The Distributed Laplacian Paradigm

Algebraic Methods for Combinatorial Problems

Tijn de Vos



A lecture in two parts

Part 1:
Algebra — it's not so bad

Part 2:
Computing Max Flow — it's not so easy
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Please ask questions!
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Q: What does Linear Algebra have to do with Graphs?
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Q: What does Linear Algebra have to do with Graphs?

e G=(V,E,w) with |V|=n, |[E|=m, w: E—-R
e Adjacency matrix: A € R™" such that Aj; = w(ij)
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Q: What does Linear Algebra have to do with Graphs?

e G=(V,E,w) with |V|=n, |[E|=m, w: E—-R 1
e Adjacency matrix: A € R™" such that Aj; = w(ij)

o Eg. 010
A=11 01
010
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Q: What does Linear Algebra have to do with Graphs?

e G=(V,E,w) with |V|=n, |[E|=m, w: E—-R 1
e Adjacency matrix: A € R™" such that Aj; = w(ij)
e Eg. 010
A=(1 01
010
2

e A € R™" with degrees on the diagonal
@ Laplacian matrix: L:= A — A
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Q: What does Linear Algebra have to do with Graphs?

e G=(V,E,w) with |V|=n, |[E|=m, w: E—-R 1
e Adjacency matrix: A € R™" such that Aj; = w(ij)
e Eg. 010
A=(1 01
010
2

e A € R™" with degrees on the diagonal
@ Laplacian matrix: L:= A — A
o Eg 1 -1 0

The Distributed Laplacian Paradigm 4



Q: Why do we care about this matrix?
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Q: Why do we care about this matrix?

@ It encodes the entire graph
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Q: Why do we care about this matrix?
@ It encodes the entire graph

e E.g., all cuts:

S C Vthen |[E(S,V\S)| =1lL1s
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Q: Why do we care about this matrix?

@ It encodes the entire graph

e E.g., all cuts:

S C Vthen |[E(S,V\S)| =1lL1s
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Q: Why do we care about this matrix?

@ It encodes the entire graph

e E.g., all cuts:

S C Vthen |[E(S,V\S)| =1lL1s

1 -1 0\ /1 0
11o0of{-1 2 -1|[1]=0110]1
0o -1 1/ \o -1
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Q: Why do we care about this matrix?

@ It encodes the entire graph

e E.g., all cuts:

S C Vthen |[E(S,V\S)| =1lL1s

1 -1 0\ /1 0
11o0of{-1 2 -1|[1]=0110]1
0o -1 1/ \o -1

@ L can be dense and all cuts are a lot of vectors

@ Instead: consider the eigenvalues
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Q: What is an eigenvalue?
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Q: What is an eigenvalue?

o Let M e R™"
@ If Mv = \v for some A € C, v € R”, then

> ) is an eigenvalue
> Vv is an eigenvector
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Q: What is an eigenvalue?

o Let M e R™"
@ If Mv = \v for some A € C, v € R”, then

> ) is an eigenvalue
> Vv is an eigenvector
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Q: What is an eigenvalue?

o Let M e R™"
@ If Mv = \v for some A € C, v € R”, then

; : 1 -1 0 1 0 1
> X is an eigenvalue 12 1 1) — (o . X
> v is an eigenvector 0 11 X = : = :
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Q: What is an eigenvalue?

o Let M e R™"
@ If Mv = \v for some A € C, v € R”, then

; : 1 -1 0 1 0 1
> X is an eigenvalue 12 1 1) — (o . X
> v is an eigenvector 0 11 X = : = :
0 -1 1 1
-1 0 1 3 1
-1 2 -1 21 =1-6 —3.]-2
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Q: What is an eigenvalue?

o Let M e R™"
@ If Mv = \v for some A € C, v € R”, then

] ) 1 -1 0 1 0 1
> X is an eigenvalue 1 2 1 1l =1{o —0-11
> Vvis an- eigenvector 0 -1 1 1 - 0 N 1
@ M has n eigenvalues
1 -1 0 -1 -1 -1
-1 2 -1 0]=1020 =1 0
0 -1 1 1
-1 0 1 3 1
-1 2 -1 2] =1-6 =3-1-2
0 -1 1 1 3 1
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Q: What is an eigenvalue?

o Let M e R"™"
_ n
oIfM\;\._)\vf.orsonFe)\G(C,VGRvthen 1 -1 0 1 0 1
>
> v ilss aa: :ilgzrr:\\//:c:(ir P I 0]
0 -1 1 1 0 1
@ M has n eigenvalues 1 1 0 1 1 1
e Can assume vv = (v,v) = [|v||? = 1. -1 _2 -1 _0 = _0 =1 _0
> Since M(cv) = cMv = c(Av) = A(cv) 0 -1 1 1
-1 0 1 3 1
0 -1 1 1 3 1
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Q: What is an eigenvalue?

