The Distributed Laplacian Paradigm

Algebraic Methods for Combinatorial Problems

Tijn de Vos

A lecture in two parts

Part 1: Algebra – it's not so bad

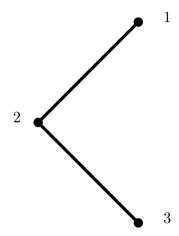
Part 2: Computing Max Flow – it's not so easy

Please ask questions!

- G = (V, E, w) with |V| = n, |E| = m, $w : E \to \mathbb{R}$
- ullet Adjacency matrix: $oldsymbol{A} \in \mathbb{R}^{n imes n}$ such that $oldsymbol{A}_{ij} = w(ij)$

- G = (V, E, w) with |V| = n, |E| = m, $w: E \to \mathbb{R}$
- Adjacency matrix: $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}_{ij} = w(ij)$
- E.g.

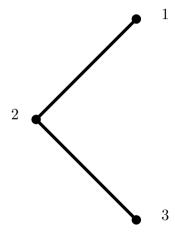
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$



- G = (V, E, w) with |V| = n, |E| = m, $w : E \to \mathbb{R}$
- Adjacency matrix: $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}_{ij} = w(ij)$
- E.g.

$$\mathbf{A} = egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$$

- $\Delta \in \mathbb{R}^{n \times n}$ with degrees on the diagonal
- Laplacian matrix: $L := \Delta A$

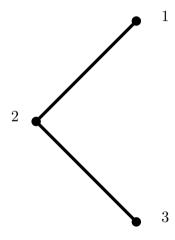


- G = (V, E, w) with |V| = n, |E| = m, $w : E \to \mathbb{R}$
- Adjacency matrix: $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}_{ij} = w(ij)$
- E.g.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- $\Delta \in \mathbb{R}^{n \times n}$ with degrees on the diagonal
- Laplacian matrix: $L := \Delta A$
- E.g.

$$\mathbf{L} = \mathbf{\Delta} - \mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$



• It encodes the entire graph

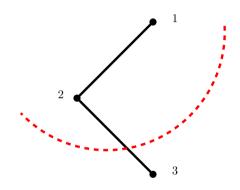
- It encodes the entire graph
- E.g., all cuts:

$$S \subseteq V$$
 then $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L} \mathbf{1}_S$

- It encodes the entire graph
- E.g., all cuts:

$$S \subseteq V$$
 then $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L} \mathbf{1}_S$

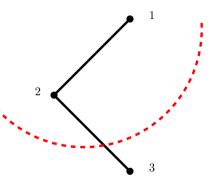
$$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$



- It encodes the entire graph
- E.g., all cuts:

$$S \subseteq V$$
 then $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L} \mathbf{1}_S$

$$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 1$$

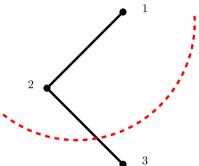


- It encodes the entire graph
- E.g., all cuts:

$$S \subseteq V$$
 then $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L} \mathbf{1}_S$

$$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 1$$

- L can be dense and all cuts are a lot of vectors
- Instead: consider the eigenvalues



- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - $ightharpoonup \lambda$ is an eigenvalue
 - ▶ v is an eigenvector

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - $\blacktriangleright \lambda$ is an eigenvalue
 - ▶ **v** is an eigenvector

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - \blacktriangleright λ is an eigenvalue
 - ▶ v is an eigenvector

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - $\blacktriangleright \lambda$ is an eigenvalue
 - ▶ v is an eigenvector

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - $\blacktriangleright \lambda$ is an eigenvalue
 - ▶ v is an eigenvector
- M has n eigenvalues

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - \blacktriangleright λ is an eigenvalue
 - ▶ v is an eigenvector
- M has n eigenvalues

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

• M has
$$n$$
 eigenvalues
• Can assume $\mathbf{v}^T \mathbf{v} = \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2 = 1$.
• Since $\mathbf{M}(c\mathbf{v}) = c\mathbf{M}\mathbf{v} = c(\lambda \mathbf{v}) = \lambda(c\mathbf{v})$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - $ightharpoonup \lambda$ is an eigenvalue
 - ▶ v is an eigenvector
- M has n eigenvalues
- Can assume $\mathbf{v}^T \mathbf{v} = \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2 = 1$.
 - Since $\mathbf{M}(c\mathbf{v}) = c\mathbf{M}\mathbf{v} = c(\lambda\mathbf{v}) = \lambda(c\mathbf{v})$
- If M is symmetric, then
 - ▶ All eigenvalues are real: $\lambda \in \mathbb{R}$
 - ► Eigenvectors are orthogonal

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$
- If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{R}^n$, then
 - \blacktriangleright λ is an eigenvalue
 - ▶ v is an eigenvector
- M has n eigenvalues
- Can assume $\mathbf{v}^T \mathbf{v} = \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2 = 1$.
 - Since $\mathbf{M}(c\mathbf{v}) = c\mathbf{M}\mathbf{v} = c(\lambda\mathbf{v}) = \lambda(c\mathbf{v})$
- If **M** is symmetric, then
 - ▶ All eigenvalues are real: $\lambda \in \mathbb{R}$
 - ► Eigenvectors are orthogonal
- For Laplacians L:
 - ▶ 0 is an eigenvalue
 - ▶ all eigenvalues are ≥ 0

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

• The eigenvalues of **L** correspond to:

- The eigenvalues of **L** correspond to:
 - ► The number of connected components
 - ► The size of independent sets (Hoffman's bound);
 - ► The chromatic number;
 - The average density of cuts;
 - ► The toughness of the graph;
 - ► The Hamiltonicity;
 - ► The matching number;
 - ► The existence of a perfect matching.

