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Today's Plan

Introduction to the rest of the talk

o Motivation
o Model
o Brief mention of the themes of the talk

Leveraging sleep to gain something

Dealing with global problems - enforcing structure on communication
Leveraging structure on communication in local problems

Final thoughts
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@ Introduction
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@ Metric with increasing importance today - energy

o Multiple ways to approach this
Simple approach - if a device not in use, turn it off temporarily

o Studied in wireless networks for multiple decades now [Nakano & Olariu, ICPP 2000]

@ Recently started to be studied in wired
networks [Chatterjee, Gmyr, & Pandurangan, PODC 2020]

@ Since then, a plethora of work has come out in the wired
setting [Chatterjee, Gmyr, & Pandurangan, PODC 2020,
Barenboim & Maimon, DISC 2021, Ghaffari & Portmann, SPAA 2022,
Dufoulon, Moses Jr., & Pandurangan, PODC 2023, Ghaffari & Portmann, PODC 2023,
Augustine, Moses Jr., & Pandurangan, SIROCCO 2024, Ghaffari & Trygub, PODC 2024,
Balliu, Fraigniaud, Olivetti, & Rabie, PODC 2025]
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Distributed Computing Model

n nodes with unique IDs € [1, N], N = poly(n)
Arbitrary graph
Global knowledge: n known to all nodes, sometimes N known to all nodes

CONGEST model: O(log n) bits per message over an edge;
LOCAL model: unlimited bandwidth
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Awake/Energy Efficiency Defined & Measured

@ Synchronous system

@ In each round, each node's state € {awake, asleep}

@ Algorithm designer controls when nodes are awake, asleep. Nodes know current round #
@ Message exchange on an edge (u, v) only possible when u,v awake in same round

@ Metric 1: awake time; Metric 2: running time/round complexity
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General Themes of Talk

@ Biggest algorithmic design hurdle: Figuring out when to communicate between neighbors

@ Think of solutions as finding the communication structure inherent to pre-existing
techniques, and then exploiting them

@ It's ok to lose run time to enforce a structure which saves us awake time

@ A little structure goes a long way, even for local problems
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Outline

© Leveraging Sleep to Gain Something
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Section Outline

Plan for Section

@ Introduce solution to Maximal Independent Set (MIS)
from [Chatterjee, Gmyr, & Pandurangan, PODC 2020]

o Big Idea: Cleverly putting nodes to sleep saves average node-awake time

@ Why care: Lower bound [Kuhn, Moscibroda, & Wattenhofer, JACM 2016] -
Q(min{lolgoﬁagAA’ Iolgoﬁygn})'
For high degree graphs, if nodes always awake, then total energy/awake time - w(n)

o [Chatterjee, Gmyr, & Pandurangan, PODC 2020]: O(1) node-average awake time =—
O(n) total energy/awake time
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Maximal Independent Set (MIS) - Problem Definition

Maximal Independent Set (MIS)

For a graph G(V, E), the maximal independent set of G is a set of nodes S such that for all
nodes u,v € S, the edge (u, v) does not exist and every node not in S has a neighbor in S.

William K. Moses Jr. (Durham University)

Awake Efficient Distibuted Algorithms

October 27th, 2025



Solution Outline

Each node samples K = O(log n) fair coin tosses
Each node participates in a recursive process MIS(K):

@ Bottom out - either MIS(0) or you're awake & no one around you is in MIS (you're
isolated): join MIS

o If undecided: if Kth coin toss heads participate in MIS(K — 1), else sleep for duration of
MIS(K-1)

Inform neighbors of updates to your state (synchronize)

If neighbor in MIS, don't join MIS

If you become isolated, then join MIS

If you're still undecided, participate in MIS(K — 1), else sleep
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e Simple analysis - each node participates in O(log n) recursion, so each node O(log n)
awake time

o Insight: At each level of the recursion, set of awake nodes A and sleeping nodes S.
Nodes in set MIS(A) have neighbors in set S.
A constant fraction of S are pruned thanks to the actions of awake nodes

e In particular, at every level, 1/4 of nodes in S pruned by nodes in MIS(A). So at each
level of recursion i, (3/4)'n nodes participate.
These pruned nodes each need only O(1) awake time for whole MIS process

K .
@ For non-pruned nodes, node average awake time = (1/n) > (3/4)" - n = O(1)
i=0
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@ The given solution sacrificed run time to save awake time
O(log3*1) run time

@ However, it's possible to avoid doing so [Ghaffari & Portmann, SPAA 2022]
O(log n) run time
Note that O(1) node-average awake time is w.h.p.

o [Ghaffari & Portmann, SPAA 2022] also solves maximal matching awake efficiently
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Outline

© Dealing with Global Problems - Enforcing Structure on Communication
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Section Outline