o Let M e R"™"
— n
oIfM\;\.—)\vf.orsonFe)\G(C,veR,then 1 -1 o0 1 0 1
- 4 is an eigenvector L2 1|1 =(of =01
) 0 -1 1 1 0 1
@ M has n eigenvalues 1 L 0 1 ) )
e Canassume v’ v = (v,v) = [|v|2 = 1. 4 _2 1 _O - _0 _ _0
> Since M(cv) = cMv = c(Av) = A(cv) 0 _1 1 N N 1
o If M is symmetric, then
» All eigenvalues are real: A € R -1.0 1 3 1
» Eigenvectors are orthogonal -1 2 -1 —2|=1-6 =3-1-2
0 -1 1 1 3 1
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Q: What is an eigenvalue?

o Let M e R"™"
— n
oIfM\;\.—)\vf.orsonFe)\G(C,veR,then 1 -1 o0 1 0 1
- 4 is an eigenvector L2 1|1 =(of =01
) 0 -1 1 1 0 1
@ M has n eigenvalues 1 L 0 1 ) )
e Canassume v’ v = (v,v) = [|v|2 = 1. 1 _2 1 _O - _0 _ _0
> Since M(cv) = cMv = c(Av) = A(cv) 0 _1 1 N N 1
o If M is symmetric, then
» All eigenvalues are real: A € R -1.0 1 3 1
» Eigenvectors are orthogonal -1 2 -1 —2|=1-6 =3-1-2
0 -1 1 1 3 1

For Laplacians L:

> 0 is an eigenvalue
> all eigenvalues are > 0
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Q: Why do we care about this matrix?

@ The eigenvalues of L correspond to:

The Distributed Laplacian Paradigm 7



Q: Why do we care about this matrix?

@ The eigenvalues of L correspond to:

The number of connected components

The size of independent sets (Hoffman's bound);
The chromatic number;

The average density of cuts;

The toughness of the graph;

The Hamiltonicity;

The matching number;

The existence of a perfect matching.

vV VY Y VY VY VY VvYY
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Q: Why do we care about this matrix?

@ The eigenvalues of L correspond to:
» The number of connected components

» The size of independent sets (Hoffman’s bound);

» The chromatic number; 1 -1 0

» The average density of cuts; -1 2 -1 =

» The toughness of the graph; 0 -1 1

» The Hamiltonicity; B

» The matching number; 1 1/\/5 0

» The existence of a perfect matching. _1/\/5 1 _1/\/E
o Normalized Laplacian: L =1— A~1/2AA-1/2 0 ~1/v2 1
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Q: Why do we care about this matrix?

@ The eigenvalues of L correspond to:
» The number of connected components

» The size of independent sets (Hoffman’s bound);

» The chromatic number; 1 -1 0

» The average density of cuts; -1 2 -1 =

» The toughness of the graph; 0 -1 1

» The Hamiltonicity;

» The matching number; 1 _1/\/5 0

» The existence of a perfect matching. _1/\/5 1 _1/\/E
o Normalized Laplacian: L =1— A~1/2AA-1/2 0 ~1/V2 1

» Sparsest cut = conductance = expansion
» Mixing time
» Bipartiteness
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Q: That sounds so sequential!
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Intermezzo — The CONGEST Model

G=(V,E), |V|=n,|E|l=m
Communication over edges in synchronous
rounds.

Bandwidth O(log n) bits per edge.

Broadcast CONGEST: Broadcast same
message to all neighbors.
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Q: That sounds so sequential!
Distributed Matrix-Vector Multiplication: 1 round
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Q: That sounds so sequential!
Distributed Matrix-Vector Multiplication: 1 round

@ Input: node i knows x;
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Q: That sounds so sequential!
Distributed Matrix-Vector Multiplication: 1 round

@ Input: node i knows x;
@ Send x; to your neighbors

e Compute internally (Lx);
X1
(LX)l = (1 -1 O) X2 = X1 — X2
X3
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Q: That sounds so sequential!
Distributed Matrix-Vector Multiplication: 1 round

@ Input: node i knows x;
@ Send x; to your neighbors

e Compute internally (Lx);
X1
(LX)l = (1 -1 O) X2 = X1 — X2
X3

e Output: node i knows (Lx);
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Q: That sounds so sequential!
Distributed Matrix-Vector Multiplication: 1 round