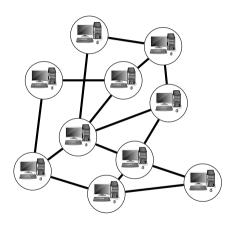
- The eigenvalues of **L** correspond to:
 - ▶ The number of connected components
 - ► The size of independent sets (Hoffman's bound);
 - ► The chromatic number:
 - ► The average density of cuts;
 - ▶ The toughness of the graph;
 - ► The Hamiltonicity:
 - ► The matching number;
 - ▶ The existence of a perfect matching.
- Normalized Laplacian: $\mathbf{L} = \mathbf{I} \mathbf{\Delta}^{-1/2} \mathbf{A} \mathbf{\Delta}^{-1/2}$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & -1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1 & -1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1 \end{pmatrix}$$

- The eigenvalues of **L** correspond to:
 - ▶ The number of connected components
 - ► The size of independent sets (Hoffman's bound);
 - ► The chromatic number:
 - ► The average density of cuts;
 - ► The toughness of the graph;
 - ► The Hamiltonicity;
 - ► The matching number;
 - ▶ The existence of a perfect matching.
- Normalized Laplacian: $\mathbf{L} = \mathbf{I} \mathbf{\Delta}^{-1/2} \mathbf{A} \mathbf{\Delta}^{-1/2}$
 - ► Sparsest cut = conductance = expansion
 - Mixing time
 - Bipartiteness

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & -1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1 & -1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1 \end{pmatrix}$$

Intermezzo - The CONGEST Model



- G = (V, E), |V| = n, |E| = m
- Communication over edges in synchronous rounds.
- Bandwidth $O(\log n)$ bits per edge.
- Broadcast CONGEST: Broadcast same message to all neighbors.

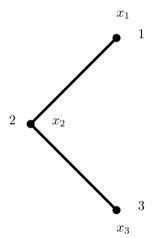
Distributed Matrix-Vector Multiplication: 1 round

$$\mathbf{Lx} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Distributed Matrix-Vector Multiplication: 1 round

$$\mathbf{Lx} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Input: node i knows x_i

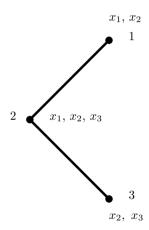


Distributed Matrix-Vector Multiplication: 1 round

$$\mathbf{Lx} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- Input: node i knows xi
- Send x_i to your neighbors
- Compute internally (Lx)_i

$$(\mathbf{L}\mathbf{x})_1 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 - x_2$$



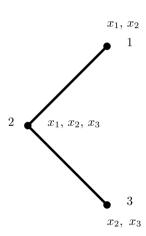
Distributed Matrix-Vector Multiplication: 1 round

$$\mathbf{Lx} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- Input: node i knows xi
- Send x_i to your neighbors
- Compute internally (Lx)_i

$$(\mathbf{L}\mathbf{x})_1 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 - x_2$$

Output: node i knows (Lx);



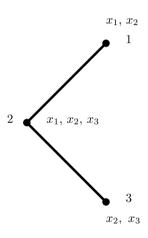
Distributed Matrix-Vector Multiplication: 1 round

$$\mathbf{Lx} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- Input: node i knows xi
- Send x_i to your neighbors
- Compute internally (Lx)_i

$$(\mathbf{L}\mathbf{x})_1 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 - x_2$$

- Output: node i knows (Lx)i
- Enough for eigenvalue estimation [Maus, dV DISC'25]



Recap

- ullet Can phrase the input as linear algebra $({f L}={f \Delta}-{f A})$
- Can do linear operations
- Algebraic properties (eigenvalues) translate to graph properties

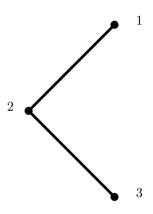
Q: Can we do anything more interesting?

• Maximum Independent Set as a Linear Program (LP)

- Maximum Independent Set as a Linear Program (LP)
- $\max_{\mathbf{x} \in \mathbb{R}^n} \sum_{v \in V} x_v$
 - $x_{\mu} + x_{\nu} \le 1$ for all $\mu \nu \in E$
 - $\blacktriangleright \ x_v \in \{0,1\} \text{ for all } v \in V$

- Maximum Independent Set as a Linear Program (LP)
- $\max_{\mathbf{x} \in \mathbb{R}^n} \sum_{\mathbf{v} \in \mathbf{V}} x_{\mathbf{v}}$
 - $x_{u} + x_{v} < 1$ for all $uv \in E$
 - $\rightarrow x_v \in \{0,1\}$ for all $v \in V$
- Locally defined constraints:

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$



- Maximum Independent Set as a Linear Program (LP)
- $\max_{\mathbf{x} \in \mathbb{R}^n} \sum_{\mathbf{v} \in \mathbf{V}} x_{\mathbf{v}}$
 - $x_{u} + x_{v} < 1$ for all $uv \in E$
 - $\rightarrow x_v \in \{0,1\}$ for all $v \in V$
- Locally defined constraints:

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

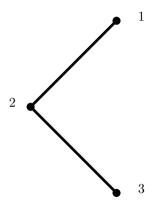
- More generally: $\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$
 - ► Mx ≤ b



- Maximum Independent Set as a Linear Program (LP)
- $\max_{\mathbf{x} \in \mathbb{R}^n} \sum_{v \in V} x_v$
 - $x_{u} + x_{v} < 1$ for all $uv \in E$
 - $\rightarrow x_v \in \{0,1\}$ for all $v \in V$
- Locally defined constraints:

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

- More generally: $\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$
 - ► Mx ≤ b
 - ▶ Non-zero entries of **M** correspond to edges



Q: Are there also problems where algebraic methods are "necessary"?

