



- $O(\Delta)$ rounds (Δ = max degree) [naïve]
- $O(n^{1/3})$ rounds for triangle listing [Dolev, Lenzen, Peled '12]
 - Every triangle is output by some node
 - Number of 3-tuples: *n*
 - Number of nodes: $n^{2/3}$
 - Number of edges to receive per node: O(n^{4/3})
 Number of edges to send per node: O(n^{4/3})



• Routing scheme: send/receive n messages per node in O(1) rounds [Lenzen '13]

Triangle listing: every triangle is output by some node

• $O(n^{1/3})$ rounds [Dolev, Lenzen, Peled '12]

Triangle listing: every triangle is output by some node

- $O(n^{1/3})$ rounds [Dolev, Lenzen, Peled '12]
- $\widetilde{\Omega}(n^{1/3})$ rounds [Izumi, Le Gall '17, Pandurangan, Scquizzato, Robinson '18]
 - $\Omega(n^{4/3})$ for the entropy of the transcript a node sees in $\overline{G_{n,1/2}}$
 - A node can receive at most $\tilde{O}(n)$ bits per round

Triangle listing in sparse graphs:

• $O(m^2/n^3)$ rounds (m = edges)

[Dolev, Lenzen, Peled '12]

Triangle listing in sparse graphs:

• $O(m^2/n^3)$ rounds (m = edges)

[Dolev, Lenzen, Peled '12]

$$O(\Delta^2/n)$$
 rounds (Δ = max degree)
 $O(A^2/n + \log_{2+n/A^2} n)$ rounds (A = arboricity)

Triangle listing in sparse graphs:

• $O(m^2/n^3)$ rounds (m = edges)

[Dolev, Lenzen, Peled '12]

- $O(\Delta^2/n)$ rounds (Δ = max degree) $O(A^2/n + \log_{2+n/A^2} n)$ rounds (A = arboricity)
- $\widetilde{O}(m/n^{5/3})$ rounds: DLP with a random partition and random load balancing of who gets what
- $\widetilde{\Omega}(m/n^{5/3})$ rounds

[Pandurangan, Scquizzato, Robinson '18]

Triangle listing in sparse graphs:

• $O(m^2/n^3)$ rounds (m = edges)

[Dolev, Lenzen, Peled '12]

- $O(\Delta^2/n)$ rounds (Δ = max degree) $O(A^2/n + \log_{2+n/A^2} n)$ rounds (A = arboricity)
- $\widetilde{O}(m/n^{5/3})$ rounds: DLP with a random partition and random load balancing of who gets what
- $\widetilde{\Omega}(m/n^{5/3})$ rounds

[Pandurangan, Scquizzato, Robinson '18]

• $O(m/n^{5/3})$ rounds, deterministic: sparse matrix multiplication in $O((\rho_S \rho_T/n)^{1/3})$ rounds $(\rho_A = \text{average number of non-zero elements per row})$

[C, Leitersdorf, Turner '18]

Listing Triangles with Bounded Memory

[Ben Basat, C, Chang, Han, Leitersdorf, Schwartzman '25]

 $\mu = \text{bits of memory per node}$ such that $n \le \mu \le n^{4/3}$

• Triangle listing in $n^{1+o(1)}/\mu^{1/2}$ rounds

Listing Triangles with Bounded Memory

```
[Ben Basat, C, Chang, Han, Leitersdorf, Schwartzman '25] \mu= bits of memory per node such that n\leq\mu\leq n^{4/3}
```

• Triangle listing in $n^{1+o(1)}/\mu^{1/2}$ rounds When $\mu=n^{4/3}$ we roughly get the $n^{1/3}$ round complexity With linear memory $\mu=n$ we need $n^{1/2}$ rounds

Listing Triangles with Bounded Memory

```
[Ben Basat, C, Chang, Han, Leitersdorf, Schwartzman '25] \mu = \text{bits of memory per node}
```

such that $n \le \mu \le n^{4/3}$

• Triangle listing in $n^{1+o(1)}/\mu^{1/2}$ rounds

When $\mu = n^{4/3}$ we roughly get the $n^{1/3}$ round complexity

With linear memory $\mu = n$ we need $n^{1/2}$ rounds

Corresponding lower bound

Triangle detection: \exists triangle \Leftrightarrow \exists node that outputs yes