Plan for Section

e [Barenboim & Maimon, DISC 2021]: Identified structure on a global scale.
Leveraged it to solve spanning tree.
Also devised awake-efficient solution for class of problems called O — LOCAL

e Focus of section [Augustine, Moses Jr., & Pandurangan, SIROCCO 2024]: Tweaked
structure so that minimum spanning tree could be solved. Additionally, run time improved

o Big Idea: Break up solution into smaller chunks of time where you can guarantee certain
nodes are not awake at the same time

@ Why care: Global problem, but O(log n) awake time. Also, the structure observed and
built has applications to various other problems, both global and local

.
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Minimum Spanning Tree (MST) - Problem Definition

Minimum Spanning Tree (MST)

For a graph G(V, E) where each edge e € E has associated weight, the minimum spanning
tree of G is a connected subgraph of G that connects all nodes of V, has no cycles, and has
the minimum sum of edge weights amongst all possible subgraphs satisfying the previous two

conditions.
25 .
r

100

15 2
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|dentifying Structure

@ Consider usual approach: GHS style merging of clusters
o Clusters (initially each node) merge using MOEs into larger clusters

@ Each phase, constant fraction of clusters merge. Totally O(log n) phases
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How To Leverage this Structure?

Notice: Not all nodes in a cluster need to be awake at all times in a phase
Communication req.: aggregation & info spread within cluster, adjacent cluster msgs
Labeled Distance Tree (LDT) - rooted tree, each node knows its distance to root
Transmission schedule (2n+ 1) - 2n+ 1 rounds, each node in LDT awake O(1) times
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Randomized Algorithm

4 N )

0 ,
MOE
OGN )

\ Tails Fragment j

@ So in each phase of GHS, merge LDTs (fragments/clusters). Goal: only one LDT left.
@ In each phase: (i) Each LDT finds MOE (ii) Merge LDTs along MOEs.

Heads Fragment
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Randomized Algorithm

MOE
—(s)

Heads Fragment

\ Tails Fragment j

@ So in each phase of GHS, merge LDTs (fragments/clusters). Goal: only one LDT left.
@ In each phase: (i) Each LDT finds MOE (ii) Merge LDTs along MOEs.
@ Where could a problem occur?
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Randomized Algorithm

@ So in each phase of GHS, merge LDTs (fragments/clusters). Goal: only one LDT left.
@ In each phase: (i) Each LDT finds MOE (ii) Merge LDTs along MOEs.

@ Where could a problem occur?

e Hint: we want O(1) awake time per node per phase.
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Randomized Algorithm

@ Problem: “Long lines” of LDTs trying to merge.

@ Solution: Each LDT flips a coin. “Valid" MOEs are from Tails to Heads. Ignore others.

@ Through analysis, we show that a constant fraction of LDTs are merged in each phase.

@ So O(log n) phases.

e Each phase, O(1) awake complexity per node and O(n) run time.

@ Result: MST constructed w.h.p. in O(log n) awake complexity and O(nlog n) round
complexity.
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@ O-LOCAL - a wide variety of problems solved in O(log A + log™ n) awake
time [Barenboim & Maimon, DISC 2021]

e [Balliu, Fraigniaud, Olivetti, & Rabie, PODC 2025] - O-LOCAL problems solved in
O(+/log nlog™ n) awake time
@ LDT - used to help solve global problem SSSP in [Ghaffari & Trygub, PODC 2024]

@ LDT - used to help solve local problem MIS in next section
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Outline

@ Leveraging Structure on Communication in Local Problems
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Section Outline

Plan for Section

Introduce solution to Maximal Independent Set (MIS)
from [Dufoulon, Moses Jr., & Pandurangan, PODC 2023]

Big Idea: Instead of reducing awake time through only analysis, what if we identify a structure that
speeds up MIS computation, and leverage algorithmic techniques & analysis to constantly get that
structure. Also, target CONGEST

Why care: Lower bound [Kuhn, Moscibroda, & Wattenhofer, JACM 2016] - Q(min{ -2 logn 1y,

log log A ? log log n

For high degree graphs, run time = Q(,/—%2")

log log n

[Chatterjee, Gmyr, & Pandurangan, PODC 2020, Ghaffari & Portmann, SPAA 2022]: O(1) node-average
awake time
But! - O(log n) awake time (not average, but worst case)

O-LOCAL: only LOCAL solutions, and when A = poly(n), O(log n) awake time

[Dufoulon, Moses Jr., & Pandurangan, PODC 2023] - O(log log n) awake time (asymptotically better than
lower bound for high degree graphs)

v
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The Big Ideas

@ Structure leveraged: LDT, but of size O(log n)
@ Analysis technique leveraged: Konrad's lemma [Konrad, arXiv 2018]