Q: Are there also problems where algebraic methods are "necessary"? In CONGEST:

- Approximate flow [Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir '15]
- Transshipment and shortest paths [Becker, Forster, Karrenbauer, Lenzen '17, Rozhoň (r) Grunau (r) Haeupler (r) Zuzic (r) Li '22, Zuzic (r) Goranci (r) Ye (r) Haeupler (r) Sun '22, Zuzic '23]
- Exact flow [Forster, Goranci, Liu, Peng, Sun, Ye '21, dV '23]
- Approximate Packing and Covering Linear Programs [Kuhn, Moscibroda, and Wattenhofer '06]

In LOCAL:

 Approximate Integer Packing and Covering Linear Programs [Ghaffari, Kuhn, and Maus '17, Chang and Li '23]

Q: Are there also problems where algebraic methods are "necessary"?

- Approximate flow [Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir '15]
- Transshipment and shortest paths [Becker, Forster, Karrenbauer, Lenzen '17, Rozhoň (r) Grunau (r) Haeupler (r) Zuzic (r) Li '22, Zuzic (r) Goranci (r) Ye (r) Haeupler (r) Sun '22, Zuzic '23]
 - Solved with Gradient Descent and Multiplicative Weight Update method
- Exact flow [Forster, Goranci, Liu, Peng, Sun, Ye '21, dV '23]
 - Solved with Interior Point Methods
- Approximate Packing and Covering Linear Programs [Kuhn, Moscibroda, and Wattenhofer '06]
 - ► Solved with a Primal-Dual approach

In LOCAL:

- Approximate Integer Packing and Covering Linear Programs [Ghaffari, Kuhn, and Maus '17, Chang and Li '23]
 - ► Solved with decomposition + exact local solution

- Constraint matrix in terms of Laplacian
 - ► Need to compute **L**x

- Constraint matrix in terms of Laplacian
 - ► Need to compute **Lx** (many methods)
 - ▶ Need to compute $\mathbf{L}^{-1}\mathbf{y}$ (some methods)

- Constraint matrix in terms of Laplacian
 - ► Need to compute Lx (many methods)
 - ▶ Need to compute $\mathbf{L}^{-1}\mathbf{y}$ (some methods)

Laplacian Solver

- Given $\mathbf{y} \in \mathbb{R}^n$, let $\mathbf{x}^* \in \mathbb{R}^n$ s.t. $\mathbf{L}\mathbf{x}^* = \mathbf{y}$.
- Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} = \mathbf{x}^* \pm \varepsilon \mathbf{x}^*$.

- Constraint matrix in terms of Laplacian
 - ▶ Need to compute Lx (many methods)
 - ► Need to compute **L**⁻¹**y** (some methods)

Laplacian Solver

- Given $\mathbf{y} \in \mathbb{R}^n$, let $\mathbf{x}^* \in \mathbb{R}^n$ s.t. $\mathbf{L}\mathbf{x}^* = \mathbf{y}$.
- Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} = \mathbf{x}^* \pm \varepsilon \mathbf{x}^*$.
- Abuse of notation! Should write $x = x^* + z$ s.t. $||z|| \le \varepsilon ||x^*||$

- Constraint matrix in terms of Laplacian
 - ▶ Need to compute Lx (many methods)
 - ► Need to compute **L**⁻¹**y** (some methods)

Laplacian Solver

- Given $\mathbf{y} \in \mathbb{R}^n$, let $\mathbf{x}^* \in \mathbb{R}^n$ s.t. $\mathbf{L}\mathbf{x}^* = \mathbf{y}$.
- Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} = \mathbf{x}^* \pm \varepsilon \mathbf{x}^*$.
- Abuse of notation! Should write $x = x^* + z$ s.t. $||z|| \le \varepsilon ||x^*||$
- Generally can afford/need $\varepsilon = 1/\operatorname{poly} n$

Recap

- Can phrase graph problems as linear programs
- To solve a linear program we need
 - ► Lx
 - ightharpoonup L⁻¹y (Laplacian Solving)

Laplacian Solving

- $\tilde{O}(m)$ sequential running time [Spielman, Teng '04]
- \bullet $\tilde{O}(m)$ work, polylogarithmic depth in PRAM [Peng, Spielman '14]

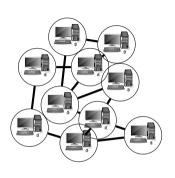
Laplacian Solving

- $\tilde{O}(m)$ sequential running time [Spielman, Teng '04]
- $\tilde{O}(m)$ work, polylogarithmic depth in PRAM [Peng, Spielman '14]
- $\tilde{\Omega}(\sqrt{n}+D)$ rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye '21]
- $n^{o(1)}(\sqrt{n} + D)$ rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye '21]

Laplacian Solving

- $\tilde{O}(m)$ sequential running time [Spielman, Teng '04]
- \bullet $\tilde{O}(m)$ work, polylogarithmic depth in PRAM [Peng, Spielman '14]
- $\tilde{\Omega}(\sqrt{n}+D)$ rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye '21]
- $n^{o(1)}(\sqrt{n} + D)$ rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye '21]
- O(poly log n) rounds in Broadcast Congested Clique [Forster, dV '22]
- $n^{o(1)}$ rounds in Deterministic Congested Clique [Forster, dV '23]

Intermezzo - Congested Clique

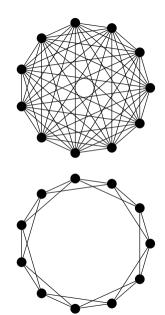


- Nodes can communicate with all other nodes
- Synchronous, $O(\log n)$ message size.
- Analogues to sending/receiving *n* messages per node [Lenzen '13].
- Broadcast CC: Broadcast same message to all neighbors.

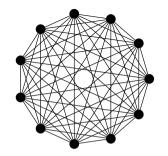
Q: How do we solve a Laplacian System?