• $O(n^{1/3})$ rounds [Dolev, Lenzen, Peled '12]

- $O(n^{1/3})$ rounds [Dolev, Lenzen, Peled '12]
- $O(n^{0.158})$ rounds, ring matrix multiplication $O(n^{1-2/\omega})$, ω = matrix multiplication exponent $O(n^{\rho})$, ρ = matrix multiplication exponent in congested clique [C, Kaski, Korhonen, Lenzen, Paz, Suomela '15]

- $O(n^{1/3})$ rounds [Dolev, Lenzen, Peled '12]
- $O(n^{0.158})$ rounds, ring matrix multiplication $O(n^{1-2/\omega})$, ω = matrix multiplication exponent $O(n^{\rho})$, ρ = matrix multiplication exponent in congested clique [C, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
- $\tilde{\Omega}(n^{1/3})$ rounds [Izumi, Le Gall '17, Pandurangan, Scquizzato, Robinson '18]
 - $\Omega(n^{4/3})$ for the entropy of the transcript a node sees in $G_{n,p}$
 - A node can receive at most $\tilde{O}(n)$ bits per round

- $O(n^{1/3})$ rounds [Dolev, Lenzen, Peled '12]
- $O(n^{0.158})$ rounds, ring matrix multiplication $O(n^{1-2/\omega})$, ω = matrix multiplication exponent $O(n^{\rho})$, ρ = matrix multiplication exponent in congested clique [C, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
- $\tilde{\Omega}(n^{1/3})$ rounds [Izumi, Le Gall '17, Pandurangan, Scquizzato, Robinson '18]
 - $\Omega(n^{4/3})$ for the entropy of the transcript a node sees in $G_{n,p}$
 - A node can receive at most $\tilde{O}(n)$ bits per round
- Super-constant lower bounds imply breakthroughs in circuit complexity [Drucker, Kuhn, Oshman '14]

Triangle detection: \exists triangle \Leftrightarrow \exists node that outputs yes

• $O(n^{0.158})$ rounds, ring matrix multiplication $O(n^{1-2/\omega})$, ω = matrix multiplication exponent $O(n^{\rho})$, ρ = matrix multiplication exponent in congested clique [C, Kaski, Korhonen, Lenzen, Paz, Suomela '15]

Open problem:
Round complexity of triangle detection in Congested Clique?

 $\tilde{O}(n^{1/3}/T^{2/3})$ rounds [Dolev, Lenzen, Peled '12]

- Each node samples a set of vertices
- Collect induce subgraph
- Detect a triangle

 $\tilde{O}(n^{1/3}/T^{2/3})$ rounds [Dolev, Lenzen, Peled '12]

- Each node samples a set of vertices with probability $1/(nT)^{1/3}$
- Collect induce subgraph
- Detect a triangle

 $\tilde{O}(n^{1/3}/T^{2/3})$ rounds [Dolev, Lenzen, Peled '12]

- Each node samples a set of vertices with probability $1/(nT)^{1/3}$
- Collect induce subgraph
- Detect a triangle

Guess T

 $\tilde{O}(n^{1/3}/T^{2/3})$ rounds [Dolev, Lenzen, Peled '12]

- Each node samples a set of vertices with probability $1/(nT)^{1/3}$
- Collect induce subgraph
- Detect a triangle

Guess T

If guess is good: prob. for specific triangle is 1/(nT) correctness n experiments per guess, T triangles to find

Detecting with T Triangles - Sampling

```
\tilde{O}(n^{1/3}/T^{2/3}) rounds [Dolev, Lenzen, Peled '12]
```

- Each node samples a set of vertices with probability $1/(nT)^{1/3}$
- Collect induce subgraph
- Detect a triangle

Guess T

```
If guess is good: prob. for specific triangle is 1/(nT) correctness n experiments per guess, T triangles to find

Each subgraph has n^{4/3}/T^{2/3} edges Rounds: \tilde{O}(n^{1/3}/T^{2/3})
```

• Routing scheme: send/receive n messages per node in O(1) rounds [Lenzen '13]

```
\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)},n^{0.1567}x^{-0.4617}\}) rounds [C, Even, Vassilevska-Williams '24] Refined parameters: V_T = nodes in triangles, x = |V_T| x^{-\delta} = prob that 3 nodes sampled with replacement from V_T form a triangle
```

```
\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)}, n^{0.1567}x^{-0.4617}\}) rounds [C, Even, Vassilevska-Williams '24]
```