@ Second communication structure leveraged: Virtual binary tree (similar to that
in [Barenboim & Maimon, DISC 2021])

@ Plan: Explain each technique/idea. Then put them together
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LDT of Size O(log n)

Idea: Shatter graph into disjoint non-neighboring sets of nodes
Somehow ensure each set has at most O(log n) nodes

Form an LDT on each set of nodes in O(loglog n) awake time per node

Computing MIS on each LDT takes O(loglog n) awake time per node:
(i) Generate IDs for all nodes and let them know in O(log log n) awake time
(i) Use virtual binary tree (see next next slide) to get LFMIS in O(log log n) awake time

Issue: How do we “somehow ensure” size?
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Konrad's Lemma

Idea: Use a Lexicographically First MIS (LFMIS) (process nodes in inc. order of IDs)

e Lemma: Let t,t’ be two integers such that 1 <t <t/ < n. Let V; denote the (set of

the) first t nodes, Vi the (set of the) first t' nodes and M; the LFMIS over G[V;]. Then,
for any € > 0, G[Vy \ N(M;)] has maximum degree at most %In(n/e) with probability at
least 1 — €

@ Process first O(log n) nodes (based on ID) as a batch. Graphs have degree O(log n).

Dividing nodes into O(log n) buckets u.a.r. guarantees any connected subgraph in each
bucket has O(log n) nodes w.h.p.

@ Run LDT on each of these connected subgraphs to get MIS, one bucket at a time

Then once all buckets processed, process next batch of O(log? n) nodes. By Konrad's
lemma, graphs have degree O(log n). Rinse & repeat

Two issues (but really same issue): MIS from one bucket affects nodes in next. MIS from
batch of smaller ID nodes affects MIS next one

Essentially, how to communicate outcomes from smaller buckets/batch to larger
buckets/batch?
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Virtual Binary Tree

RO
ANV /\
1 2 3 4

5 6 7 8

o ldea: Consider a binary tree where the ID of each bucket/batch is a leaf node.
Systematic way to send messages from lower buckets to higher buckets in order.
Ancestors of a leaf represent round numbers to be awake in a schedule the size of the tree

e Important: Ensure binary tree has only O(log n) nodes. Then height of tree (# of awake
rounds per node) is O(log log n)
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Putting it all Together

Start with the whole graph
Nodes choose one of O(log n) batches u.a.r. - X random bits

°
°

@ Nodes choose one of O(log n) buckets u.a.r. - Y random bits

e Nodes choose one of O(logn) IDs in LDT u.a.r. - Z random bits
°

Each node has ID corresponding roughly to XYZ.
Virtual binary tree takes O(loglog n) awake time to (i) solve LFMIS on LDT, (ii)
communicate between buckets, (iii) communicate between batches

LFMIS maintained. Totally O(loglog n) awake time per node

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025



Putting it all Together

Start with the whole graph
Nodes choose one of O(log n) batches u.a.r. - X random bits

°
°

@ Nodes choose one of O(log n) buckets u.a.r. - Y random bits

e Nodes choose one of O(logn) IDs in LDT u.a.r. - Z random bits
°

Each node has ID corresponding roughly to XYZ.
Virtual binary tree takes O(loglog n) awake time to (i) solve LFMIS on LDT, (ii)
communicate between buckets, (iii) communicate between batches

LFMIS maintained. Totally O(loglog n) awake time per node

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025



Putting it all Together

Start with the whole graph
Nodes choose one of O(log n) batches u.a.r. - X random bits

°
°

@ Nodes choose one of O(log n) buckets u.a.r. - Y random bits

e Nodes choose one of O(logn) IDs in LDT u.a.r. - Z random bits
°

Each node has ID corresponding roughly to XYZ.
Virtual binary tree takes O(loglog n) awake time to (i) solve LFMIS on LDT, (ii)
communicate between buckets, (iii) communicate between batches

LFMIS maintained. Totally O(loglog n) awake time per node

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025



Putting it all Together

Start with the whole graph
Nodes choose one of O(log n) batches u.a.r. - X random bits

°
°

@ Nodes choose one of O(log n) buckets u.a.r. - Y random bits

@ Nodes choose one of O(logn) IDs in LDT u.a.r. - Z random bits
°

Each node has ID corresponding roughly to XYZ.
Virtual binary tree takes O(loglog n) awake time to (i) solve LFMIS on LDT, (ii)
communicate between buckets, (iii) communicate between batches

LFMIS maintained. Totally O(loglog n) awake time per node

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025



Putting it all Together

Start with the whole graph
Nodes choose one of O(log n) batches u.a.r. - X random bits

°
°

@ Nodes choose one of O(log n) buckets u.a.r. - Y random bits

e Nodes choose one of O(logn) IDs in LDT u.a.r. - Z random bits
°

Each node has ID corresponding roughly to XYZ.
Virtual binary tree takes O(loglog n) awake time to (i) solve LFMIS on LDT, (ii)
communicate between buckets, (iii) communicate between batches