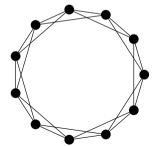
- CONGEST algorithm is complicated
- Easy in CongestedClique
- Important tool: Spectral Sparsifiers

• Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that . . . of G is approximately maintained

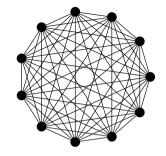


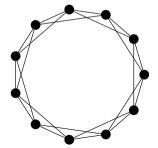
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that . . . of G is approximately maintained
- A spectral sparsifier keeps spectral properties.



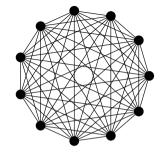


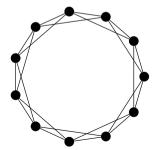
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - lacktriangle Eigenvalues of lacktriangle Eigenvalues of lacktriangle



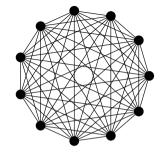


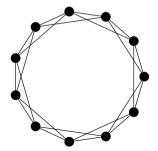
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - ▶ Eigenvalues of L_H ≈ eigenvalues of L_G
 - ★ Eigenvalue λ of G: $\mathbf{L}_G \mathbf{v} = \lambda \mathbf{v}$



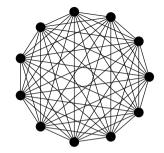


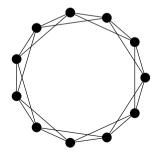
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - lacktriangle Eigenvalues of lacktriangle Eigenvalues of lacktriangle
 - ★ Eigenvalue λ of G: $\mathbf{L}_G \mathbf{v} = \lambda \mathbf{v}$
 - ***** Can assume $\mathbf{v}^T\mathbf{v} = 1$, so $\lambda = \mathbf{v}^T\mathbf{L}_G\mathbf{v}$



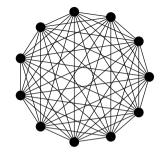


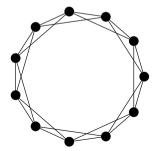
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - ▶ Eigenvalues of L_H ≈ eigenvalues of L_G
 - ★ Eigenvalue λ of G: $\mathbf{L}_G \mathbf{v} = \lambda \mathbf{v}$
 - ***** Can assume $\mathbf{v}^T\mathbf{v} = 1$, so $\lambda = \mathbf{v}^T\mathbf{L}_G\mathbf{v}$
 - ▶ A cut value in $H \approx$ a value cut in G



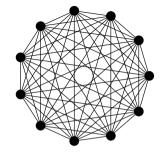


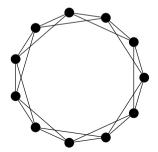
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - ▶ Eigenvalues of L_H ≈ eigenvalues of L_G
 - ★ Eigenvalue λ of G: $\mathbf{L}_G \mathbf{v} = \lambda \mathbf{v}$
 - ***** Can assume $\mathbf{v}^T\mathbf{v} = 1$, so $\lambda = \mathbf{v}^T\mathbf{L}_G\mathbf{v}$
 - ▶ A cut value in $H \approx$ a value cut in G
 - * Recall: $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L}_G \mathbf{1}_S$





- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - lacktriangle Eigenvalues of lacktriangle Eigenvalues of lacktriangle
 - ★ Eigenvalue λ of G: $\mathbf{L}_G \mathbf{v} = \lambda \mathbf{v}$
 - ***** Can assume $\mathbf{v}^T\mathbf{v} = 1$, so $\lambda = \mathbf{v}^T\mathbf{L}_G\mathbf{v}$
 - ▶ A cut value in $H \approx$ a value cut in G
 - * Recall: $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L}_G \mathbf{1}_S$
 - **★** $\mathbf{x}^T \mathbf{L}_G \mathbf{x}$ for $\mathbf{x} \in \{0, 1\}^n$





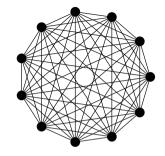
- Sparsifier $H \subseteq G$ is a (reweighted) sparse subgraph of G such that ... of G is approximately maintained
- A spectral sparsifier keeps spectral properties.
 - lacktriangle Eigenvalues of lacktriangle Eigenvalues of lacktriangle
 - ★ Eigenvalue λ of G: $\mathbf{L}_G \mathbf{v} = \lambda \mathbf{v}$
 - ***** Can assume $\mathbf{v}^T\mathbf{v} = 1$, so $\lambda = \mathbf{v}^T\mathbf{L}_G\mathbf{v}$
 - ▶ A cut value in $H \approx$ a value cut in G
 - * Recall: $|E(S, V \setminus S)| = \mathbf{1}_S^T \mathbf{L}_G \mathbf{1}_S$
 - * $\mathbf{x}^T \mathbf{L}_G \mathbf{x}$ for $\mathbf{x} \in \{0, 1\}^n$

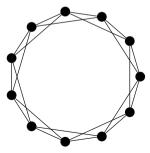
Definition

 $H \subseteq G$ is a $(1 \pm \varepsilon)$ -spectral sparsifier of G if

$$(1 - \varepsilon)\mathbf{x}^\mathsf{T}\mathbf{L}_H\mathbf{x} \le \mathbf{x}^\mathsf{T}\mathbf{L}_G\mathbf{x} \le (1 + \varepsilon)\mathbf{x}^\mathsf{T}\mathbf{L}_H\mathbf{x}$$

$$\forall \mathbf{x} \in \mathbb{R}^n$$
.





