
The Distributed Laplacian Paradigm
Algebraic Methods for Combinatorial Problems

Tijn de Vos



A lecture in two parts

Part 1:
Algebra – it’s not so bad

Part 2:
Computing Max Flow – it’s not so easy
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Please ask questions!
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Q: What does Linear Algebra have to do with Graphs?

G = (V ,E ,w) with |V | = n, |E | = m, w : E → R
Adjacency matrix: A ∈ Rn×n such that Aij = w(ij)

E.g.

A =

0 1 0
1 0 1
0 1 0


∆ ∈ Rn×n with degrees on the diagonal

Laplacian matrix: L := ∆− A

E.g.

L = ∆− A =

 1 −1 0
−1 2 −1
0 −1 1



1

2

3
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Q: Why do we care about this matrix?

It encodes the entire graph

E.g., all cuts:

S ⊆ V then |E (S ,V \ S)| = 1TS L1S

(
1 1 0

) 1 −1 0
−1 2 −1
0 −1 1

1
1
0



=
(
1 1 0

) 0
1
−1

 = 1

L can be dense and all cuts are a lot of vectors

Instead: consider the eigenvalues

1

2

3
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Q: What is an eigenvalue?

Let M ∈ Rn×n

If Mv = λv for some λ ∈ C, v ∈ Rn, then
▶ λ is an eigenvalue
▶ v is an eigenvector

M has n eigenvalues

Can assume vTv = ⟨v, v⟩ = ||v||2 = 1.
▶ Since M(cv) = cMv = c(λv) = λ(cv)

If M is symmetric, then
▶ All eigenvalues are real: λ ∈ R
▶ Eigenvectors are orthogonal

For Laplacians L:
▶ 0 is an eigenvalue
▶ all eigenvalues are ≥ 0

 1 −1 0
−1 2 −1
0 −1 1



1
1
1

 =

0
0
0

 = 0 ·

1
1
1


 1 −1 0
−1 2 −1
0 −1 1

−10
1

 =

−10
1

 = 1 ·

−10
1


 1 −1 0
−1 2 −1
0 −1 1

 1
−2
1

 =

 3
−6
3

 = 3 ·

 1
−2
1


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Q: Why do we care about this matrix?

The eigenvalues of L correspond to:

▶ The number of connected components
▶ The size of independent sets (Hoffman’s bound);
▶ The chromatic number;
▶ The average density of cuts;
▶ The toughness of the graph;
▶ The Hamiltonicity;
▶ The matching number;
▶ The existence of a perfect matching.

Normalized Laplacian: L = I−∆−1/2A∆−1/2

▶ Sparsest cut = conductance = expansion
▶ Mixing time
▶ Bipartiteness

 1 −1 0
−1 2 −1
0 −1 1

 =⇒

 1 −1/
√
2 0

−1/
√
2 1 −1/

√
2

0 −1/
√
2 1


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Q: That sounds so sequential!
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Intermezzo – The CONGEST Model

G = (V ,E ), |V | = n, |E | = m

Communication over edges in synchronous
rounds.

Bandwidth O(log n) bits per edge.

Broadcast CONGEST: Broadcast same
message to all neighbors.
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Q: That sounds so sequential!
Distributed Matrix-Vector Multiplication: 1 round

Lx =

 1 −1 0
−1 2 −1
0 −1 1

x1
x2
x3



Input: node i knows xi

Send xi to your neighbors

Compute internally (Lx)i

(Lx)1 =
(
1 −1 0

)x1
x2
x3

 = x1 − x2

Output: node i knows (Lx)i

Enough for eigenvalue estimation [Maus, dV DISC’25]
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2
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Recap

Can phrase the input as linear algebra (L = ∆− A)

Can do linear operations

Algebraic properties (eigenvalues) translate to graph properties

Tijn de VosThe Distributed Laplacian Paradigm 11



Q: Can we do anything more interesting?

Maximum Independent Set as a Linear Program (LP)

maxx∈Rn

∑
v∈V xv

▶ xu + xv ≤ 1 for all uv ∈ E
▶ xv ∈ {0, 1} for all v ∈ V

Locally defined constraints:

M =

(
1 1 0
0 1 1

)
More generally: maxx∈Rn cTx

▶ Mx ≤ b

▶ Non-zero entries of M correspond to edges

1

2

3
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Q: Are there also problems where algebraic methods are “necessary”?

In CONGEST:

Approximate flow [Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir ’15]

Transshipment and shortest paths [Becker, Forster, Karrenbauer, Lenzen ’17, Rozhoň rO
Grunau rO Haeupler rO Zuzic rO Li ’22, Zuzic rO Goranci rO Ye rO Haeupler rO Sun
’22, Zuzic ’23]

▶ Solved with Gradient Descent and Multiplicative Weight Update method

Exact flow [Forster, Goranci, Liu, Peng, Sun, Ye ’21, dV ’23]

▶ Solved with Interior Point Methods

Approximate Packing and Covering Linear Programs [Kuhn, Moscibroda, and
Wattenhofer ’06]

▶ Solved with a Primal-Dual approach

In LOCAL:

Approximate Integer Packing and Covering Linear Programs [Ghaffari, Kuhn, and Maus
’17, Chang and Li ’23]

▶ Solved with decomposition + exact local solution
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Q: So what do I need the Laplacian for?