LFMIS maintained. Totally O(loglog n) awake time per node

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025



Putting it all Together

Start with the whole graph
Nodes choose one of O(log n) batches u.a.r. - X random bits

°
°

@ Nodes choose one of O(log n) buckets u.a.r. - Y random bits

e Nodes choose one of O(logn) IDs in LDT u.a.r. - Z random bits
°

Each node has ID corresponding roughly to XYZ.
Virtual binary tree takes O(loglog n) awake time to (i) solve LFMIS on LDT, (ii)
communicate between buckets, (iii) communicate between batches

LFMIS maintained. Totally O(loglog n) awake time per node

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025



o O(loglog n) awake time, O((log’ n)loglog n) run time.
Variation: O((loglog n)log* n) awake time, O((log® n)(log log n)log* n) run time

o [Ghaffari & Portmann, PODC 2023] solve MIS in CONGEST - O(log log n) awake time,
O(log? n) run time.
Variation: O((log log n)?) awake time, O(log n(loglog n)log* n) run time
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Final Thoughts

Many more papers exist, not all covered in this talk
Ideas from wireless models can be leveraged in wired settings
Many problems still unstudied/scope for further study

Personal View: The key to solving problems in this setting is to look at existing
techniques for a given problem, identify who communicates with whom, and see if various
techniques play well together on that front or if you can artificially make them play nice

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025 25 /25



Final Thoughts

Many more papers exist, not all covered in this talk
Ideas from wireless models can be leveraged in wired settings
Many problems still unstudied/scope for further study

Personal View: The key to solving problems in this setting is to look at existing
techniques for a given problem, identify who communicates with whom, and see if various
techniques play well together on that front or if you can artificially make them play nice

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025 25 /25



Final Thoughts

Many more papers exist, not all covered in this talk
Ideas from wireless models can be leveraged in wired settings
Many problems still unstudied/scope for further study

Personal View: The key to solving problems in this setting is to look at existing
techniques for a given problem, identify who communicates with whom, and see if various
techniques play well together on that front or if you can artificially make them play nice

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025 25 /25



Final Thoughts

Many more papers exist, not all covered in this talk
Ideas from wireless models can be leveraged in wired settings
Many problems still unstudied/scope for further study

Personal View: The key to solving problems in this setting is to look at existing
techniques for a given problem, identify who communicates with whom, and see if various
techniques play well together on that front or if you can artificially make them play nice

William K. Moses Jr. (Durham University) Awake Efficient Distibuted Algorithms October 27th, 2025 25 /25



References

B

John Augustine, William K. Moses Jr., and Gopal Pandurangan.

Awake complexity of distributed minimum spanning tree.

In International Colloquium on Structural Information and Communication Complexity, pages 45—63.
Springer, 2024.

Alkida Balliu, Pierre Fraigniaud, Dennis Olivetti, and Mikaél Rabie.
Solving sequential greedy problems distributedly with sub-logarithmic energy cost.
In Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 417-427, 2025.

Leonid Barenboim and Tzalik Maimon.
Deterministic logarithmic completeness in the distributed sleeping model.
In 35th International Symposium on Distributed Computing, 2021.

Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan.
Sleeping is efficient: Mis in o (1)-rounds node-averaged awake complexity.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 99-108, 2020.

Fabien Dufoulon, William K. Moses Jr., and Gopal Pandurangan.
Distributed mis in o (log log n) awake complexity.
In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, pages 135-145, 2023.



References

ﬁ Mohsen Ghaffari and Julian Portmann.
Average awake complexity of mis and matching.
In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures, pages 45-55,
2022.

a Mohsen Ghaffari and Julian Portmann.
Distributed mis with low energy and time complexities.
In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, pages 146—-156, 2023.

ﬁ Mohsen Ghaffari and Anton Trygub.
A near-optimal low-energy deterministic distributed sssp with ramifications on congestion and apsp.
In Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, pages 401-411, 2024.

ﬁ Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer.
Local computation: Lower and upper bounds.
Journal of the ACM (JACM), 63(2):1-44, 2016.

a Christian Konrad.
MIS in the congested clique model in O(loglog A) rounds.
arXiv preprint arXiv:1802.07647, 2018.



References

@ Koji Nakano and Stephan Olariu.
Energy-efficient initialization protocols for radio networks with no collision detection.
In Proceedings 2000 International Conference on Parallel Processing, pages 263-270. |IEEE, 2000.



The End



	Introduction
	Leveraging Sleep to Gain Something
	Dealing with Global Problems - Enforcing Structure on Communication
	Leveraging Structure on Communication in Local Problems
	Final Thoughts