Refined parameters: V_T = nodes in triangles, $x = |V_T|$ $x^{-\delta}$ = prob that 3 nodes sampled with replacement from V_T form a triangle

- Sample sets of vertices with probability 1/x
- Fast Matrix Multiplication on induced subgraph

```
\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)}, n^{0.1567}x^{-0.4617}\}) rounds [C, Even, Vassilevska-Williams '24]
```

Refined parameters: V_T = nodes in triangles, $x = |V_T|$ $x^{-\delta}$ = prob that 3 nodes sampled with replacement from V_T form a triangle

- Sample sets of vertices with probability 1/x
- Fast Matrix Multiplication on induced subgraph

Prob. that subgraph contains a triangle is $\sim 1/x^{\delta}$ (proof using second moment method)

 \rightarrow Repeat $\sim x^{\delta}$ times

```
\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)}, n^{0.1567}x^{-0.4617}\}) rounds [C, Even, Vassilevska-Williams '24]
```

Refined parameters: V_T = nodes in triangles, $x = |V_T|$ $x^{-\delta}$ = prob that 3 nodes sampled with replacement from V_T form a triangle

- Sample sets of vertices with probability 1/x
- Fast Matrix Multiplication on induced subgraph

Prob. that subgraph contains a triangle is $\sim 1/x^{\delta}$ (proof using second moment method)

 \rightarrow Repeat $\sim x^{\delta}$ times

Guess x and δ

```
\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)}, n^{0.1567}x^{-0.4617}\}) rounds [C, Even, Vassilevska-Williams '24]
```

Refined parameters: V_T = nodes in triangles, $x = |V_T|$ $x^{-\delta}$ = prob that 3 nodes sampled with replacement from V_T form a triangle

- Sample sets of vertices with probability 1/x
- Fast Matrix Multiplication on induced subgraph

Prob. that subgraph contains a triangle is $\sim 1/x^{\delta}$ (proof using second moment method)

 \rightarrow Repeat $\sim x^{\delta}$ times

Guess x and δ

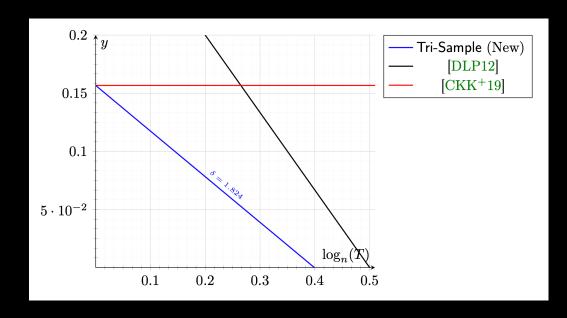
Mutliple FMM in parallel: Extend techniques of [C, Kaski, Korhonen, Lenzen, Paz, Suomela '15] and [Le Gall '16]

```
\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)}, n^{0.1567}x^{-0.4617}\}) rounds [C, Even, Vassilevska-Williams '24]
```

Refined parameters: V_T = nodes in triangles, $x = |V_T|$ $x^{-\delta}$ = prob that 3 nodes sampled with replacement from V_T form a triangle

- Sample sets of vertices with probability 1/x
- Rectangular Matrix Multiplication: find triangle that intersects sample

 $\tilde{O}(\min\{n^{\rho}x^{-2+\delta(\rho-1)}, n^{0.1567}x^{-0.4617}\})$ rounds [C, Even, Vassilevska-Williams '24]



 $\tilde{O}(n^{0.1567}/(t^{0.3926}+1))$ rounds in the worst case

 $\tilde{O}(1)$ rounds already when $t \ge n^{0.3992}$

*Slide courtesy of Tomer Even

Matrix Multiplication in Congested Clique

$O(n^{0.373})$	randomized	[Drucker, Kuhn, Oshman '14]
$O(n^{0.158})$	ring	
$O(n^{1/3})$		[C, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$\widetilde{\Omega}(n)$	ВСС	
$O((\rho_S \rho_T/n)^{1/3})$		[C, Leitersdorf, Turner '18]
$O((\rho_S \rho_T \rho_{ST})^{1/3} / n^{2/3})$		[C, Dory, Korhonen, Leitersdorf '19]
$O((\rho_S \rho_T \rho)^{1/3} / n^{2/3} + \log n)$		[C, Dory, Romonem, Lentersdom 17]
Rectangular, multiple instances, more		[Le Gall '16]