Constraint matrix in terms of Laplacian
▶ Need to compute Lx

(many methods)
▶ Need to compute L−1y (some methods)

Laplacian Solver

Given y ∈ Rn, let x∗ ∈ Rn s.t. Lx∗ = y.

Find x ∈ Rn such that x = x∗ ± εx∗.

Abuse of notation! Should write x = x∗ + z s.t. ||z || ≤ ε||x∗||
Generally can afford/need ε = 1/ poly n
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Recap

Can phrase graph problems as linear programs

To solve a linear program we need
▶ Lx
▶ L−1y (Laplacian Solving)

Tijn de VosThe Distributed Laplacian Paradigm 15



Laplacian Solving

Õ(m) sequential running time [Spielman, Teng ’04]

Õ(m) work, polylogarithmic depth in PRAM [Peng, Spielman ’14]

Ω̃(
√
n + D) rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye ’21]

no(1)(
√
n + D) rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye ’21]

O(poly log n) rounds in Broadcast Congested Clique [Forster, dV ’22]

no(1) rounds in Deterministic Congested Clique [Forster, dV ’23]
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Intermezzo – Congested Clique

Nodes can communicate with all other nodes

Synchronous, O(log n) message size.

Analogues to sending/receiving n messages per node [Lenzen ‘13].

Broadcast CC: Broadcast same message to all neighbors.
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Q: How do we solve a Laplacian System?

CONGEST algorithm is complicated

Easy in CongestedClique

Important tool: Spectral Sparsifiers

Tijn de VosThe Distributed Laplacian Paradigm 18



Q: What is a Spectral Sparsifier?

Sparsifier H ⊆ G is a (reweighted) sparse subgraph of G such
that . . . of G is approximately maintained

A spectral sparsifier keeps spectral properties.

▶ Eigenvalues of LH ≈ eigenvalues of LG

⋆ Eigenvalue λ of G : LGv = λv
⋆ Can assume vTv = 1, so λ = vTLGv

▶ A cut value in H ≈ a value cut in G

⋆ Recall: |E(S ,V \ S)| = 1T
S LG1S

⋆ xTLGx for x ∈ {0, 1}n

Definition

H ⊆ G is a (1± ε)-spectral sparsifier of G if

(1− ε)xTLHx ≤ xTLGx ≤ (1 + ε)xTLHx ∀x ∈ Rn.
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Spectral Sparsifier in the Congested Clique

Spectral Sparsifer in the CongestedClique

H ← 0

For i = 1, . . . ,O(log n):
▶ For j = 1, . . . ,O(log n):

⋆ Compute an O(log n)-spanner S of G
⋆ H ← H ∪ S
⋆ G ← G \ H

▶ Keep each edge in G with probability 1
4 .

Return H
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Laplacian Solving in the Congested Clique

Compute a spectral sparsifier H of size Õ(n)

Make H known to every node

Internally solve LHx = y

Output x
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Accuracy

Preconditioned Chebyshev Iteration [Axelsson ’93, Saad ’03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to LGx = y in
O(log(1/ε)) iterations.

Fix a δ-spectral sparsifier H of G (think δ = 1
2)

x0 ← L−1
H y

Note LGx0 = LGL
−1
H y = LG (L

−1
G y ± δL−1

G y) = y ± δy

x1 ← L−1
H (y − LGx0)

And LG (x0 + x1) = LGx0 + LGL
−1
H (y − LGx0)

= LGx0 + LG (L
−1
G (y − LGx0)± δL−1

G (y − LGx0))

= y ± δ(y − LGx0) = y ± δ2y

Output x =
∑

j<i xj

LGx = y ± δiy
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G (y − LGx0))

= y ± δ(y − LGx0) = y ± δ2y

Output x =
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j<i xj

LGx = y ± δiy
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Laplacian Solvers – Recap

Õ(m) sequential running time [Spielman, Teng ’04]

Õ(m) work, O(poly log n) depth in PRAM [Peng, Spielman ’14]

Ω̃(
√
n + D) rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye ’21]

no(1)(
√
n + D) rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye ’21]

O(poly log n) rounds in Broadcast Congested Clique [Forster, dV ’22]

no(1) rounds in Deterministic Congested Clique [Forster, dV ’23]

In CongestedClique, we can compute Laplacian solving via spectral sparsifiers

We can compute spectral sparsifiers via spanners

We can boost the accuracy of a solver (log(1/ε) iterations)
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Q: Is Laplacian solving always so expensive?