@ Input: node i knows x;
@ Send x; to your neighbors

e Compute internally (Lx);
X1
(LX)l = (1 -1 O) X2 = X1 — X2
X3

e Output: node i knows (Lx);
@ Enough for eigenvalue estimation [Maus, dV DISC'25]
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Recap

e Can phrase the input as linear algebra (L = A — A)
@ Can do linear operations

@ Algebraic properties (eigenvalues) translate to graph properties
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Q: Can we do anything more interesting?
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Q: Can we do anything more interesting?

e Maximum Independent Set as a Linear Program (LP)
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Q: Can we do anything more interesting?

e Maximum Independent Set as a Linear Program (LP)

@ MaXxcRrn Zvevxv
> x,+x, <1foralluvekE
» x, € {0,1} forall ve V
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Q: Can we do anything more interesting?

e Maximum Independent Set as a Linear Program (LP)

@ MaXxcRrn Zvevxv
» x, +x, <1foralluveE
» x, € {0,1} forallve V

@ Locally defined constraints:

M

Il
Y
O =
—_ =
= O
~_
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Q: Can we do anything more interesting?

Maximum Independent Set as a Linear Program (LP)

MaXxeRrn ZVEV Xy
» x, +x, <1foralluveE
» x, € {0,1} forallve V

Locally defined constraints:

110
M_<011)

@ More generally: maxxeRnch
» Mx<b
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Q: Can we do anything more interesting?

Maximum Independent Set as a Linear Program (LP)

MaXxeRn ey Xv
» x, +x, <1foralluveE
» x, € {0,1} forallve V

Locally defined constraints:

110
M_<011)

o More generally: max,cgrnc”x
» Mx<b
» Non-zero entries of M correspond to edges
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Q: Are there also problems where algebraic methods are “necessary”?
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Q: Are there also problems where algebraic methods are “necessary”?
In CONGEST:

@ Approximate flow [Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir "15]

e Transshipment and shortest paths [Becker, Forster, Karrenbauer, Lenzen '17, Rozhoi (1)

Grunau (r) Haeupler (r) Zuzic (r) Li '22, Zuzic (r) Goranci (r) Ye (r) Haeupler (r) Sun
'22, Zuzic '23]

@ Exact flow [Forster, Goranci, Liu, Peng, Sun, Ye '21, dV 23]

@ Approximate Packing and Covering Linear Programs [Kuhn, Moscibroda, and
Wattenhofer '06]

In LOCAL:

e Approximate Integer Packing and Covering Linear Programs [Ghaffari, Kuhn, and Maus
'17, Chang and Li '23]
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Q: Are there also problems where algebraic methods are “necessary”?
In CONGEST:

@ Approximate flow [Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir "15]

e Transshipment and shortest paths [Becker, Forster, Karrenbauer, Lenzen '17, Rozhoi (1)
Grunau (r) Haeupler (r) Zuzic (r) Li '22, Zuzic (r) Goranci (r) Ye (r) Haeupler (r) Sun
'22, Zuzic '23]

» Solved with Gradient Descent and Multiplicative Weight Update method

@ Exact flow [Forster, Goranci, Liu, Peng, Sun, Ye '21, dV 23]

» Solved with Interior Point Methods

@ Approximate Packing and Covering Linear Programs [Kuhn, Moscibroda, and
Wattenhofer '06]

» Solved with a Primal-Dual approach

In LOCAL:

e Approximate Integer Packing and Covering Linear Programs [Ghaffari, Kuhn, and Maus
'17, Chang and Li '23]

» Solved with decomposition + exact local solution
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Q: So what do | need the Laplacian for?
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Q: So what do | need the Laplacian for?

o Constraint matrix in terms of Laplacian
> Need to compute Lx
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Q: So what do | need the Laplacian for?

o Constraint matrix in terms of Laplacian

» Need to compute Lx (many methods)
» Need to compute L~y (some methods)
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Q: So what do | need the Laplacian for?

o Constraint matrix in terms of Laplacian

» Need to compute Lx (many methods)
» Need to compute L~y (some methods)

Laplacian Solver
o Giveny € R" let x* € R" s.t. Lx* =.
o Find x € R" such that x = x* 4+ ex*.
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Q: So what do | need the Laplacian for?

o Constraint matrix in terms of Laplacian

» Need to compute Lx (many methods)
» Need to compute L~y (some methods)

Laplacian Solver
o Giveny € R" let x* € R" s.t. Lx* =.
o Find x € R" such that x = x* 4+ ex*.