Spectral Sparsifier in the Congested Clique

Spectral Sparsifier in the Congested Clique

Spectral Sparsifer in the CongestedClique

- For $i = 1, \ldots, O(\log n)$: • For $i = 1, \ldots, O(\log n)$:
 - * Compute an $O(\log n)$ -spanner S of G
 - $\star H \leftarrow H \cup S$
 - $\star G \leftarrow G \setminus H$
 - Keep each edge in G with probability $\frac{1}{4}$.
- Return H

 \bullet $H \leftarrow 0$

• Compute a spectral sparsifier H of size $\tilde{O}(n)$

- Compute a spectral sparsifier H of size $\tilde{O}(n)$
- Make *H* known to every node

- Compute a spectral sparsifier H of size $\tilde{O}(n)$
- Make H known to every node
- Internally solve $\mathbf{L}_H \mathbf{x} = \mathbf{y}$

- Compute a spectral sparsifier H of size $\tilde{O}(n)$
- Make H known to every node
- Internally solve $\mathbf{L}_H \mathbf{x} = \mathbf{y}$
- Output x

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to $\mathbf{L}_G \mathbf{x} = \mathbf{y}$ in $O(\log(1/\varepsilon))$ iterations.

• Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1} \mathbf{y}$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $L_G x_0 = L_G L_H^{-1} y = L_G (L_G^{-1} y \pm \delta L_G^{-1} y) = y \pm \delta y$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $L_G x_0 = L_G L_H^{-1} y = L_G (L_G^{-1} y \pm \delta L_G^{-1} y) = y \pm \delta y$
- $\bullet \ \mathbf{x}_1 \leftarrow \mathbf{L}_H^{-1}(\mathbf{y} \mathbf{L}_G \mathbf{x}_0)$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $L_G x_0 = L_G L_H^{-1} y = L_G (L_G^{-1} y \pm \delta L_G^{-1} y) = y \pm \delta y$
- $\bullet \ \mathbf{x}_1 \leftarrow \mathbf{L}_H^{-1}(\mathbf{y} \mathbf{L}_G \mathbf{x}_0)$
- And

$$\mathsf{L}_{G}(\mathsf{x}_{0}+\mathsf{x}_{1})=\mathsf{L}_{G}\mathsf{x}_{0}+\mathsf{L}_{G}\mathsf{L}_{H}^{-1}(\mathsf{y}-\mathsf{L}_{G}\mathsf{x}_{0})$$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $L_G x_0 = L_G L_H^{-1} y = L_G (L_G^{-1} y \pm \delta L_G^{-1} y) = y \pm \delta y$
- $\bullet \ \, \mathbf{x}_1 \leftarrow \mathbf{L}_H^{-1}(\mathbf{y} \mathbf{L}_G \mathbf{x}_0)$
- And

$$L_G(\mathbf{x}_0 + \mathbf{x}_1) = L_G \mathbf{x}_0 + L_G L_H^{-1}(\mathbf{y} - \mathbf{L}_G \mathbf{x}_0)$$

= $L_G \mathbf{x}_0 + L_G (L_G^{-1}(\mathbf{y} - \mathbf{L}_G \mathbf{x}_0) \pm \delta L_G^{-1}(\mathbf{y} - \mathbf{L}_G \mathbf{x}_0))$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $L_G x_0 = L_G L_H^{-1} y = L_G (L_G^{-1} y \pm \delta L_G^{-1} y) = y \pm \delta y$
- $\bullet \ \, \mathbf{x}_1 \leftarrow \mathbf{L}_H^{-1}(\mathbf{y} \mathbf{L}_G \mathbf{x}_0)$
- And

$$\mathbf{L}_{G}(\mathbf{x}_{0} + \mathbf{x}_{1}) = \mathbf{L}_{G}\mathbf{x}_{0} + \mathbf{L}_{G}\mathbf{L}_{H}^{-1}(\mathbf{y} - \mathbf{L}_{G}\mathbf{x}_{0})$$

$$= \mathbf{L}_{G}\mathbf{x}_{0} + \mathbf{L}_{G}(\mathbf{L}_{G}^{-1}(\mathbf{y} - \mathbf{L}_{G}\mathbf{x}_{0}) \pm \delta\mathbf{L}_{G}^{-1}(\mathbf{y} - \mathbf{L}_{G}\mathbf{x}_{0}))$$

$$= y \pm \delta(\mathbf{y} - \mathbf{L}_{G}\mathbf{x}_{0}) = \mathbf{y} \pm \delta^{2}\mathbf{y}$$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to $\mathbf{L}_G \mathbf{x} = \mathbf{y}$ in $O(\log(1/\varepsilon))$ iterations.

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $\mathbf{L}_G \mathbf{x}_0 = \mathbf{L}_G \mathbf{L}_H^{-1} \mathbf{y} = \mathbf{L}_G (\mathbf{L}_G^{-1} \mathbf{y} \pm \delta \mathbf{L}_G^{-1} \mathbf{y}) = \mathbf{y} \pm \delta \mathbf{y}$
- $\bullet \ \, \mathbf{x}_1 \leftarrow \mathbf{L}_H^{-1}(\mathbf{y} \mathbf{L}_G \mathbf{x}_0)$
- And

$$L_G(\mathbf{x}_0 + \mathbf{x}_1) = L_G \mathbf{x}_0 + L_G L_H^{-1}(\mathbf{y} - L_G \mathbf{x}_0)$$

$$= L_G \mathbf{x}_0 + L_G (L_G^{-1}(\mathbf{y} - L_G \mathbf{x}_0) \pm \delta L_G^{-1}(\mathbf{y} - L_G \mathbf{x}_0))$$

$$= y \pm \delta(\mathbf{y} - L_G \mathbf{x}_0) = \mathbf{y} \pm \delta^2 \mathbf{y}$$

ullet Output $\mathbf{x} = \sum_{j < i} \mathbf{x}_j$

Preconditioned Chebyshev Iteration [Axelsson '93, Saad '03]