Universal Optimality: the Ω̃(
√
n + D) lower bound is not for all graph topologies

The Shortcut Quality SQ(G ) is a more precise lower bound: D ≤ SQ(G ) ≤ D +
√
n

Topology dependent Laplacian solver [Anagnostides, Gouleakis, Lenzen ’21, Anagnostides
rO Lenzen rO Haeupler rO Zuzic rO Gouleakis ’22]

▶ Lower bound: Ω̃(SQ(G ))
▶ Upper bound: no(1) poly(SQ(G )) log(1/ε) rounds
▶ no(1)D rounds in

⋆ planar graphs
⋆ expander graphs
⋆ no(1)-genus graphs
⋆ no(1)-treewidth graphs
⋆ excluded-minor graphs
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Part 1:
Algebra – it’s not so bad

Part 2:
Computing Max Flow – it’s not so easy

Tijn de VosThe Distributed Laplacian Paradigm 25



Flow

Definition

G = (V ,E ) directed, capacities c ∈ Zm
≥0, costs q ∈ Zm, source and target s, t ∈ V . The

minimum cost (maximum) flow problem is to find the s − t flow f ∈ Rm of minimum cost,
among all flows of maximum value.

Generalizes Max Flow and Negative Weight Shortest Path.

Min Cost Flow is a linear program.

Theorem (Informal)

Min Cost Flow with Õ(
√
n) Laplacian solves in the CONGEST/BroadcastCongestedClique

model.
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Interior-Point Methods

Goal: Solve a linear program

min
x∈Rn

cTx s.t. Mx = b, x ≥ 0.

Interior-point algorithms stay strictly inside the
feasible region, following a central path that leads
to the optimum.

Output: an ε-approximate solution

x(0)

x(1)

x(2)

x(3)

x(4)

x⋆
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[Lee, Sidford ’14]’s IPM

ε-approximate solution

Õ(
√
n log(1/ε)) iterations

Each iteration needs:
▶ Õ(1) matrix-vector multiplications.
▶ Õ(1) linear system solves.
▶ Leverage score computation with Johnson-Lindenstrauss.
▶ Projection on a mixed norm ball:

arg max
||x||2+||ℓ−1x||∞≤1

aTx for some a, ℓ ∈ Rm.

For flow: can set up LP s.t. OPT is integral [Daitch, Spielman ’08]

▶ Solve to precision 1/m2, then fe on each edge must be close to integral
▶ Round fe to closest integer

Sequential Õ(
√
n ·m) time

CONGEST: Õ(
√
n · TLaplacian) = no(1)

√
n(
√
n + D) rounds
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Õ(
√
n log(1/ε)) iterations

Each iteration needs:
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▶ Õ(1) matrix-vector multiplications.
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Distributed Min Cost Flow Results

Model Time Reference

Ω̃(
√
n + D) [DSHKKNPPW ’11]1

CONGEST no(1)(
√
n + D) [GKKLPS ’15]1

no(1)
√
n(
√
n + D) [dV ‘23]

BCC Õ(
√
n) [FdV ‘22]

Det CC m3/7+o(1)M1/7 [FdV ‘23]

2

PRAM Õ(
√
n) depth and Õ(m + n1.5) work [vdBGJdV’25]

Sequential m1+o(1) [CKLPPGS ’22]

1Undirected, approximate max flow
2Max flow, M is maximal weight
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√
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Q: Does faster sequential Max Flow transfer to distributed models?

[Lee, Sidford ’14]:
#iterations: Õ(

√
n)

Time per iteration: Õ(m)

Iteration count carries over to round
complexity

[Chen, KLPPGS ’22]:
#iterations: m1+o(1)

Time per iteration: mo(1)

Running time improvement does not
improve round complexity

Question

Is Θ̃(
√
n) the right iteration count for the min-cost flow LP?
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√
n)

Time per iteration: Õ(m)
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Combinatorial CONGEST Algorithms

Negative Weighted Shortest Paths:
▶ Reduction to positive weight SSSP with no(1) overhead [Ashvinkumar, Bernstein, Cao,

Grunau, Haeupler, Jiang, Nanongkai, and Su ’24]
▶ Positive SSSP: no(1)(n2/5D2/5 +

√
n + D) rounds [Cao and Fineman ’23, Rozhoň rO

Haeupler rO Martinsson rO Grunau rO Zuzic ’23]

Max Flow in Planar Graphs: Õ(D2) rounds [Abd-Elhaleem, Dory, Parter, and Weimann
’25]
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Laplacian Paradigm

Laplacian systems

Spectral sparsifiers

Electrical flow

Effective resistance

Sampling spanning trees

Expander decompositions

Continuous optimization

Interior-point methods

Gradient descent

Preconditioning

. . .
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Conclusion

The Laplacian paradigm

has many existing tools (not optimal!)

has many applications

allows us to use algebraic (sequential) techniques

Laplacian paradigm gives state of the art for flow problems in

Sequential

Parallel

CONGEST

(Broadcast/Determinisitic) Congested Clique

Thank you!
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