@ Abuse of notation! Should write x = x* + z s.t. ||z|| < ¢]|x*||
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Q: So what do | need the Laplacian for?

o Constraint matrix in terms of Laplacian

» Need to compute Lx (many methods)
» Need to compute L~y (some methods)

Laplacian Solver
o Giveny € R" let x* € R" s.t. Lx* =.
o Find x € R" such that x = x* 4+ ex*.

@ Abuse of notation! Should write x = x* + z s.t. ||z|| < ¢]|x*||

@ Generally can afford/need ¢ = 1/ poly n
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Recap

@ Can phrase graph problems as linear programs
@ To solve a linear program we need

> Lx
» L1y (Laplacian Solving)
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Laplacian Solving

° é(m) sequential running time [Spielman, Teng '04]
° (3(m) work, polylogarithmic depth in PRAM [Peng, Spielman "14]
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Laplacian Solving

° é(m) sequential running time [Spielman, Teng '04]

° (3(m) work, polylogarithmic depth in PRAM [Peng, Spielman "14]

° Q(\/ﬁ-l— D) rounds in CONGEST |Forster, Goranci, Liu, Peng, Sun, Ye "21]

° n°(1)(\/ﬁ+ D) rounds in CONGEST |[Forster, Goranci, Liu, Peng, Sun, Ye "21]
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Laplacian Solving

O(m) sequential running time [Spielman, Teng '04]
O(m) work, polylogarithmic depth in PRAM [Peng, Spielman '14]
Q(\/ﬁ-l— D) rounds in CONGEST |Forster, Goranci, Liu, Peng, Sun, Ye "21]

n°(1)(\/ﬁ+ D) rounds in CONGEST |[Forster, Goranci, Liu, Peng, Sun, Ye "21]
O(poly log n) rounds in Broadcast Congested Clique [Forster, dV '22]

n°W) rounds in Deterministic Congested Clique [Forster, dV '23]
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Intermezzo — Congested Clique

Nodes can communicate with all other nodes
Synchronous, O(log n) message size.

Analogues to sending/receiving n messages per node [Lenzen '13].

Broadcast CC: Broadcast same message to all neighbors.
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Q: How do we solve a Laplacian System?

o CONGEST algorithm is complicated
@ Easy in CongestedClique

@ Important tool: Spectral Sparsifiers
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Q: What is a Spectral Sparsifier?

The Distributed Laplacian Paradigm



Q: What is a Spectral Sparsifier?

AN
3 R
e . . /“l .ﬂ.'«
@ Sparsifier H C G is a (reweighted) sparse subgraph of G such LTI
i i intai N S TN
that ...of G is approximately maintained }\’s‘:‘,"‘..-’:“yégg
(X ‘A “i»’.,“ S@VA%7
eeve '5":”:‘%7
) N
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Q: What is a Spectral Sparsifier?

IR

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such !ém PRI
that ...of G is approximately maintained }\“:":‘ Y2 SASY

@ A spectral sparsifier keeps spectral properties. é’égg{i‘ry‘é‘jgﬁi
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Q: What is a Spectral Sparsifier?

I
WL xS
;\\’Q‘!«'YOE

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained

[7>

@ A spectral sparsifier keeps spectral properties.
» Eigenvalues of Ly = eigenvalues of Lg

Za

. .'-
N <]
2 \gr‘ \
7

e
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X]
)
K
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\}
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Q: What is a Spectral Sparsifier?

I
WL xS
;\\’Q‘!«'YOE

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained

[7>

@ A spectral sparsifier keeps spectral properties.
» Eigenvalues of Ly = eigenvalues of Lg
* Eigenvalue X of G: Lgv = Av

Za

. .'-
N <]
2 \gr‘ \
7

e
W2

<)
<XX

X]
)
K
g v

\}

The Distributed Laplacian Paradigm 19



Q: What is a Spectral Sparsifier?

S
IS
TR
I\ A ‘. ‘
‘1""‘!‘\?&

N\

2

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained
@ A spectral sparsifier keeps spectral properties.
» Eigenvalues of Ly = eigenvalues of Lg

* Eigenvalue X of G: Lgv = Av
* Can assumev'v=1 soA=v'Lgv

B

Q8%
L AKX
2

Zz2 e\

L5

@:
|
Nl
~\~—
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Q: What is a Spectral Sparsifier?

T
74

2

<]
(]
\[775
N\

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained
@ A spectral sparsifier keeps spectral properties.