- Fix a δ -spectral sparsifier H of G (think $\delta = \frac{1}{2}$)
- $\bullet \ \, \mathbf{x}_0 \leftarrow \mathbf{L}_H^{-1}\mathbf{y}$
- Note $L_G x_0 = L_G L_H^{-1} y = L_G (L_G^{-1} y \pm \delta L_G^{-1} y) = y \pm \delta y$
- $\bullet \ \mathbf{x}_1 \leftarrow \mathbf{L}_H^{-1}(\mathbf{y} \mathbf{L}_G \mathbf{x}_0)$
- And

$$L_G(\mathbf{x}_0 + \mathbf{x}_1) = L_G \mathbf{x}_0 + L_G L_H^{-1}(\mathbf{y} - L_G \mathbf{x}_0)$$

$$= L_G \mathbf{x}_0 + L_G (L_G^{-1}(\mathbf{y} - L_G \mathbf{x}_0) \pm \delta L_G^{-1}(\mathbf{y} - L_G \mathbf{x}_0))$$

$$= y \pm \delta(\mathbf{y} - L_G \mathbf{x}_0) = \mathbf{y} \pm \delta^2 \mathbf{y}$$

- Output $\mathbf{x} = \sum_{j < i} \mathbf{x}_j$
- $\mathbf{L}_G \mathbf{x} = \mathbf{y} \pm \delta^i \mathbf{y}$

Laplacian Solvers – Recap

- \bullet $\tilde{O}(m)$ sequential running time [Spielman, Teng '04]
- $\tilde{O}(m)$ work, O(poly log n) depth in PRAM [Peng, Spielman '14]
- $\tilde{\Omega}(\sqrt{n}+D)$ rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye '21]
- $n^{o(1)}(\sqrt{n} + D)$ rounds in CONGEST [Forster, Goranci, Liu, Peng, Sun, Ye '21]
- O(poly log n) rounds in Broadcast Congested Clique [Forster, dV '22]
- $n^{o(1)}$ rounds in Deterministic Congested Clique [Forster, dV '23]

- In CongestedClique, we can compute Laplacian solving via spectral sparsifiers
- We can compute spectral sparsifiers via spanners
- We can boost the accuracy of a solver $(\log(1/\varepsilon))$ iterations)

Q: Is Laplacian solving always so expensive?

• Universal Optimality: the $\tilde{\Omega}(\sqrt{n}+D)$ lower bound is not for all graph topologies

Q: Is Laplacian solving always so expensive?

- Universal Optimality: the $\tilde{\Omega}(\sqrt{n}+D)$ lower bound is not for all graph topologies
- The Shortcut Quality SQ(G) is a more precise lower bound: $D \leq SQ(G) \leq D + \sqrt{n}$

Q: Is Laplacian solving always so expensive?

- Universal Optimality: the $\tilde{\Omega}(\sqrt{n}+D)$ lower bound is not for all graph topologies
- The Shortcut Quality SQ(G) is a more precise lower bound: $D < SQ(G) < D + \sqrt{n}$
- Topology dependent Laplacian solver [Anagnostides, Gouleakis, Lenzen '21, Anagnostides (r) Lenzen (r) Haeupler (r) Zuzic (r) Gouleakis '22]
 - ▶ Lower bound: $\tilde{\Omega}(SQ(G))$
 - ▶ Upper bound: $n^{o(1)}$ poly $(SQ(G))\log(1/\varepsilon)$ rounds
 - \triangleright $n^{o(1)}D$ rounds in
 - ★ planar graphs
 - * expander graphs
 - \star $n^{o(1)}$ -genus graphs
 - $\star n^{o(1)}$ -treewidth graphs
 - * excluded-minor graphs

Part 1: Algebra – it's not so bad

Part 2: Computing Max Flow – it's not so easy

Flow

Definition

G = (V, E) directed, capacities $c \in \mathbb{Z}_{\geq 0}^m$, costs $q \in \mathbb{Z}^m$, source and target $s, t \in V$. The minimum cost (maximum) flow problem is to find the s - t flow $f \in \mathbb{R}^m$ of minimum cost, among all flows of maximum value.

- Generalizes Max Flow and Negative Weight Shortest Path.
- Min Cost Flow is a linear program.

Flow

Definition

G = (V, E) directed, capacities $c \in \mathbb{Z}_{\geq 0}^m$, costs $q \in \mathbb{Z}^m$, source and target $s, t \in V$. The minimum cost (maximum) flow problem is to find the s - t flow $f \in \mathbb{R}^m$ of minimum cost, among all flows of maximum value.

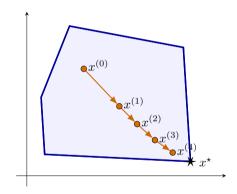
- Generalizes Max Flow and Negative Weight Shortest Path.
- Min Cost Flow is a linear program.

Theorem (Informal)

Min Cost Flow with $\tilde{O}(\sqrt{n})$ Laplacian solves in the CONGEST/BroadcastCongestedClique model.

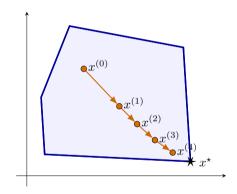
• Goal: Solve a linear program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{M} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0.$



• Goal: Solve a linear program

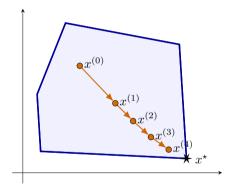
$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{M} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0.$



• Goal: Solve a linear program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{M} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0.$

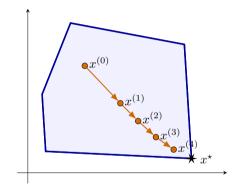
 Interior-point algorithms stay strictly inside the feasible region, following a central path that leads to the optimum.