$\widetilde{\Omega}(n^{1/3})$	listing	[Izumi, Le Gall '17, Pandurangan, Scquizzato, Robinson '18]
$\tilde{O}(n^{2/3})$	detection	[Izumi, Le Gall '17]
$\tilde{O}(n^{3/4})$	listing	[izuiiii, Le Gatt 17]
$\tilde{O}(n^{1/2})$	listing	[Chang, Pettie, Zhang '19]
$\tilde{O}(n^{1/3})$	listing	[Chang, Saranurak '19]
$\tilde{O}(n^{2/3})$	listing, det.	[Chang, Saranurak '20]
$ ilde{O}(n^{0.58})$	detection, det.	[Charis, Saraharak 20]
$O(\Delta/\log n + \log\log \Delta)$	listing, det.	[Huang, Pettie, Zhang, Zhang '20]
$n^{1/3+o(1)}$	listing, det.	[C, Leitersdorf, Vulakh '22]

Triangle detection?

Triangle detection?

Cannot be solved in a single round:

- bandwidth $\geq \Delta \log n$ [Abboud, C, Khoury, Lenzen '17]
- bandwidth $\geq \Delta$ w. randomness [Fischer, Gonen, Kuhn, Oshman '18]

 $\Omega(\log \log n)$ rounds [Assadi, Sundaresan '25]

Triangle detection?

Cannot be solved in a single round:

- bandwidth $\geq \Delta \log n$ [Abboud, C, Khoury, Lenzen '17]
- bandwidth $\geq \Delta$ w. randomness [Fischer, Gonen, Kuhn, Oshman '18]

 $\Omega(\log \log n)$ rounds [Assadi, Sundaresan '25]

• Super-log lower bounds imply breakthroughs in circuit complexity [Eden, Fiat, Fischer, Kuhn, Oshman '19]

Triangle detection?

Cannot be solved in a single round:

- bandwidth $\geq \Delta \log n$ [Abboud, C, Khoury, Lenzen '17]
- bandwidth $\geq \Delta$ w. randomness [Fischer, Gonen, Kuhn, Oshman '18]

 $\Omega(\log \log n)$ rounds [Assadi, Sundaresan '25]

• Super-log lower bounds imply breakthroughs in circuit complexity [Eden, Fiat, Fischer, Kuhn, Oshman '19]

Open problem:
Round complexity of triangle detection in Congest?

K_p in Congested Clique

$O(n^{1-2/p})$	listing	[Dolev, Lenzen, Peled '12]
$\widetilde{\Omega}(n^{1-2/p})$	listing	[Fischer, Gonen, Kuhn, Oshman '18]
$\widetilde{\Omega}(n/\log n)$	listing, BCC	[Drucker, Kuhn, Oshman '14]
$\widetilde{\Theta}(m/n^{1+2/p})$	listing	[C, Le Gall, Leitersdorf '20]

Open problem:

Round complexity of K_p detection in Congested Clique?

K_p in Congest

$\widetilde{\Omega}(n^{1-2/p})$	K_p listing	[Fischer, Gonen, Kuhn, Oshman '18]
$\tilde{O}(n^{5/6+o(1)})$	K_4	[Eden, Fiat, Fischer, Kuhn, Oshman '19]
$\tilde{O}(n^{21/22+o(1)})$	K_5	[Eden, Flac, Fischer, Raim, Osimian 17]
$\tilde{O}(n^{3/4+o(1)})$	K_5	[C, Le Gall, Leitersdorf '20]
$\tilde{O}(n^{p/(p+2)+o(1)})$	$K_{p\neq 5}$	[e, le dan, leneradori zo]
$\tilde{O}(n^{1-2/p})$	K_p	[C, Chang, Le Gall, Leitersdorf '21]
$n^{1-2/p+o(1)}$	listing, det.	[C, Leitersdorf, Vulakh '22]

K_p in Congest

$\widetilde{\Omega}(n^{1-2/p})$	K_p listing	[Fischer, Gonen, Kuhn, Oshman '18]
$\tilde{O}(n^{1-2/p})$	K_p listing	[C, Chang, Le Gall, Leitersdorf '21]
$\widetilde{\Omega}(n^{1/2}/p)$	K_p Detection, $p \le n^{1/2}$	[Czumaj, Konrad '18]
$\widetilde{\Omega}(n/p)$	K_p Detection, $p > n^{1/2}$	[Czumaj, Komau roj

Open problem:

Round complexity of K_p detection in Congest?