» Eigenvalues of Ly = eigenvalues of Lg

* Eigenvalue X of G: Lgv = Av
* Can assumev'v=1 soA=v'Lgv

» A cut value in H =~ a value cut in G

s",
LA
S

e
N
s

<>
<
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Q: What is a Spectral Sparsifier?

N

2

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained
@ A spectral sparsifier keeps spectral properties.
» Eigenvalues of Ly = eigenvalues of Lg
* Eigenvalue X of G: Lgv = Av
* Canassumev’v=1 soA=v'Lgv
» A cut value in H ~ a value cut in G
* Recall: |[E(S,V\ S)| =1IL¢1s

N

e

o XA
K >
AR
o

(A
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O
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S SAPars
1 |_F
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S
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Q: What is a Spectral Sparsifier?

N

2

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained

@ A spectral sparsifier keeps spectral properties.
» Eigenvalues of Ly = eigenvalues of Lg
* Eigenvalue X of G: Lgv = Av
* Canassumev’v=1 soA=v'Lgv
» A cut value in H ~ a value cut in G
* Recall: |E(S,V\ S)| =1IL¢1s
* x"Lgx for x € {0,1}"

N

e

o XA
K >
AR
o

(A

&%

O
W

S SAPars
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S
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Q: What is a Spectral Sparsifier?

@ Sparsifier H C G is a (reweighted) sparse subgraph of G such
that ...of G is approximately maintained
@ A spectral sparsifier keeps spectral properties.
» Eigenvalues of Ly = eigenvalues of Lg
* Eigenvalue X of G: Lgv = Av
* Canassumev’v=1 soA=v'Lgv
» A cut value in H ~ a value cut in G
* Recall: |E(S,V\ S)| =1IL¢1s
* x"Lgx for x € {0,1}"

Definition
H C G is a (1 & €)-spectral sparsifier of G if

(1 —e)x"Lyx < x"Lgx < (1 +e)x"Lyx Vx € R".

IS
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IS

=

'ﬂ.y‘«‘lsl-\

AP 6"‘"’ 59'



Spectral Sparsifier in the Congested Clique
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Spectral Sparsifier in the Congested Clique

Spectral Sparsifer in the CongestedClique

e H«0
e Fori=1,...,0(logn):
For j=1,...,0(logn):
Compute an O(log n)-spanner S of G

H+ HUS
G+ G\H

Keep each edge in G with probability .
@ Return H

The Distributed Laplacian Paradigm




Laplacian Solving in the Congested Clique

@ Compute a spectral sparsifier H of size O(n)
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Laplacian Solving in the Congested Clique

@ Compute a spectral sparsifier H of size O(n)

@ Make H known to every node
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Laplacian Solving in the Congested Clique

@ Compute a spectral sparsifier H of size @(n)
@ Make H known to every node

@ Internally solve Lyx =y
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Laplacian Solving in the Congested Clique

Compute a spectral sparsifier H of size @(n)
Make H known to every node

Internally solve Lyx =y

Output x
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

e Fix a d-spectral sparsifier H of G (think § = %)
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

e Fix a d-spectral sparsifier H of G (think § = %)
@ Xp Lply
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

e Fix a d-spectral sparsifier H of G (think § = %)
@ Xg Lﬁly
@ Note Lgxp = LgL;,:ly = LG(Lgly + 5L51y) =y+dy
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Accuracy

Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

o Fix a d-spectral sparsifier H of G (think § = 1)

@ Xg Lﬁly

@ Note Lgxg = LgL;,:ly = LG(LEIy + 5L51y) =yt dy
o x1 < L' (y — Lgxo)
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Accuracy

Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

o Fix a d-spectral sparsifier H of G (think § = 1)

@ Xg Lﬁly

@ Note Lgxg = LgL;,:ly = LG(LEIy + 5L51y) =yt dy
o x1 < L' (y — Lgxo)

e And Lo(xo + x1) = Lgxo + LGLﬁl(y —Lcxo)
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

o Fix a d-spectral sparsifier H of G (think § = 1)

@ Xg Lﬁly

@ Note Lgxg = LgLFIIy = LG(LEIy + 5L51y) =yt dy
o x1 < L' (y — Lgxo)

e And Lo(xo + x1) = Lgxo + LGLﬁl(y —Lcxo)

=L¢gxo + LG(Lal(y —Lgxo) = 5Lgl(y —Lgxo))
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

o Fix a d-spectral sparsifier H of G (think § = 1)