• Goal: Solve a linear program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{M} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0.$

- Interior-point algorithms stay strictly inside the feasible region, following a central path that leads to the optimum.
- Output: an ε -approximate solution



- ullet ε -approximate solution
- $\tilde{O}(\sqrt{n}\log(1/\varepsilon))$ iterations
- Each iteration needs:
 - $ightharpoonup ilde{O}(1)$ matrix-vector multiplications.
 - $ightharpoonup \tilde{O}(1)$ linear system solves.
 - ► Leverage score computation with Johnson-Lindenstrauss.
 - ► Projection on a mixed norm ball:

$$\mathop{\arg\max}_{||\mathbf{x}||_2+||\ell^{-1}\mathbf{x}||_\infty \leq 1} \mathbf{a}^T\mathbf{x} \qquad \qquad \text{for some } \mathbf{a}, \ell \in \mathbb{R}^m.$$

- ullet ε -approximate solution
- $\tilde{O}(\sqrt{n}\log(1/\varepsilon))$ iterations
- Each iteration needs:
 - $ightharpoonup ilde{O}(1)$ matrix-vector multiplications.
 - $ightharpoonup \tilde{O}(1)$ linear system solves.
 - ► Leverage score computation with Johnson-Lindenstrauss.
 - ► Projection on a mixed norm ball:

$$\underset{||\mathbf{x}||_2+||\ell^{-1}\mathbf{x}||_\infty\leq 1}{\arg\max} \ \mathbf{a}^T\mathbf{x} \qquad \qquad \text{for some } \mathbf{a},\ell\in\mathbb{R}^m.$$

• For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]

- ullet ε -approximate solution
- $\tilde{O}(\sqrt{n}\log(1/\varepsilon))$ iterations
- Each iteration needs:
 - $ightharpoonup ilde{O}(1)$ matrix-vector multiplications.
 - $ightharpoonup \tilde{O}(1)$ linear system solves.
 - ► Leverage score computation with Johnson-Lindenstrauss.
 - ► Projection on a mixed norm ball:

$$\underset{||\mathbf{x}||_2+||\ell^{-1}\mathbf{x}||_{\infty}\leq 1}{\text{arg max}} \mathbf{a}^T\mathbf{x} \qquad \qquad \text{for some } \mathbf{a},\ell\in\mathbb{R}^m.$$

- For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]
 - lacktriangle Solve to precision $1/m^2$, then f_e on each edge must be close to integral

- ullet ε -approximate solution
- $\tilde{O}(\sqrt{n}\log(1/\varepsilon))$ iterations
- Each iteration needs:
 - $ightharpoonup ilde{O}(1)$ matrix-vector multiplications.
 - $ightharpoonup \tilde{O}(1)$ linear system solves.
 - ▶ Leverage score computation with Johnson-Lindenstrauss.
 - ► Projection on a mixed norm ball:

$$\underset{||\mathbf{x}||_2 + ||\ell^{-1}\mathbf{x}||_{\infty} < 1}{\text{arg max}} \mathbf{a}^T \mathbf{x} \qquad \qquad \text{for some } \mathbf{a}, \ell \in \mathbb{R}^m.$$

- For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]
 - ▶ Solve to precision $1/m^2$, then f_e on each edge must be close to integral
 - ▶ Round *f_e* to closest integer

- ullet ε -approximate solution
- $\tilde{O}(\sqrt{n}\log(1/\varepsilon))$ iterations
- Each iteration needs:
 - $ightharpoonup ilde{O}(1)$ matrix-vector multiplications.
 - $ightharpoonup \tilde{O}(1)$ linear system solves.
 - ► Leverage score computation with Johnson-Lindenstrauss.
 - ► Projection on a mixed norm ball:

$$\underset{||\mathbf{x}||_2+||\ell^{-1}\mathbf{x}||_{\infty}\leq 1}{\text{arg max}} \mathbf{a}^T\mathbf{x} \qquad \qquad \text{for some } \mathbf{a},\ell\in\mathbb{R}^m.$$

- For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]
 - ▶ Solve to precision $1/m^2$, then f_e on each edge must be close to integral
 - ▶ Round f_e to closest integer
- Sequential $\tilde{O}(\sqrt{n} \cdot m)$ time

- ullet ε -approximate solution
- $\tilde{O}(\sqrt{n}\log(1/\varepsilon))$ iterations
- Each iteration needs:
 - $ightharpoonup ilde{O}(1)$ matrix-vector multiplications.
 - $ightharpoonup \tilde{O}(1)$ linear system solves.
 - ▶ Leverage score computation with Johnson-Lindenstrauss.
 - ► Projection on a mixed norm ball:

$$\underset{||\mathbf{x}||_2+||\ell^{-1}\mathbf{x}||_{\infty}\leq 1}{\text{arg max}} \mathbf{a}^T\mathbf{x} \qquad \qquad \text{for some } \mathbf{a},\ell\in\mathbb{R}^m.$$

- For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]
 - ▶ Solve to precision $1/m^2$, then f_e on each edge must be close to integral
 - ▶ Round f_e to closest integer
- Sequential $\tilde{O}(\sqrt{n} \cdot m)$ time
- CONGEST: $\tilde{O}(\sqrt{n} \cdot T_{Laplacian}) = n^{o(1)} \sqrt{n} (\sqrt{n} + D)$ rounds

Model	Time	Reference
	$ ilde{\Omega}(\sqrt{n}+D)$	[DSHKKNPPW '11] ¹
CONGEST	$n^{o(1)}(\sqrt{n}+D)$	[GKKLPS '15] ¹
	$n^{o(1)}\sqrt{n}(\sqrt{n}+D)$	[dV '23]

¹Undirected, approximate max flow

²Max flow, *M* is maximal weight

Model	Time	Reference
	$ ilde{\Omega}(\sqrt{n}+D)$	[DSHKKNPPW '11] ¹
CONGEST	$n^{o(1)}(\sqrt{n}+D)$	[GKKLPS '15] ¹
	$n^{o(1)}\sqrt{n}(\sqrt{n}+D)$	[dV '23]
BCC	$ ilde{O}(\sqrt{n})$	[F dV '22]