C_p in Congested Clique

$\tilde{O}(n^{1-2/p})$	C_p listing	[Dolev, Lenzen, Peled '12]
Sparsity aware	C_p listing	[C, Fischer, Gonen, Le Gall, Leitersdorf, Oshman '20]

Open problem: Round complexity of $\emph{\emph{C}}_p$ listing in Congested Clique?

C_p in Congested Clique

$\tilde{O}(n^{1-2/p})$	C_p listing	[Dolev, Lenzen, Peled '12]
Sparsity aware	C_p listing	[C, Fischer, Gonen, Le Gall, Leitersdorf, Oshman '20]
0(1)	C_4 detection	[C, Kaski, Korhonen,
$O(n^{0.158})$	C_p detection	Lenzen, Paz, Suomela '15]
0(1)	C_p detection p is even	[C, Fischer, Gonen, Le Gall, Leitersdorf, Oshman '20]

Open problem:

Round complexity of C_p detection for even p in Congested Clique?

C_p in Congest

$\widetilde{\Theta}(n^{1/2})$	C ₄ detection	[Drucker, Kuhn, Oshman '14]	
$\widetilde{\Omega}(n)$	C_p , p is odd	[Drucker, Kuriir, Oshinari 14]	
$ ilde{O}(n)$	C_p	[Korhonen, Rybicki '17]	
$\widetilde{\Omega}(n^{1/2})$	C_p , p is even	[KOITIOHEII, KYDICKI 17]	
$\tilde{O}(n^{1-1/p(p-1)})$	C_{2p}	[Fischer, Gonen, Kuhn, Oshman '18]	
$\tilde{O}(n^{1-2/(p^2-p+2)})$	C_{2p} , p is odd	[Eden, Fiat, Fischer, Kuhn, Oshman '19]	
$\tilde{O}(n^{1-2/(p^2-2p+4)})$	C_{2p} , p is even	[Luch, Flat, Fischer, Ruffit, Oshinan 17]	
LB limitation	C_p , p is even	[C, Fischer, Gonen, Le Gall,	
$\tilde{O}(n^{1-1/p})$	$C_{2p}, p=3,4,5$	Leitersdorf, Oshman '20]	
$\tilde{O}(n^{1-1/p})$	C_{2p}	[Fraigniaud, Luce, Magniez, and Todinca '24 + '25]	

Other Subgraphs

- $\forall p \geq 4$, $\exists H, |H| = p$, detection in $\widetilde{\Omega}(n^{2-\Theta(1/p)})$ [Fischer, Gonen, Kuhn, Oshman '18]
- $\forall H$, detection in $\widetilde{O}(n^{2-2/(3p+1)+o(1)})$ [Eden, Fiat, Fischer, Kuhn, Oshman '19]
- Induced subgraphs
 [Le Gall, Miyamoto '21, Nikabadi, Korhonen '21]

Dynamic

- Single-round bandwidth [Bonne, C '19]
- *O*(1) amortized highly dynamic [C, Kolobov, Schwartzman '21]

Testing

- Large cliques [Brakerski, Patt-Shamir '11] $(1/\epsilon^2)$ for triangles + more [C, Fischer, Schwartzman, Vasudev '16]
- $O(1/\epsilon)$ for triangles + more [Even, Fischer, Fraigniaud, Gonen, Levi, Medina, Montealegre, Olivetti, Oshman, Rapaport, Todinca '17]+[Fraigniaud, Olivetti '17]
- More [Fraigniaud, Rapaport, Salo, Todinca '16]

Quantum

- $\tilde{O}(n^{1/4})$ triangle detection [Izumi, Le Gall, Magniez '20]
- $\tilde{O}(n^{1/5})$ triangle detection + more [C, Fischer, Le Gall, Leitersdorf, Oshman '21]

Open problems

Triangle detection ?

K_p detection ?

C_p listing ?

C_p detection ?

Open problems

Triangle detection? K_p detection? C_p listing? C_p detection?

Questions?