@ Xg Lﬁly

@ Note Lgxg = LgLFIIy = LG(LEIy + 5L51y) =yt dy
o x1 < L' (y — Lgxo)

e And

Lg(Xo + X1) =Lgxo + Lngl(y — LGXO)
=L¢gxo + LG(Lal(y —Lgxo) = 5L51(y —Lgxo))
=y +d(y —Lexo) =y + 6%
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

o Fix a d-spectral sparsifier H of G (think § = 1)

@ Xg Lﬁly

@ Note Lgxg = LgLFIIy = LG(LEIy + 5L51y) =yt dy

o x1 + L' (y — Lgxo)

° And Lo(xo +x1) = Lexo + LeL5 (y — Lgxo)
=L¢gxo + LG(Lal(y —Lgxo) = 5L51(y —Lgxo))
=y +d(y —Lexo) =y + 8%

o Output x=3_;_;X;
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Accuracy
Preconditioned Chebyshev lteration [Axelsson '93, Saad '03]

Even with a low-accuracy sparsifier, we can get high-accuracy solution to Lgx =y in
O(log(1/¢)) iterations.

o Fix a d-spectral sparsifier H of G (think § = 1)

@ Xg Lﬁly

@ Note Lgxg = LgLFIIy = LG(LEIy + 5L51y) =yt dy

o x1 + L' (y — Lgxo)

° And Lo(xo +x1) = Lexo + LeL5 (y — Lgxo)
=L¢gxo + LG(Lal(y —Lgxo) = 5L51(y —Lgxo))
=y +d(y —Lexo) =y + 8%

o Output x=3_;_;X;

o Lgx=y+dy
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Laplacian Solvers — Recap

) sequential running time [Spielman, Teng '04]

) work, O(poly log n) depth in PRAM [Peng, Spielman '14]

v/n+ D) rounds in CONGEST |Forster, Goranci, Liu, Peng, Sun, Ye '21]
n°(1)(\/ﬁ+ D) rounds in CONGEST |[Forster, Goranci, Liu, Peng, Sun, Ye 21|
O(poly log n) rounds in Broadcast Congested Clique [Forster, dV '22]

m
m

O(
O(
Q(

n°) rounds in Deterministic Congested Clique [Forster, dV '23]

@ In CongestedClique, we can compute Laplacian solving via spectral sparsifiers

We can compute spectral sparsifiers via spanners

@ We can boost the accuracy of a solver (log(1/¢) iterations)
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Q: Is Laplacian solving always so expensive?

e Universal Optimality: the Q(y/n + D) lower bound is not for all graph topologies
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Q: Is Laplacian solving always so expensive?

e Universal Optimality: the Q(y/n + D) lower bound is not for all graph topologies
@ The Shortcut Quality SQ(G) is a more precise lower bound: D < SQ(G) < D+ /n
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Q: Is Laplacian solving always so expensive?

e Universal Optimality: the Q(y/n + D) lower bound is not for all graph topologies

@ The Shortcut Quality SQ(G) is a more precise lower bound: D < SQ(G) < D+ /n

e Topology dependent Laplacian solver [Anagnostides, Gouleakis, Lenzen '21, Anagnostides
(r) Lenzen (r) Haeupler (r) Zuzic (r) Gouleakis '22]

» Lower bound: Q(SQ(G))
» Upper bound: n°® poly(SQ(G))log(1/¢) rounds
» n°MD rounds in
* planar graphs
expander graphs
n°M_genus graphs
n°_treewidth graphs
excluded-minor graphs

* % % %
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Part 1:
Algebra — it's not so bad

_ Part 2:
Computing Max Flow — it's not so easy




Flow

Definition

G = (V, E) directed, capacities ¢ € ZZ,, costs g € Z™, source and target s,t € V. The

minimum cost (maximum) flow problem is to find the s — t flow f € R™ of minimum cost,
among all flows of maximum value.

@ Generalizes Max Flow and Negative Weight Shortest Path.
@ Min Cost Flow is a linear program.
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Flow

Definition

G = (V, E) directed, capacities ¢ € ZZ,, costs g € Z™, source and target s,t € V. The
minimum cost (maximum) flow problem is to find the s — t flow f € R™ of minimum cost,
among all flows of maximum value.

@ Generalizes Max Flow and Negative Weight Shortest Path.
@ Min Cost Flow is a linear program.