¹Undirected, approximate max flow

²Max flow, *M* is maximal weight

Model	Time	Reference
CONGEST	$ ilde{\Omega}(\sqrt{n}+D)$	[DSHKKNPPW '11] ¹
	$n^{o(1)}(\sqrt{n}+D)$	[GKKLPS '15] ¹
	$n^{o(1)}\sqrt{n}(\sqrt{n}+D)$	[dV '23]
BCC	$ ilde{O}(\sqrt{n})$	[F dV '22]
Det CC	$m^{3/7+o(1)}M^{1/7}$	[FdV '23] ²

¹Undirected, approximate max flow

²Max flow, *M* is maximal weight

Model	Time	Reference
CONGEST	$ ilde{\Omega}(\sqrt{n}+D)$	[DSHKKNPPW '11] ¹
	$n^{o(1)}(\sqrt{n}+D)$	[GKKLPS '15] ¹
	$n^{o(1)}\sqrt{n}(\sqrt{n}+D)$	[dV '23]
BCC	$ ilde{O}(\sqrt{n})$	[F dV '22]
Det CC	$m^{3/7+o(1)}M^{1/7}$	[F dV '23] ²
PRAM	$ ilde{O}(\sqrt{n})$ depth and $ ilde{O}(m+n^{1.5})$ work	[vdBGJ dV '25]

¹Undirected, approximate max flow

²Max flow, *M* is maximal weight

Model	Time	Reference
CONGEST	$ ilde{\Omega}(\sqrt{n}+D)$	[DSHKKNPPW '11] ¹
	$n^{o(1)}(\sqrt{n}+D)$	[GKKLPS '15] ¹
	$n^{o(1)}\sqrt{n}(\sqrt{n}+D)$	[dV '23]
BCC	$ ilde{O}(\sqrt{n})$	[F dV '22]
Det CC	$m^{3/7+o(1)}M^{1/7}$	$[FdV '23]^2$
PRAM	$ ilde{O}(\sqrt{n})$ depth and $ ilde{O}(m+n^{1.5})$ work	[vdBGJ dV '25]
Sequential	$m^{1+o(1)}$	[CKLPPGS '22]

¹Undirected, approximate max flow

²Max flow, *M* is maximal weight

Q: Does faster sequential Max Flow transfer to distributed models?

```
[Lee, Sidford '14]: [Chen, KLPPGS '22]: #iterations: \tilde{O}(\sqrt{n}) #iterations: m^{1+o(1)} Time per iteration: \tilde{O}(m) Time per iteration: m^{o(1)}
```

Q: Does faster sequential Max Flow transfer to distributed models?

```
[Lee, Sidford '14]:
#iterations: \tilde{O}(\sqrt{n})
Time per iteration: \tilde{O}(m)
```

Iteration count carries over to round complexity

```
[Chen, KLPPGS '22]:
#iterations: m^{1+o(1)}
Time per iteration: m^{o(1)}
```

Running time improvement does not improve round complexity

Q: Does faster sequential Max Flow transfer to distributed models?

```
[Lee, Sidford '14]:

#iterations: \tilde{O}(\sqrt{n})

Time per iteration: \tilde{O}(m)
```

Iteration count carries over to round complexity

```
[Chen, KLPPGS '22]:
```

#iterations: $m^{1+o(1)}$

Time per iteration: $m^{o(1)}$

Running time improvement does not

improve round complexity

Question

Is $\tilde{\Theta}(\sqrt{n})$ the right iteration count for the min-cost flow LP?

Combinatorial CONGEST Algorithms

- Negative Weighted Shortest Paths:
 - ► Reduction to positive weight SSSP with *n*^{o(1)} overhead [Ashvinkumar, Bernstein, Cao, Grunau, Haeupler, Jiang, Nanongkai, and Su '24]
 - Positive SSSP: $n^{o(1)}(n^{2/5}D^{2/5} + \sqrt{n} + D)$ rounds [Cao and Fineman '23, Rozhoň (r) Haeupler (r) Martinsson (r) Grunau (r) Zuzic '23]

Combinatorial CONGEST Algorithms

- Negative Weighted Shortest Paths:
 - ► Reduction to positive weight SSSP with *n*^{o(1)} overhead [Ashvinkumar, Bernstein, Cao, Grunau, Haeupler, Jiang, Nanongkai, and Su '24]
 - ▶ Positive SSSP: $n^{o(1)}(n^{2/5}D^{2/5} + \sqrt{n} + D)$ rounds [Cao and Fineman '23, Rozhoň (r) Haeupler (r) Martinsson (r) Grunau (r) Zuzic '23]
- Max Flow in Planar Graphs: $\tilde{O}(D^2)$ rounds [Abd-Elhaleem, Dory, Parter, and Weimann '25]

Laplacian Paradigm

- Laplacian systems
- Spectral sparsifiers
- Electrical flow
- Effective resistance
- Sampling spanning trees
- Expander decompositions
- Continuous optimization
- Interior-point methods
- Gradient descent
- Preconditioning
- . .

Conclusion

The Laplacian paradigm

- has many existing tools (not optimal!)
- has many applications
- allows us to use algebraic (sequential) techniques

Conclusion

The Laplacian paradigm

- has many existing tools (not optimal!)
- has many applications
- allows us to use algebraic (sequential) techniques

Laplacian paradigm gives state of the art for flow problems in

- Sequential
- Parallel
- CONGEST
- (Broadcast/Determinisitic) Congested Clique

Conclusion

The Laplacian paradigm

- has many existing tools (not optimal!)
- has many applications
- allows us to use algebraic (sequential) techniques

Laplacian paradigm gives state of the art for flow problems in

- Sequential
- Parallel
- CONGEST
- (Broadcast/Determinisitic) Congested Clique

Thank you!