Theorem (Informal)

Min Cost Flow with O(+/n) Laplacian solves in the CONGEST /BroadcastCongestedClique
model.
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Interior-Point Methods
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Interior-Point Methods

@ Goal: Solve a linear program

minc'x st. Mx=b, x>0.

xeR"
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Interior-Point Methods

@ Goal: Solve a linear program

minc'x st. Mx=b, x>0.

xeR"
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Interior-Point Methods

@ Goal: Solve a linear program

minc'x st. Mx=b, x>0.
xeR"

@ Interior-point algorithms stay strictly inside the
feasible region, following a central path that leads
to the optimum.
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Interior-Point Methods

@ Goal: Solve a linear program

minc'x st. Mx=b, x>0.
xeR"

@ Interior-point algorithms stay strictly inside the
feasible region, following a central path that leads
to the optimum.

@ Output: an g-approximate solution
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[Lee, Sidford '14]'s IPM
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[Lee, Sidford '14]'s IPM

@ c-approximate solution
o O(y/nlog(1/¢)) iterations
o Each iteration needs:

O(1) matrix-vector multiplications.

O(1) linear system solves.

Leverage score computation with Johnson-Lindenstrauss.
Projection on a mixed norm ball:

v

v vYyy

arg max  a'x for some a,/ € R"™.
[x[[2+1€= x| [oc <1
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[Lee, Sidford '14]'s IPM

@ c-approximate solution

e O(y/nlog(1/¢)) iterations

o Each iteration needs:

O(1) matrix-vector multiplications.

O(1) linear system solves.

Leverage score computation with Johnson-Lindenstrauss.
Projection on a mixed norm ball:

v

v vYyy

arg max  a'x for some a,/ € R"™.

X[+ 167 %] [oe <1

@ For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]
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[Lee, Sidford '14]'s IPM

@ c-approximate solution

e O(y/nlog(1/¢)) iterations

o Each iteration needs:

O(1) matrix-vector multiplications.

O(1) linear system solves.

Leverage score computation with Johnson-Lindenstrauss.
Projection on a mixed norm ball:

v

v vYyy

arg max  a'x for some a,/ € R™.
[1x[l2+[162x]00 <1

@ For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]
» Solve to precision 1/m?, then f, on each edge must be close to integral
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[Lee, Sidford '14]'s IPM

@ c-approximate solution
o O(y/nlog(1/¢)) iterations
o Each iteration needs:

O(1) matrix-vector multiplications.

O(1) linear system solves.

Leverage score computation with Johnson-Lindenstrauss.
Projection on a mixed norm ball:

v

v vYyy

arg max  a'x for some a,/ € R™.
[1x[l2+[162x]00 <1

@ For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]

» Solve to precision 1/m?, then f, on each edge must be close to integral
» Round f. to closest integer
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[Lee, Sidford '14]'s IPM

@ c-approximate solution
o O(y/nlog(1/¢)) iterations
o Each iteration needs:

O(1) matrix-vector multiplications.

O(1) linear system solves.

Leverage score computation with Johnson-Lindenstrauss.
Projection on a mixed norm ball:

v

v vYyy

arg max  a'x for some a,/ € R™.

[1x[[24[£7 %] [0 <1

@ For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]

» Solve to precision 1/m?, then f, on each edge must be close to integral
» Round f. to closest integer

e Sequential O(/n - m) time
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[Lee, Sidford '14]'s IPM

e-approximate solution

O(y/nlog(1/e)) iterations

Each iteration needs:

O(1) matrix-vector multiplications.

O(1) linear system solves.

Leverage score computation with Johnson-Lindenstrauss.
Projection on a mixed norm ball:

v

v vYyy

arg max  a'x for some a,/ € R™.
HX‘ 27 V' 1XH¢>~' <1

For flow: can set up LP s.t. OPT is integral [Daitch, Spielman '08]

» Solve to precision 1/m?, then f, on each edge must be close to integral
» Round f. to closest integer

Sequential O(y/n - m) time
CONGEST: O(y/n - T aplacian) = n°M)/n(y/n + D) rounds
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Distributed Min Cost Flow Results

Model | Time | Reference
Q(yv/n+ D) [DSHKKNPPW "11]1
CONGEST n°M(y/n+ D) [GKKLPS '15]*
n°M)/n(y/n + D) [dV ‘23]

!Undirected, approximate max flow
2Max flow, M is maximal weight
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Distributed Min Cost Flow Results

Model Time Reference
Q(yv/n+ D) [DSHKKNPPW "11]1
CONGEST n°M(y/n+ D) [GKKLPS '15]*
n°M)/n(y/n + D) [dV ‘23]
BCC O(v/n) [FdV 22]

!Undirected, approximate max flow
2Max flow, M is maximal weight
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Distributed Min Cost Flow Results

Model Time Reference
Q(v/n+ D) [DSHKKNPPW '11]*
CONGEST n°@(y/n + D) [GKKLPS "15]*
n°M)/n(y/n + D) [dV ‘23]
BCC O(+/n) [FdV 22]
Det CC m3/T+o) pL/7 [FdV 23]?

!Undirected, approximate max flow
2Max flow, M is maximal weight
The Distributed Laplacian Paradigm



Distributed Min Cost Flow Results

Model Time Reference
Q(v/n+ D) [DSHKKNPPW '11]*
CONGEST n°@(y/n + D) [GKKLPS "15]*
n°M)/n(y/n + D) [dV ‘23]
BCC O(+/n) [FdV 22]
Det CC m3/T+o() pmL/7 [FdV ‘23]°
PRAM | O(y/n) depth and O(m + n*®) work [vdBGJdV'25]

!Undirected, approximate max flow
2Max flow, M is maximal weight
The Distributed Laplacian Paradigm



Distributed Min Cost Flow Results

Model Time Reference
Q(v/n+ D) [DSHKKNPPW '11]*

CONGEST n°@(y/n + D) [GKKLPS "15]*

n°M)/n(y/n + D) [dV ‘23]

BCC O(+/n) [FdV 22]

Det CC m3/T+o() pmL/7 [FdV ‘23]°
PRAM | O(y/n) depth and O(m + n*®) work [vdBGJdV'25]
Sequential mtteoll) [CKLPPGS '22]

!Undirected, approximate max flow
2Max flow, M is maximal weight
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Q: Does faster sequential Max Flow transfer to distributed models?

[Lee, Sidford '14]: [Chen, KLPPGS '22]:
#iterations: O(v/n) _ #iterations: m!*o(t)
Time per iteration: O(m) Time per iteration: m°(1)

The Distributed Laplacian Paradigm



Q: Does faster sequential Max Flow transfer to distributed models?

[Lee, Sidford '14]:
Ffiterations: O(v/n)

Time per iteration: O(m)

Iteration count carries over to round
complexity
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[Chen, KLPPGS '22]:
#iterations: mito()
Time per iteration: m°()

Running time improvement does not
improve round complexity



Q: Does faster sequential Max Flow transfer to distributed models?

[Lee, Sidford '14]:
Ffiterations: O(v/n)

Time per iteration: O(m)

Iteration count carries over to round
complexity

Question

[Chen, KLPPGS '22]:
#iterations: mito()
Time per iteration: m°()

Running time improvement does not
improve round complexity

Is ©(y/n) the right iteration count for the min-cost flow LP?
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Combinatorial CONGEST Algorithms

o Negative Weighted Shortest Paths:
» Reduction to positive weight SSSP with n°() overhead [Ashvinkumar, Bernstein, Cao,
Grunau, Haeupler, Jiang, Nanongkai, and Su '24]
» Positive SSSP: n°(M)(n?/5D?/5 4-\/n + D) rounds [Cao and Fineman '23, Rozhoii (1)
Haeupler (r) Martinsson (r) Grunau (r) Zuzic '23]
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Combinatorial CONGEST Algorithms

o Negative Weighted Shortest Paths:
» Reduction to positive weight SSSP with n°() overhead [Ashvinkumar, Bernstein, Cao,
Grunau, Haeupler, Jiang, Nanongkai, and Su '24]
» Positive SSSP: n°(M)(n?/5D?/5 4-\/n + D) rounds [Cao and Fineman '23, Rozhoii (1)
Haeupler (r) Martinsson (r) Grunau (r) Zuzic '23]
@ Max Flow in Planar Graphs: O(D2) rounds [Abd-Elhaleem, Dory, Parter, and Weimann
'25]
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Laplacian Paradigm

Laplacian systems
Spectral sparsifiers
Electrical flow

Effective resistance
Sampling spanning trees
Expander decompositions
Continuous optimization
Interior-point methods
Gradient descent

Preconditioning
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Conclusion

The Laplacian paradigm
@ has many existing tools (not optimall)

@ has many applications
@ allows us to use algebraic (sequential) techniques
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Conclusion

The Laplacian paradigm
@ has many existing tools (not optimal!)
@ has many applications

@ allows us to use algebraic (sequential) techniques

Laplacian paradigm gives state of the art for flow problems in

Sequential

Parallel

CONGEST

(Broadcast/Determinisitic) Congested Clique
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Conclusion

The Laplacian paradigm
@ has many existing tools (not optimal!)

@ has many applications
@ allows us to use algebraic (sequential) techniques

Laplacian paradigm gives state of the art for flow problems in

@ Sequential
o Parallel

o CONGEST
o (Broadcast/Determinisitic) Congested Clique

Thank you!
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